Spaces:
Sleeping
Sleeping
File size: 26,348 Bytes
0b4562b 1ac6ba4 0b4562b 1ac6ba4 3a6a9cd 1ac6ba4 84463ec 0b4562b 84463ec 447bd94 0b4562b 3edcad7 447bd94 42a331b 447bd94 86fdec4 447bd94 86fdec4 447bd94 4d5b25f 02a442c 3216b1d 02a442c bd6dbaf 3216b1d bd6dbaf 3216b1d 02a442c 447bd94 fcc18a6 447bd94 0b4562b dc2ca3c 0b4562b dc2ca3c 0b4562b 447bd94 86fdec4 447bd94 0b4562b 447bd94 fcc18a6 86fdec4 fcc18a6 0b4562b 86fdec4 0b4562b fcc18a6 bd6dbaf fcc18a6 0b4562b 91ce5f5 0b4562b bd6dbaf fcc18a6 0ce71e8 3216b1d 0ce71e8 0b4562b fcc18a6 0ce71e8 fcc18a6 0b4562b 3a6a9cd 0b4562b 3a6a9cd 0b4562b 3a6a9cd fcc18a6 0b4562b 3a6a9cd 0ce71e8 3a6a9cd 0ce71e8 3a6a9cd 0ce71e8 0b4562b 86fdec4 447bd94 0b4562b 447bd94 0b4562b 3421c13 15008bf 0b4562b 15008bf 0b4562b ff7da2f 0b4562b ff7da2f 06f3d78 ff7da2f 0e6f557 ff7da2f 06f3d78 ff7da2f 06f3d78 ff7da2f 06f3d78 ff7da2f 0b4562b ff7da2f 0b4562b ff7da2f 0b4562b ff7da2f 0b4562b 9e01ee0 0b4562b ff7da2f 0b4562b ff7da2f 06f3d78 ff7da2f 0e6f557 ff7da2f 06f3d78 ff7da2f 06f3d78 ff7da2f 06f3d78 ff7da2f 06f3d78 ff7da2f 06f3d78 ff7da2f 0b4562b ff7da2f 0b4562b ff7da2f 0b4562b ff7da2f 0b4562b 9e01ee0 0b4562b 1dfb088 7f796c3 0194c79 1dfb088 7f796c3 0b4562b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 |
"""
Hugging Face Space for STARFlow
Text-to-Image and Text-to-Video Generation
This app allows you to run STARFlow inference on Hugging Face GPU infrastructure.
"""
# Fix OpenMP warning - MUST be set BEFORE importing torch
import os
os.environ['OMP_NUM_THREADS'] = '1'
os.environ['MKL_NUM_THREADS'] = '1'
os.environ['NUMEXPR_NUM_THREADS'] = '1'
# Fix CUDA memory fragmentation
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
import warnings
import gradio as gr
import torch
import subprocess
import pathlib
from pathlib import Path
# Suppress harmless warnings
warnings.filterwarnings("ignore", category=FutureWarning, message=".*torch.distributed.reduce_op.*")
# Try to import huggingface_hub for downloading checkpoints
try:
from huggingface_hub import hf_hub_download
HF_HUB_AVAILABLE = True
except ImportError:
HF_HUB_AVAILABLE = False
print("β οΈ huggingface_hub not available. Install with: pip install huggingface_hub")
# Check if running on Hugging Face Spaces
HF_SPACE = os.environ.get("SPACE_ID") is not None
# Default checkpoint paths (if uploaded to Space Files)
DEFAULT_IMAGE_CHECKPOINT = "ckpts/starflow_3B_t2i_256x256.pth"
DEFAULT_VIDEO_CHECKPOINT = "ckpts/starflow-v_7B_t2v_caus_480p_v3.pth"
# Model Hub repositories (if using Hugging Face Model Hub)
# Set these to your Model Hub repo IDs if you upload checkpoints there
# Format: "username/repo-name"
IMAGE_CHECKPOINT_REPO = "GlobalStudio/starflow-3b-checkpoint" # Update this after creating Model Hub repo
VIDEO_CHECKPOINT_REPO = "GlobalStudio/starflow-v-7b-checkpoint" # Update this after creating Model Hub repo
def get_checkpoint_path(checkpoint_file, default_local_path, repo_id=None, filename=None):
"""Get checkpoint path, downloading from Hub if needed."""
