Spaces:
Running
on
Zero
Running
on
Zero
File size: 59,288 Bytes
0b4562b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 |
#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2025 Apple Inc. All Rights Reserved.
#
import copy
import tqdm
import numpy as np
import torch
import torch.nn.functional as F
from typing import List, Tuple
from misc.pe import VisionRotaryEmbeddingFast, apply_rope, get_positions
from misc import print
from functools import partial
from einops import rearrange, repeat
from torch.utils.checkpoint import checkpoint
INV_SOFTPLUS_1 = 0.541324854612918
def modulate(x, shift, scale):
if shift is None:
return x * (1 + scale)
return x * (1 + scale) + shift
def stable_neg_log_softplus(x):
return torch.where(
x > 20, # softplus(x) ≈ x → log ≈ log(x)
-x.log(), # so -log(softplus(x)) ≈ -log(x)
-F.softplus(x).log()
)
class KVCache:
def __init__(self):
self._is_empty = True
self.prefix_cache = None
self.meta_data = {}
def initialize(self, num_blocks, *size):
self._is_empty = False
self.num_blocks = num_blocks
self.size = size
self.kv_caches = [torch.zeros(2, *size) for _ in range(num_blocks)]
self.kv_index = [0] * num_blocks
def register_prefix_cache(self, prefix_cache):
self.prefix_cache = prefix_cache
@property
def is_empty(self):
return self._is_empty
@property
def is_full(self):
if self.is_empty:
return False
return all(index == self.size[2] for index in self.kv_index)
def delete(self):
if not self.is_empty:
self._is_empty = True
del self.kv_caches
del self.kv_index
def to(self, device, dtype=torch.bfloat16):
for i in range(self.num_blocks):
self.kv_caches[i] = self.kv_caches[i].to(device=device, dtype=dtype)
def extend_length(self, length):
assert not self.is_empty, "KVCache is empty, cannot extend length"
self.size = (self.size[0], self.size[1], self.size[2] + length, self.size[3])
for i in range(self.num_blocks):
pad = self.kv_caches[i].new_zeros((2, *self.size))
pad[:, :, :, :self.kv_caches[i].size(3)] = self.kv_caches[i]
self.kv_caches[i] = pad
def expand_batch(self, ratio=2):
self.size = (self.size[0] * ratio, *self.size[1:])
for i in range(self.num_blocks):
self.kv_caches[i] = torch.cat([self.kv_caches[i] for _ in range(ratio)], dim=1)
def remove_negative_cache(self):
self.size = (self.size[0] // 2, *self.size[1:])
for i in range(self.num_blocks):
self.kv_caches[i] = self.kv_caches[i].chunk(2, dim=1)[0]
def backward_in_time(self, l):
for i in range(self.num_blocks):
self.kv_index[i] = max(0, self.kv_index[i] - l)
def reset_kv_index(self):
for i in range(self.num_blocks):
self.kv_index[i] = 0
def __call__(self, block_idx, k, v):
assert block_idx < self.num_blocks, f'block_idx {block_idx} out of range {self.num_blocks}'
# write cache
l = k.size(2)
kv_index = self.kv_index[block_idx]
if kv_index + l > self.size[2]:
raise NotImplementedError("Overflow mode is not implemented")
self.kv_caches[block_idx][0][:, :, kv_index: kv_index+l] = k
self.kv_caches[block_idx][1][:, :, kv_index: kv_index+l] = v
self.kv_index[block_idx] = kv_index + l
# read cache
kv_index = self.kv_index[block_idx]
return self.kv_caches[block_idx][0][:, :, :kv_index], self.kv_caches[block_idx][1][:, :, :kv_index]
class Permutation(torch.nn.Module):
def __init__(self, seq_length: int):
super().__init__()
self.seq_length = seq_length
self.input_shape = None
def forward(self, x: torch.Tensor | List[torch.Tensor], dim: int = 1, inverse: bool = False):
if not inverse:
self.input_shape = x.shape
x = rearrange(x, 'b t h w c -> b (t h w) c' if x.dim() == 5 else 'b h w c -> b (h w) c')
x = self.permute(x, dim, self.input_shape, inverse=False)
else:
x = self.permute(x, dim, self.input_shape, inverse=True)
x = x.reshape(-1, *self.input_shape[1:])
return x
def permute(self, x: torch.Tensor, dim: int = 1, shape=None, inverse: bool = False) -> torch.Tensor:
raise NotImplementedError('Overload me')
class PermutationIdentity(Permutation):
def permute(self, x: torch.Tensor, dim: int = 1, shape=None, inverse: bool = False) -> torch.Tensor:
return x.clone()
class PermutationFlip(Permutation):
def permute(self, x: torch.Tensor, dim: int = 1, shape=None, inverse: bool = False) -> torch.Tensor:
return x.flip(dims=[dim])
class PermutationFlipInBlock(Permutation):
def permute(self, x: torch.Tensor, dim: int = 1, shape=None, inverse: bool = False) -> torch.Tensor:
assert shape is not None, "shape must be provided for PermutationFlipInBlock"
if len(shape) == 5:
assert dim == 1, "dim must be 1 for 5D tensor in PermutationFlipInBlock"
# flip the tensor within blocks of size `block_size`, globally still in the same order
x = x.view(x.size(0), shape[1], -1, x.size(-1)).flip(dims=[2]).view_as(x)
else:
x = x.flip(dims=[dim])
return x
class RMSNorm(torch.nn.Module):
def __init__(
self,
dim: int,
eps: float = 1e-6,
add_unit_offset: bool = True,
):
super().__init__()
self.eps = eps
self.add_unit_offset = add_unit_offset
self.weight = torch.nn.Parameter(torch.zeros(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
# Llama does x.to(float16) * w whilst Gemma2 is (x * w).to(float16)
# See https://github.com/huggingface/transformers/pull/29402
output = self._norm(x.float())
if self.add_unit_offset:
output = output * (1 + self.weight.float())
else:
output = output * self.weight.float()
return output.type_as(x)
class Attention(torch.nn.Module):
def __init__(self, in_channels: int, head_channels: int, norm_type: str = "layer_norm",
num_heads=None, num_kv_heads=None, use_qk_norm=False,
use_post_norm=False, use_bias=True, hf_style_rope=False, non_causal=False):
super().__init__()
if norm_type == "layer_norm":
self.norm = torch.nn.LayerNorm(in_channels)
elif norm_type == "rms_norm":
self.norm = RMSNorm(in_channels)
else:
self.norm = torch.nn.Identity()
self.head_channels = head_channels
self.num_heads = num_heads if num_heads is not None else in_channels // head_channels
self.num_kv_heads = num_kv_heads if num_kv_heads is not None else self.num_heads # GQA
self.q_size = self.num_heads * head_channels
self.kv_size = self.num_kv_heads * head_channels
self.qkv = torch.nn.Linear(in_channels, self.q_size + 2 * self.kv_size, bias=use_bias)
self.proj = torch.nn.Linear(self.q_size, in_channels, bias=use_bias)
self.query_norm = (RMSNorm(self.head_channels) if use_qk_norm else None)
self.key_norm = (RMSNorm(self.head_channels) if use_qk_norm else None)
self.post_norm = (RMSNorm(in_channels) if use_post_norm else None)
self.sqrt_scale = head_channels ** (-0.25)
self.hf_style_rope = hf_style_rope
self.non_causal = non_causal
def apply_rope(self, x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
if self.hf_style_rope:
return rearrange(apply_rope(rearrange(x, '... (u d) -> ... (d u)', u=2), freqs_cis), '... (d u) -> ... (u d)', u=2)
return apply_rope(x, freqs_cis)
def prepare_for_attention(self, x: torch.Tensor, freqs_cis=None, kv_cache=None):
B, T, _ = x.size()
q, k, v = self.qkv(self.norm(x)).split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q = q.view(B, T, self.num_heads, self.head_channels).transpose(1, 2) # (b, h, t, d)
k = k.view(B, T, self.num_kv_heads, self.head_channels).transpose(1, 2) # (b, h, t, d)
v = v.view(B, T, self.num_kv_heads, self.head_channels).transpose(1, 2) # (b, h, t, d)
if self.query_norm is not None and self.key_norm is not None:
q, k = self.query_norm(q), self.key_norm(k)
if kv_cache is not None:
k, v = kv_cache(k, v)
if freqs_cis is not None:
lq, lk = q.size(2), k.size(2)
q, k = self.apply_rope(q, freqs_cis[lk-lq:lk]), self.apply_rope(k, freqs_cis[:lk])
if self.num_kv_heads != self.num_heads: # GQA (b, h, t, d)
k = torch.repeat_interleave(k, self.num_heads // self.num_kv_heads, dim=1)
v = torch.repeat_interleave(v, self.num_heads // self.num_kv_heads, dim=1)