# If user uploaded a file, use it
if checkpoint_file is not None and checkpoint_file != "":
if hasattr(checkpoint_file, 'name'):
return checkpoint_file.name
checkpoint_str = str(checkpoint_file)
# If it's a file path that exists, use it
if os.path.exists(checkpoint_str):
return checkpoint_str
# If it's the default path but doesn't exist, continue to download
if checkpoint_str == default_local_path and not os.path.exists(checkpoint_str):
pass # Continue to download logic below
elif checkpoint_str != default_local_path:
return checkpoint_str
# Try local path first
if os.path.exists(default_local_path):
return default_local_path
# Try downloading from Model Hub if configured
if repo_id and filename and HF_HUB_AVAILABLE:
try:
# Use /workspace if available (persistent), otherwise /tmp
cache_dir = "/workspace/checkpoints" if os.path.exists("/workspace") else "/tmp/checkpoints"
os.makedirs(cache_dir, exist_ok=True)
# Check if already downloaded
possible_path = os.path.join(cache_dir, "models--" + repo_id.replace("/", "--"), "snapshots", "*", filename)
import glob
existing = glob.glob(possible_path)
if existing:
checkpoint_path = existing[0]
print(f"β
Using cached checkpoint: {checkpoint_path}")
return checkpoint_path
# Download with progress tracking
import time
start_time = time.time()
print(f"π₯ Downloading checkpoint from {repo_id}...")
print(f"File size: ~15.5 GB - This may take 10-30 minutes")
print(f"Cache directory: {cache_dir}")
print(f"Progress will be shown below...")
# Use tqdm for progress if available
try:
from tqdm import tqdm
from huggingface_hub.utils import tqdm as hf_tqdm
checkpoint_path = hf_hub_download(
repo_id=repo_id,
filename=filename,
cache_dir=cache_dir,
local_files_only=False,
resume_download=True, # Resume if interrupted
)
except Exception as e:
# Fallback if tqdm fails
print(f"Note: Progress bar unavailable, downloading silently...")
checkpoint_path = hf_hub_download(
repo_id=repo_id,
filename=filename,
cache_dir=cache_dir,
local_files_only=False,
resume_download=True,
)
elapsed = time.time() - start_time
print(f"β
Download completed in {elapsed/60:.1f} minutes")
print(f"β
Checkpoint at: {checkpoint_path}")
return checkpoint_path
except Exception as e:
error_detail = str(e)
if "404" in error_detail or "not found" in error_detail.lower():
return None, f"Checkpoint not found in Model Hub.\n\nPlease verify:\n1. Repo exists: https://huggingface.co/{repo_id}\n2. File exists: {filename}\n3. Repo is Public (not Private)\n\nError: {error_detail}"
return None, f"Error downloading checkpoint: {error_detail}\n\nThis may take 10-30 minutes for a 14GB file. Please wait or check your internet connection."
# No checkpoint found
return None, f"Checkpoint not found. Please upload a checkpoint file or configure Model Hub repository."
# Verify CUDA availability (will be True on HF Spaces with GPU hardware)
if torch.cuda.is_available():
print(f"β
CUDA available! Device: {torch.cuda.get_device_name(0)}")
print(f" CUDA Version: {torch.version.cuda}")
print(f" PyTorch Version: {torch.__version__}")
print(f" GPU Count: {torch.cuda.device_count()}")
print(f" Current Device: {torch.cuda.current_device()}")
else:
print("β οΈ CUDA not available. Make sure GPU hardware is selected in Space settings.")
print(f" PyTorch Version: {torch.__version__}")
def generate_image(prompt, aspect_ratio, cfg, seed, checkpoint_file, config_path):
"""Generate image from text prompt."""
# Get checkpoint path (from upload, local, or Model Hub)
status_msg = ""
# Handle checkpoint file (might be string from hidden Textbox)
if checkpoint_file == DEFAULT_IMAGE_CHECKPOINT or checkpoint_file == "" or checkpoint_file is None:
# Use Model Hub download
checkpoint_file = None
result = get_checkpoint_path(
checkpoint_file,
DEFAULT_IMAGE_CHECKPOINT,
IMAGE_CHECKPOINT_REPO,
"starflow_3B_t2i_256x256.pth"
)
if isinstance(result, tuple) and result[0] is None:
return None, result[1] # Error message
checkpoint_path = result
# Show status
status_msg += f"Using checkpoint: {checkpoint_path}\n"
if not os.path.exists(checkpoint_path):
return None, f"Error: Checkpoint file not found at {checkpoint_path}.\n\nPlease verify:\n1. Model Hub repo exists: {IMAGE_CHECKPOINT_REPO}\n2. File name matches: starflow_3B_t2i_256x256.pth\n3. Repo is Public (not Private)\n\nAttempting to download from Model Hub..."
if not config_path or not os.path.exists(config_path):
return None, "Error: Config file not found. Please ensure config file exists."
status_msg += "Starting image generation...\n"
status_msg += "β±οΈ Timing breakdown:\n"
status_msg += " - Checkpoint download: 10-30 min (first time only, ~15.5 GB)\n"
status_msg += " - Model loading: 2-5 min (first time only)\n"
status_msg += " - Image generation: 1-3 min\n"
status_msg += " - Subsequent runs: Only generation time (~1-3 min)\n"
try:
# Create output directory
output_dir = Path("outputs")
output_dir.mkdir(exist_ok=True)
# Run sampling command
cmd = [
"python", "sample.py",
"--model_config_path", config_path,
"--checkpoint_path", checkpoint_path,
"--caption", prompt,
"--sample_batch_size", "1",
"--cfg", str(cfg),
"--aspect_ratio", aspect_ratio,
"--seed", str(seed),
"--save_folder", "1",
"--finetuned_vae", "none",
"--jacobi", "1",
"--jacobi_th", "0.001",
"--jacobi_block_size", "16",
"--logdir", str(output_dir) # Set logdir to outputs directory
]
status_msg += "π Running generation...\n"
status_msg += "π Current step: Model inference (checkpoint should already be downloaded)\n"
# Create log file for debugging
log_file = output_dir / "generation.log"
status_msg += f"π Logs will be saved to: {log_file}\n"
# Run with timeout (45 minutes max - allows for download + generation)
# Capture output and write to log file
result = subprocess.run(
cmd,
capture_output=True,
text=True,
cwd=os.getcwd(),
timeout=2700
)
# Write to log file
with open(log_file, 'w') as log:
log.write("=== GENERATION LOG ===\n\n")
log.write(f"Command: {' '.join(cmd)}\n\n")
log.write("=== STDOUT ===\n")
log.write(result.stdout)
log.write("\n\n=== STDERR ===\n")
log.write(result.stderr)
log.write(f"\n\n=== RETURN CODE: {result.returncode} ===\n")
# Read log file for detailed output
log_content = ""
if log_file.exists():
with open(log_file, 'r') as f:
log_content = f.read()
status_msg += f"\nπ Full logs available at: {log_file}\n"
if result.returncode != 0:
error_msg = f"Error during generation:\n{result.stderr}\n\nStdout:\n{result.stdout}"
if log_content:
error_msg += f"\n\nπ Full log file ({log_file}):\n{log_content[-2000:]}" # Last 2000 chars
return None, error_msg
status_msg += "Generation complete. Looking for output...\n"