return q.to(x.dtype), k.to(x.dtype), v.to(x.dtype)
def output_after_attention(self, x: torch.Tensor):
B, _, T, _ = x.shape
x = x.transpose(1, 2).reshape(B, T, self.q_size)
x = self.proj(x)
if self.post_norm is not None:
x = self.post_norm(x)
return x
def apply_attention(self, q, k, v, mask=None, temp=1.0):
scale = self.sqrt_scale**2 / temp
is_causal = not self.non_causal
if is_causal and q.size(2) < k.size(2) and mask is None:
prefix_len = k.size(2) - q.size(2)
mask = torch.tril(torch.ones(q.size(2), k.size(2), device=q.device, dtype=torch.bool), diagonal=prefix_len)
if mask is not None:
mask = mask.bool()
is_causal = False
# spda
x = torch.nn.functional.scaled_dot_product_attention(
q, k, v, attn_mask=mask, is_causal=is_causal, scale=scale)
return x
def forward(self, x: torch.Tensor, mask: torch.Tensor | None = None, temp: float = 1.0, freqs_cis=None, kv_cache=None,
) -> torch.Tensor:
q, k, v = self.prepare_for_attention(x, freqs_cis, kv_cache)
x = self.apply_attention(q, k, v, mask, temp)
x = self.output_after_attention(x)
return x
class MLP(torch.nn.Module):
def __init__(self, channels: int, expansion: float, use_swiglu=False, norm_type="layer_norm", use_post_norm=False, use_bias=True):
super().__init__()
if norm_type == "layer_norm":
self.norm = torch.nn.LayerNorm(channels)
elif norm_type == "rms_norm":
self.norm = RMSNorm(channels)
else:
self.norm = torch.nn.Identity()
self.post_norm = (RMSNorm(channels) if use_post_norm else None)
self.use_swiglu = use_swiglu
intermediate_channels = int(channels * expansion)
if use_swiglu:
self.gate_proj = torch.nn.Linear(channels, intermediate_channels, bias=use_bias)
self.up_proj = torch.nn.Linear(channels, intermediate_channels, bias=use_bias)
self.down_proj = torch.nn.Linear(intermediate_channels, channels, bias=use_bias)
else:
self.main = torch.nn.Sequential(
torch.nn.Linear(channels, intermediate_channels, bias=use_bias),
torch.nn.GELU(), torch.nn.Linear(intermediate_channels, channels, bias=use_bias)
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.use_swiglu:
x = self.norm(x)
x = self.down_proj(F.gelu(self.gate_proj(x), approximate='tanh') * self.up_proj(x))
else:
x = self.main(self.norm(x))
return self.post_norm(x) if self.post_norm is not None else x
class AttentionBlock(torch.nn.Module):
def __init__(self, channels: int, head_channels: int, expansion: float = 4, use_adaln: bool = False,
use_swiglu=False, norm_type="layer_norm", num_heads=None, num_kv_heads=None,
use_qk_norm=False, use_post_norm=False, use_bias=True, hf_style_rope=False, non_causal=False):
super().__init__()
if use_adaln:
self.adaLN_modulation = torch.nn.Sequential(
torch.nn.SiLU(),
torch.nn.Linear(channels, 4 * channels, bias=True),
)
self.norm1 = torch.nn.LayerNorm(channels, elementwise_affine=False, eps=1e-6)
self.norm2 = torch.nn.LayerNorm(channels, elementwise_affine=False, eps=1e-6)
torch.nn.init.constant_(self.adaLN_modulation[-1].weight, 0)
torch.nn.init.constant_(self.adaLN_modulation[-1].bias, 0)
# Hard-coded norm_type=="none" for adaLN
norm_type = 'none'
else:
self.adaLN_modulation = None
self.attention = Attention(channels, head_channels, norm_type, num_heads, num_kv_heads, use_qk_norm, use_post_norm, use_bias, hf_style_rope, non_causal)
self.mlp = MLP(channels, expansion, use_swiglu, norm_type, use_post_norm, use_bias)
def forward(
self, x: torch.Tensor, y: torch.Tensor | None = None, attn_mask: torch.Tensor | None = None,
attn_temp: float = 1.0, c=None, freqs_cis=None, kv_cache=None,
checkpoint_attn: bool = False, checkpoint_mlp: bool = False
) -> torch.Tensor:
assert (x is not None) or (y is not None), "x or y must be provided"
z = torch.cat([y, x], 1) if (x is not None) and (y is not None) else x if x is not None else y
if self.adaLN_modulation is not None and c is not None:
shift_msa, scale_msa, shift_mlp, scale_mlp = self.adaLN_modulation(c).chunk(4, dim=-1)