# Find the generated image
# The sample.py script saves to logdir/model_name/...
# Model name is derived from checkpoint path stem
checkpoint_stem = Path(checkpoint_path).stem
model_output_dir = output_dir / checkpoint_stem
status_msg += f"Searching in: {model_output_dir}\n"
status_msg += f"Also searching recursively in: {output_dir}\n"
# Search in model-specific directory first, then recursively
search_paths = [model_output_dir, output_dir]
output_files = []
for search_path in search_paths:
if search_path.exists():
# Look for PNG, JPG, JPEG files
found = list(search_path.glob("**/*.png")) + list(search_path.glob("**/*.jpg")) + list(search_path.glob("**/*.jpeg"))
output_files.extend(found)
status_msg += f"Found {len(found)} files in {search_path}\n"
if output_files:
# Get the most recent file
latest_file = max(output_files, key=lambda p: p.stat().st_mtime)
status_msg += f"β
Found image: {latest_file}\n"
return str(latest_file), status_msg + "β
Success! Image generated."
else:
# Debug: list what's actually in the directory
debug_info = f"\n\nDebug info:\n"
debug_info += f"Output dir exists: {output_dir.exists()}\n"
if output_dir.exists():
debug_info += f"Contents of {output_dir}:\n"
for item in output_dir.iterdir():
debug_info += f" - {item.name} ({'dir' if item.is_dir() else 'file'})\n"
if model_output_dir.exists():
debug_info += f"\nContents of {model_output_dir}:\n"
for item in model_output_dir.iterdir():
debug_info += f" - {item.name} ({'dir' if item.is_dir() else 'file'})\n"
error_msg = status_msg + f"Error: Generated image not found.\n"
error_msg += f"Searched in: {output_dir} and {model_output_dir}\n"
error_msg += debug_info
if log_content:
error_msg += f"\n\nπ Check log file for details: {log_file}\nLast 2000 chars:\n{log_content[-2000:]}"
else:
error_msg += f"\n\nCheck stdout:\n{result.stdout[-1000:]}"
return None, error_msg
except Exception as e:
return None, f"Error: {str(e)}"
def generate_video(prompt, aspect_ratio, cfg, seed, target_length, checkpoint_file, config_path, input_image):
"""Generate video from text prompt."""
# Handle checkpoint file (might be string from hidden Textbox)
if checkpoint_file == DEFAULT_VIDEO_CHECKPOINT or checkpoint_file == "" or checkpoint_file is None:
# Use Model Hub download
checkpoint_file = None
# Get checkpoint path (from upload, local, or Model Hub)
result = get_checkpoint_path(
checkpoint_file,
DEFAULT_VIDEO_CHECKPOINT,
VIDEO_CHECKPOINT_REPO,
"starflow-v_7B_t2v_caus_480p_v3.pth"
)
if isinstance(result, tuple) and result[0] is None:
return None, result[1] # Error message
checkpoint_path = result
if not os.path.exists(checkpoint_path):
return None, f"Error: Checkpoint file not found at {checkpoint_path}."
if not config_path or not os.path.exists(config_path):
return None, "Error: Config file not found. Please ensure config file exists."
# Handle input image
input_image_path = None
if input_image is not None:
if hasattr(input_image, 'name'):
input_image_path = input_image.name
else:
input_image_path = str(input_image)
try:
# Create output directory
output_dir = Path("outputs")
output_dir.mkdir(exist_ok=True)
# Run sampling command
cmd = [
"python", "sample.py",
"--model_config_path", config_path,
"--checkpoint_path", checkpoint_path,
"--caption", prompt,
"--sample_batch_size", "1",
"--cfg", str(cfg),
"--aspect_ratio", aspect_ratio,
"--seed", str(seed),
"--out_fps", "16",
"--save_folder", "1",
"--jacobi", "1",
"--jacobi_th", "0.001",
"--finetuned_vae", "none",
"--disable_learnable_denoiser", "0",
"--jacobi_block_size", "32",
"--target_length", str(target_length)
]
if input_image_path and os.path.exists(input_image_path):
cmd.extend(["--input_image", input_image_path])
else:
cmd.extend(["--input_image", "none"])
result = subprocess.run(cmd, capture_output=True, text=True, cwd=os.getcwd())
if result.returncode != 0:
return None, f"Error: {result.stderr}"
# Find the generated video
output_files = list(output_dir.glob("**/*.mp4")) + list(output_dir.glob("**/*.gif"))
if output_files:
latest_file = max(output_files, key=lambda p: p.stat().st_mtime)
return str(latest_file), "Success! Video generated."