z = z + self._forward_attention(z, attn_mask, attn_temp, freqs_cis, kv_cache, checkpoint_attn, shift_msa, scale_msa)
z = z + self._forward_mlp(z, checkpoint_mlp, shift_mlp, scale_mlp)
else:
z = z + self._forward_attention(z, attn_mask, attn_temp, freqs_cis, kv_cache, checkpoint_attn)
z = z + self._forward_mlp(z, checkpoint_mlp)
x, y = (z[:, y.size(1):], z[:, :y.size(1)]) if (x is not None) and (y is not None) \
else (z, None) if x is not None else (None, z)
return x, y
def _forward_attention(self, z, attn_mask, attn_temp, freqs_cis, kv_cache, checkpoint_attn, shift=None, scale=None):
def attn_fn(z_in):
if shift is not None and scale is not None:
z_in = modulate(self.norm1(z_in), shift, scale)
return self.attention(z_in, attn_mask, attn_temp, freqs_cis, kv_cache)
return checkpoint(attn_fn, z, use_reentrant=False) if checkpoint_attn and self.training else attn_fn(z)
def _forward_mlp(self, z, checkpoint_mlp, shift=None, scale=None):
def mlp_fn(z_in):
if shift is not None and scale is not None:
z_in = modulate(self.norm2(z_in), shift, scale)
return self.mlp(z_in)
return checkpoint(mlp_fn, z, use_reentrant=False) if checkpoint_mlp and self.training else mlp_fn(z)
class MetaBlock(torch.nn.Module):
attn_mask: torch.Tensor
def __init__(
self,
in_channels: int,
channels: int,
img_size: int,
permutation: Permutation,
pt_seq_len: int | None = None,
num_layers: int = 1,
head_dim: int = 64,
num_heads: None | int = None,
num_kv_heads: None | int = None,
txt_size: int = 0,
txt_dim: int = 0,
expansion: float = 4,
use_rope: bool = False,
use_sos: bool = False,
use_softplus: bool = False,
use_swiglu: bool = False,
use_qk_norm: bool =False,
use_post_norm: bool = False,
use_final_norm: bool = False,
use_bias: bool = True,
use_proj_txt: bool = True,
hf_style_rope: bool = False,
norm_type: str ="layer_norm",
use_mm_attn: bool = False,
use_checkpoint: int = False,
use_checkpoint_mlp: int = None,
soft_clip: float = 0,
local_attn_window: int = None,
):
super().__init__()
out_channels = in_channels * 2
self.proj_in = torch.nn.Linear(in_channels, channels)
self.proj_out = torch.nn.Linear(channels, out_channels)
if use_sos:
self.sos_embed = torch.nn.Parameter(torch.randn(1, 1, in_channels))
torch.nn.init.constant_(self.proj_out.weight, 0)
self.txt_size = txt_size
self.img_size = img_size
self.txt_dim = txt_dim
self.pt_seq_len = pt_seq_len or img_size
# KV cache configurations
num_kv_heads = num_kv_heads or (num_heads or channels // head_dim)
self.kv_cache_size = [num_kv_heads, head_dim]
if not use_rope:
self.pos_embed = torch.nn.Parameter(torch.randn(img_size ** 2, channels) * 1e-2)
else:
self.pos_embed = None
if txt_dim > 0:
self.proj_txt = torch.nn.Linear(txt_dim, channels) if use_proj_txt else torch.nn.Identity()
assert use_proj_txt or (txt_dim == channels), 'text dimension must equal channels when not using projection'
self.attn_blocks = torch.nn.ModuleList(
[AttentionBlock(channels, head_dim, expansion, False, use_swiglu,
norm_type, num_heads, num_kv_heads, use_qk_norm, use_post_norm, use_bias, hf_style_rope)
for _ in range(num_layers)])
self.use_final_norm = use_final_norm
if use_final_norm:
self.final_norm = RMSNorm(channels)
self.use_softplus = use_softplus
self.permutation = permutation
self.use_checkpoint = use_checkpoint
self.use_checkpoint_mlp = use_checkpoint_mlp
self.use_sos = use_sos
self.soft_clip = soft_clip
self.local_attn_window = local_attn_window
self.block_masks = {} # for local attention
# ---- DEPRECATED: do not pass mask to enable flash attention ----- For compatibility ----- #
self.register_buffer('attn_mask', torch.tril(torch.ones(pt_seq_len ** 2 + txt_size, pt_seq_len ** 2 + txt_size)))
def get_freqs_cis(self, x, y, rope):
# get the input shape
h, w = x.size(-3), x.size(-2)
d = x.size(1) if x.dim() == 5 else 0
txt_size = y.size(1) if self.txt_size > 0 and y is not None else 0
if not rope.is_1d: # prepare 2D RoPE
if self.txt_size > 0 or d > 0: # prepare 3D RoPE
if self.txt_dim > 0: # text is conditioned
pos = get_positions(h, w, txt_size, rope.pt_seq_len, d, mode='3d')
else: # text is not conditioned
pos = get_positions(h, w, 0, rope.pt_seq_len, d, mode='3d')
else:
pos = get_positions(h, w, 0, rope.pt_seq_len, mode='2d')
else: # prepare 1D RoPE
pos = get_positions(h, w, txt_size, rope.pt_seq_len, mode='1d')
return rope(pos.type_as(x))
def get_sos_embed(self, x):
sos_embed = self.sos_embed.expand(x.size(0), -1, -1)
return sos_embed
def get_prepared(self, x):
# input, output, freqs_cis
x_in = x.clone()
if self.use_sos: # add SOS token, predict the first token sos->x_in[0]
x = torch.cat([self.get_sos_embed(x), x[:, :-1]], dim=1)
return x_in, x
def get_proj_in(self, x):
x = self.proj_in(x)
return x
def get_proj_out(self, x):
x = self.proj_out(x)
if hasattr(self, "soft_clip") and self.soft_clip > 0:
x = self.soft_clip * torch.tanh(x / self.soft_clip)
return x
def get_local_window_mask(self, x, y):
_, T, H, W, _ = x.shape
L = y.size(1) if y is not None else 0
B = H * W
N = T * B
S = L + N
G = self.local_attn_window
def mask(q, k):
return (k <= q) & ((k < L) | ((k - L) // B > (q - L) // B - G))
return mask(torch.arange(S, device=x.device)[:, None], torch.arange(S, device=x.device)[None, :])
def initialize_kv_cache(self, kv_cache, x, freqs_cis, reuse_kv_cache=False):
if self.local_attn_window is not None and self.local_attn_window > 0:
video_frame_size = x.size(-3) * x.size(-2)
kv_cache_length = self.local_attn_window * video_frame_size
kv_cache_length += self.txt_size if self.txt_dim > 0 else 0
kv_cache.meta_data.update(
{"frame_size": video_frame_size, "txt_size": self.txt_size + 1 if self.txt_dim > 0 else 0})
else:
kv_cache_length = freqs_cis.size(0)
kv_cache_size = (x.size(0), self.kv_cache_size[0], kv_cache_length, self.kv_cache_size[1])
if kv_cache.is_empty:
kv_cache.initialize(len(self.attn_blocks), *kv_cache_size)
kv_cache.to(x.device, x.dtype)
else:
target_size = kv_cache_size[-2]
if reuse_kv_cache:
target_size = target_size - kv_cache.kv_index[0]
kv_cache.extend_length(target_size)
return kv_cache
def forward(self, x: torch.Tensor | List[torch.Tensor], y: torch.Tensor | None = None, rope=None, kv_cache=None, guidance=None):
freqs_cis = self.get_freqs_cis(x, y, rope) if rope is not None else None
attn_mask = None
if kv_cache is not None:
kv_cache = self.initialize_kv_cache(kv_cache, x, freqs_cis)
x = self.permutation(x)
pos_embed = self.permutation(self.pos_embed, dim=0) if self.pos_embed is not None else None
# prepare input
x_in, x = self.get_prepared(x)
if kv_cache is not None:
kv_cache.register_prefix_cache(x_in)
# input projection
x = self.get_proj_in(x)
if pos_embed is not None:
x = x + pos_embed
# conditioning
if self.txt_dim > 0:
y = self.proj_txt(y)
else:
y = None
# main block
for it, block in enumerate(self.attn_blocks):
_kv_cache = partial(kv_cache, it) if kv_cache is not None else None
# Frequency-based checkpointing strategy:
# - Checkpoint attention every use_checkpoint blocks (if use_checkpoint > 0)
# - Checkpoint MLP every use_checkpoint_mlp blocks (if provided), otherwise every use_checkpoint blocks
checkpoint_attn = self.training and self.use_checkpoint > 0 and ((it + 1) % self.use_checkpoint == 0)
if self.use_checkpoint_mlp is not None:
checkpoint_mlp = self.training and self.use_checkpoint_mlp > 0 and ((it + 1) % self.use_checkpoint_mlp == 0)
else:
checkpoint_mlp = self.training and self.use_checkpoint > 0 and ((it + 1) % self.use_checkpoint == 0)
x, y = block(x, y, attn_mask, 1.0, None, freqs_cis, _kv_cache,
checkpoint_attn=checkpoint_attn,
checkpoint_mlp=checkpoint_mlp)
# final norm
if self.use_final_norm:
x, y = self.final_norm(x), self.final_norm(y) if y is not None else None
x = self.get_proj_out(x)
if not self.use_sos: # no SOS token, we need to shift the sequence