else:
return None, "Error: Generated video not found."
except Exception as e:
return None, f"Error: {str(e)}"
# Create Gradio interface
with gr.Blocks(title="STARFlow - Text-to-Image & Video Generation") as demo:
# Add custom CSS using gr.HTML
gr.HTML("""
<style>
.gradio-container {
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', sans-serif;
}
.main-header {
text-align: center;
padding: 2rem 0;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
border-radius: 10px;
margin-bottom: 2rem;
}
.main-header h1 {
margin: 0;
font-size: 2.5rem;
font-weight: 700;
text-shadow: 2px 2px 4px rgba(0,0,0,0.2);
}
.main-header p {
margin: 0.5rem 0 0 0;
font-size: 1.1rem;
opacity: 0.95;
}
.info-box {
background: #f0f4ff;
border-left: 4px solid #667eea;
padding: 1rem;
border-radius: 5px;
margin-bottom: 1.5rem;
}
.input-section {
background: #fafafa;
padding: 1.5rem;
border-radius: 10px;
border: 1px solid #e0e0e0;
}
.output-section {
background: white;
padding: 1.5rem;
border-radius: 10px;
border: 1px solid #e0e0e0;
box-shadow: 0 2px 8px rgba(0,0,0,0.05);
}
.generate-btn {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
color: white !important;
font-weight: 600 !important;
padding: 0.75rem 2rem !important;
border-radius: 8px !important;
border: none !important;
font-size: 1rem !important;
transition: transform 0.2s, box-shadow 0.2s !important;
}
.generate-btn:hover {
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(102, 126, 234, 0.4) !important;
}
.status-box {
font-family: 'Monaco', 'Menlo', monospace;
font-size: 0.9rem;
line-height: 1.6;
}
</style>
""")
# Header
gr.HTML("""
<div class="main-header">
<h1>π¨ STARFlow</h1>
<p>Scalable Transformer Auto-Regressive Flow</p>
<p style="font-size: 0.95rem; margin-top: 0.5rem; opacity: 0.9;">
Generate high-quality images and videos from text prompts
</p>
</div>
""")
# Info box
gr.Markdown("""
<div class="info-box">
<strong>βΉοΈ Note:</strong> Checkpoints are automatically downloaded from Model Hub on first use.
First generation may take 10-20 minutes for download and model loading.