x = torch.cat([torch.zeros_like(x[:, :1]), x[:, :-1]], dim=1)
xa, xb = x.chunk(2, dim=-1)
# Store original dtype for output conversion
original_dtype = xa.dtype
# Convert to fp32 for numerical stability
xa, xb, x_in = xa.float(), xb.float(), x_in.float()
if not self.use_softplus:
xa = xa.exp()
else:
xa = F.softplus(xa + INV_SOFTPLUS_1)
if guidance is not None and guidance > 0:
xb, xa = self.guidance(xa, xb, guidance, 1.0, 'ab')
# NOTE: this "scale" is in fact 1/sigma, not sigma
x = self.permutation((x_in - xb) / xa, inverse=True)
logdet = -torch.log(xa) # keep all the dimensions
# Convert back to original precision
x = x.to(original_dtype)
return x, y, logdet
def guidance(self, za, zb, guidance, r=1.0, guide_what='ab'):
za, za_u = [torch.cat([a, a]) for a in za.chunk(2, dim=0)]
zb, zb_u = [torch.cat([a, a]) for a in zb.chunk(2, dim=0)]
g = r * guidance
def logits_guided(mu_c, sigma_c, mu_u, sigma_u, w):
# inspired from: (1+w) * logP_cond - w * logP_uncond
# sigma_c = torch.minimum(sigma_c, sigma_u)
s = (sigma_c / sigma_u).clip(max=1.0).square()
sigma_eff = sigma_c / (1 + w - w * s).sqrt()
mu_eff = ((1 + w) * mu_c - (w * s) * mu_u) / (1 + w - w * s)
return mu_eff, sigma_eff
def original_guidance(mu_c, sigma_c, mu_u, sigma_u, w):
if 'a' in guide_what:
sigma_c = sigma_c + g * (sigma_c - sigma_u)
if 'b' in guide_what:
mu_c = mu_c + g * (mu_c - mu_u)
return mu_c, sigma_c
#zb, za = original_guidance(zb, za, zb_u, za_u, guidance)
zb, za = logits_guided(zb, za, zb_u, za_u, guidance)
return zb, za
def reverse_step(
self, x: torch.Tensor, t: int, kv_cache: KVCache,
pos_embed: torch.Tensor | None = None, y: torch.Tensor | None = None,
attn_temp: float = 1.0, freqs_cis=None
) -> tuple[torch.Tensor, torch.Tensor]:
# Store original dtype for sampling tensor
original_dtype = x.dtype
if self.use_sos: # get i-th patch but keep the sequence dimension
x_in = self.get_sos_embed(x[:, :1]) if t == 0 else x[:, t - 1 : t]
else:
x_in = x[:, t : t + 1]
# Convert to model's dtype for neural network computation
if hasattr(self.proj_in, 'weight'):
target_dtype = self.proj_in.weight.dtype
x_in = x_in.to(target_dtype)
x = self.get_proj_in(x_in)
# if positional embedding
if pos_embed is not None:
x = x + pos_embed[t: t+1]
# main block
for i, block in enumerate(self.attn_blocks):
x, _ = block(x, None, attn_temp=attn_temp, freqs_cis=freqs_cis, kv_cache=partial(kv_cache, i))
# final norm
if self.use_final_norm:
x = self.final_norm(x)
x = self.get_proj_out(x)
xa, xb = x.chunk(2, dim=-1)
# Convert back to original dtype for sampling computations
return xa.to(original_dtype), xb.to(original_dtype)
def reverse_step_condition(self, y, kv_cache, pos_embed=None, attn_temp: float = 1.0, freqs_cis=None):
# Convert to model's dtype for neural network computation
if hasattr(self.proj_txt, 'weight'):
target_dtype = self.proj_txt.weight.dtype
y = y.to(target_dtype)
y = self.proj_txt(y)
for i, block in enumerate(self.attn_blocks):
_, y = block(None, y, attn_temp=attn_temp, freqs_cis=freqs_cis, kv_cache=partial(kv_cache, i))
return y
def reverse(
self,
z: torch.Tensor,
y: torch.Tensor | None = None,
guidance: float = 0,
guide_what: str = 'ab',
attn_temp: float = 1.0,
annealed_guidance: bool = False,
rope=None,
verbose=False,
kv_cache: KVCache=KVCache(),
**unused_kwargs
) -> torch.Tensor:
# Ensure sampling tensors are in float32 for numerical stability
original_dtype = z.dtype
z = z.float()
freqs_cis = self.get_freqs_cis(z, y, rope) if rope is not None else None
if guidance > 0:
z = torch.cat([z, z], 0)
# kv cache
reuse_kv_cache = kv_cache.prefix_cache is not None and kv_cache.kv_index[0] > 0
kv_cache = self.initialize_kv_cache(kv_cache, z, freqs_cis, reuse_kv_cache)
# permute the input
z = self.permutation(z)
pos_embed = self.permutation(self.pos_embed, dim=0) if self.pos_embed is not None else None