</div>
""")
with gr.Tabs() as tabs:
with gr.Tab("πΌοΈ Text-to-Image", id="image_tab"):
with gr.Row():
with gr.Column(scale=1, min_width=400):
gr.Markdown("### βοΈ Generation Settings")
with gr.Group():
image_prompt = gr.Textbox(
label="π Prompt",
placeholder="a film still of a cat playing piano",
lines=4
)
image_config = gr.Textbox(
label="βοΈ Config Path",
value="configs/starflow_3B_t2i_256x256.yaml",
interactive=False,
visible=False # Hidden - not needed for users
)
with gr.Group():
gr.Markdown("#### π¨ Image Settings")
image_aspect = gr.Dropdown(
label="Aspect Ratio",
choices=["1:1", "2:3", "3:2", "16:9", "9:16", "4:5", "5:4"],
value="1:1"
)
image_cfg = gr.Slider(
label="CFG Scale",
minimum=1.0,
maximum=10.0,
value=3.6,
step=0.1
)
image_seed = gr.Number(
value=999,
label="π² Seed",
precision=0
)
# Hidden checkpoint field
image_checkpoint = gr.Textbox(
label="Model Checkpoint Path (auto-downloaded)",
value=DEFAULT_IMAGE_CHECKPOINT,
visible=False
)
image_btn = gr.Button(
"β¨ Generate Image",
variant="primary",
size="lg",
elem_classes="generate-btn"
)
with gr.Column(scale=1, min_width=500):
gr.Markdown("### π¨ Generated Image")
image_output = gr.Image(
label="",
type="filepath",
height=500,
show_label=False
)
image_status = gr.Textbox(
label="π Status",
lines=12,
max_lines=20,
interactive=False,
elem_classes="status-box",
placeholder="Status messages will appear here..."
)
image_btn.click(
fn=generate_image,
inputs=[image_prompt, image_aspect, image_cfg, image_seed, image_checkpoint, image_config],
outputs=[image_output, image_status],
show_progress=True,
queue=True # Use queue to handle long-running operations
)
with gr.Tab("π¬ Text-to-Video", id="video_tab"):
with gr.Row():
with gr.Column(scale=1, min_width=400):
gr.Markdown("### βοΈ Generation Settings")
with gr.Group():
video_prompt = gr.Textbox(
label="π Prompt",
placeholder="a corgi dog looks at the camera",
lines=4
)
video_config = gr.Textbox(
label="βοΈ Config Path",
value="configs/starflow-v_7B_t2v_caus_480p.yaml",
interactive=False,
visible=False # Hidden - not needed for users
)
with gr.Group():
gr.Markdown("#### π¬ Video Settings")
video_aspect = gr.Dropdown(
label="Aspect Ratio",
choices=["16:9", "1:1", "4:3"],
value="16:9"
)
video_cfg = gr.Slider(
label="CFG Scale",
minimum=1.0,
maximum=10.0,
value=3.5,
step=0.1
)
video_seed = gr.Number(
value=99,
label="π² Seed",
precision=0
)
video_length = gr.Slider(
label="Target Length (frames)",
minimum=81,
maximum=481,
value=81,
step=80
)
with gr.Group():
gr.Markdown("#### πΌοΈ Optional Input")
video_input_image = gr.Image(
label="Input Image (optional)",
type="filepath"
)
# Hidden checkpoint field
video_checkpoint = gr.Textbox(
label="Model Checkpoint Path (auto-downloaded)",
value=DEFAULT_VIDEO_CHECKPOINT,
visible=False
)
video_btn = gr.Button(
"β¨ Generate Video",
variant="primary",
size="lg",
elem_classes="generate-btn"
)
with gr.Column(scale=1, min_width=500):
gr.Markdown("### π¬ Generated Video")
video_output = gr.Video(
label="",
height=500,
show_label=False
)
video_status = gr.Textbox(
label="π Status",
lines=12,
max_lines=20,
interactive=False,
elem_classes="status-box",
placeholder="Status messages will appear here..."
)
video_btn.click(
fn=generate_video,
inputs=[video_prompt, video_aspect, video_cfg, video_seed, video_length,
video_checkpoint, video_config, video_input_image],
outputs=[video_output, video_status],
show_progress=True,
queue=True # Use queue to handle long-running operations
)
if __name__ == "__main__":
# Enable queue for long-running operations
demo.queue(default_concurrency_limit=1)
# Password protection - users don't need HF accounts!
# Change these to your desired username/password
# For multiple users, use: auth=[("user1", "pass1"), ("user2", "pass2")]
demo.launch(
server_name="0.0.0.0",
server_port=7860,
auth=("starflow", "im30"), # Change password!
share=False, # Set to True if you want public Gradio link
max_threads=1 # Limit threads for stability
)
|