# run additional text condition, results will be used in KV cache.
if self.txt_dim > 0:
if not reuse_kv_cache:
self.reverse_step_condition(y, kv_cache, pos_embed, attn_temp, freqs_cis)
txt_size = y.size(1) if self.txt_dim > 0 else 0
# run the reverse process
x = z.clone()
if reuse_kv_cache:
x[:, :kv_cache.prefix_cache.size(1)] = kv_cache.prefix_cache # fill the prefix cache
T = x.size(1) - 1 if not self.use_sos else x.size(1)
for t in tqdm.trange(T, disable=not verbose, desc='Sub-flow Sampling', leave=False):
if reuse_kv_cache and kv_cache.kv_index[0] > t + txt_size:
continue
za, zb = self.reverse_step(x, t, kv_cache, pos_embed, y, attn_temp, freqs_cis)
# Ensure sampling computations stay in float32
za, zb = za.float(), zb.float()
if not self.use_softplus:
za, zb = za.exp().squeeze(1), zb.squeeze(1)
else:
za, zb = F.softplus(za + INV_SOFTPLUS_1).squeeze(1), zb.squeeze(1)
if guidance > 0 and guide_what:
r = (t + 1) / T if annealed_guidance else 1.0
zb, za = self.guidance(za, zb, guidance, r, guide_what)
if self.use_sos:
x[:, t] = z[:, t] * za + zb
else:
x[:, t + 1] = z[:, t + 1] * za + zb
if guidance > 0:
x = x.chunk(2, dim=0)[0]
kv_cache.remove_negative_cache() # remove the second half of the cache
x = self.permutation(x, inverse=True)
# Convert back to original dtype if needed
return x.to(original_dtype)
def jacobi(self,
z: torch.Tensor,
y: torch.Tensor | None = None,
guidance: float = 0,
rope=None,
kv_cache=None,
verbose=False,
jacobi_block_size: int = 32,
jacobi_max_iter: int = 32,
jacobi_th: float = 0.001,
context_length: int = None,
**unused_kwargs) -> torch.Tensor:
assert self.use_sos, "Jacobi iteration requires SOS token to be used"
assert self.pos_embed is None, "Jacobi iteration does not support positional embedding"
# Ensure sampling tensors are in float32 for numerical stability
original_dtype = z.dtype
z = z.float()
freqs_cis = self.get_freqs_cis(z, y, rope) if rope is not None else None
if guidance > 0:
z = torch.cat([z, z], 0)
# kv cache
reuse_kv_cache = kv_cache.prefix_cache is not None and kv_cache.kv_index[0] > 0
kv_cache = self.initialize_kv_cache(kv_cache, z, freqs_cis, reuse_kv_cache)
video_length = z.size(1) if z.dim() == 5 else 1
# permute the input
z = self.permutation(z)
# prepare input
x_full = torch.cat([self.get_sos_embed(z), z.clone()], dim=1)
if reuse_kv_cache:
x_full[:, 1: kv_cache.prefix_cache.size(1) + 1] = kv_cache.prefix_cache # fill the prefix cache
# conditioning
if self.txt_dim > 0:
if not reuse_kv_cache:
self.reverse_step_condition(y, kv_cache, freqs_cis=freqs_cis)
txt_size = y.size(1) if self.txt_dim > 0 else 0
video_frame_size = z.size(1) // video_length
start_idx = 0
if reuse_kv_cache:
start_idx = kv_cache.kv_index[0] - txt_size # start from the last cached index
prog_bar = tqdm.tqdm(total=z.size(1), disable=not verbose, desc='Block-wise Jacobi Iteration', leave=False)
prog_bar.update(start_idx)
local_attn_window = self.local_attn_window * video_frame_size if self.local_attn_window is not None else None
target_frame_size = z.size(1) if local_attn_window is None else min(z.size(1), local_attn_window)
context_size = None if local_attn_window is None else context_length * video_frame_size
while target_frame_size <= z.size(1):
while start_idx < target_frame_size:
chunk_size = jacobi_block_size if start_idx <= video_frame_size else jacobi_block_size * 4
local_done = torch.zeros((), dtype=torch.bool, device=x_full.device)
for i in tqdm.tqdm(range(jacobi_max_iter), disable=True, desc='Jacobi Iteration', leave=False):
if start_idx + chunk_size >= target_frame_size:
chunk_size = target_frame_size - start_idx
if i == 0 and start_idx > video_frame_size: # optional to use past frame to initialize the current frame
x = x_full[:, start_idx - video_frame_size: start_idx + chunk_size - video_frame_size]
else:
x = x_full[:, start_idx: start_idx + chunk_size]
# main forward - convert to model dtype for neural network computation
if hasattr(self.proj_in, 'weight'):
target_dtype = self.proj_in.weight.dtype
x = x.to(target_dtype)
x = self.get_proj_in(x)
for it, block in enumerate(self.attn_blocks):
_kv_cache = partial(kv_cache, it) if kv_cache is not None else None
x = block(x, None, freqs_cis=freqs_cis, kv_cache=_kv_cache)[0]
if self.use_final_norm:
x = self.final_norm(x)
x = self.get_proj_out(x)
xa, xb = x.chunk(2, dim=-1)
# Convert back to float32 for sampling computations
xa, xb = xa.float(), xb.float()
if not self.use_softplus:
xa = xa.exp()
else:
xa = F.softplus(xa + INV_SOFTPLUS_1)
if guidance > 0:
xb, xa = self.guidance(xa, xb, guidance, 1.0, 'ab')
# compute the Jacobi Iteration - all in float32
new_x = xb + xa * z[:, start_idx: start_idx+chunk_size]
diff = ((new_x - x_full[:, start_idx+1: start_idx+1+chunk_size]) ** 2).mean() / (new_x ** 2).mean()
x_full[:, start_idx+1: start_idx+1+chunk_size] = new_x
if diff < jacobi_th or i == jacobi_max_iter - 1: # do not clean the cache on the last iteration
local_done.fill_(1)
global_done = local_done.clone()
torch.distributed.all_reduce(global_done, op=torch.distributed.ReduceOp.MIN)
if int(global_done.item()) == 1:
break
kv_cache.backward_in_time(chunk_size)
start_idx += chunk_size
prog_bar.update(chunk_size)
if target_frame_size >= z.size(1):
break
target_frame_size += local_attn_window - context_size if local_attn_window is not None else video_frame_size
target_frame_size = min(target_frame_size, z.size(1))
# re-encode the context with attention blocks
print(f're-encoding the context {start_idx+1-context_size}:{start_idx+1}')
kv_cache.reset_kv_index()
if self.txt_dim > 0:
self.reverse_step_condition(y, kv_cache, freqs_cis=freqs_cis)
x_context = x_full[:, start_idx+1-context_size: start_idx+1]
x_context_in, x_context = self.get_prepared(x_context)
x_context = self.get_proj_in(x_context)
for it, block in enumerate(self.attn_blocks):
_kv_cache = partial(kv_cache, it) if kv_cache is not None else None
x_context = block(x_context, None, freqs_cis=freqs_cis, kv_cache=_kv_cache)[0]
x = x_full[:, 1:]
if guidance > 0:
x = x.chunk(2, dim=0)[0] # remove SOS token
x = self.permutation(x, inverse=True)
# Convert back to original dtype if needed
return x.to(original_dtype)
class IdentityBlock(MetaBlock):
def __init__(self, *args, **kwargs):
super(MetaBlock, self).__init__()
def forward(self, x, y=None, rope=None, **unused):
return x, y, x.new_zeros(x.size(0))
def reverse(self,
z: torch.Tensor,
y: torch.Tensor | None = None,
guidance: float = 0,
guide_what: str = 'ab',
attn_temp: float = 1.0,
annealed_guidance: bool = False,
rope=None,
verbose=False,
kv_cache: KVCache=KVCache(), **unused):
# Preserve original dtype
return z
def jacobi(self,
z: torch.Tensor,
y: torch.Tensor | None = None,
guidance: float = 0,
rope=None,
kv_cache=None,
verbose=False,
jacobi_block_size: int = 64,
jacobi_th: float = 0.005, **unused_kwargs) -> torch.Tensor:
return z
class NonCausalBlock(MetaBlock):
def __init__(
self,
in_channels: int,
channels: int,
img_size: int,
pt_seq_len: int | None = None,
num_layers: int = 8,
head_dim: int = 64,
num_heads: None | int = None,
num_kv_heads: None | int = None,
txt_size: int = 0,
txt_dim: int = 0,
expansion: float = 4,
use_rope: bool = False,
use_swiglu: bool = False,
use_qk_norm: bool =False,
use_post_norm: bool = False,
use_final_norm: bool = False,
use_bias: bool = True,
hf_style_rope: bool = False,
norm_type: str ="layer_norm",
use_checkpoint: int = False,
use_checkpoint_mlp: int = None,
block_causal: int = 0,
window: int = None,
**unused_kwargs,
):
super(MetaBlock, self).__init__()
out_channels = in_channels
self.proj_in = torch.nn.Linear(in_channels, channels)
self.proj_out = torch.nn.Linear(channels, out_channels)
torch.nn.init.constant_(self.proj_out.weight, 0)
self.txt_size = txt_size
self.img_size = img_size
self.txt_dim = txt_dim
self.pt_seq_len = pt_seq_len or img_size
self.block_causal = block_causal
self.window = window
# KV cache configurations
num_kv_heads = num_kv_heads or (num_heads or channels // head_dim)
self.kv_cache_size = [num_kv_heads, head_dim]
if txt_dim > 0:
self.proj_txt = torch.nn.Linear(txt_dim, channels)
self.attn_blocks = torch.nn.ModuleList(
[AttentionBlock(channels, head_dim, expansion, False, use_swiglu, norm_type, num_heads, num_kv_heads,
use_qk_norm, use_post_norm, use_bias, hf_style_rope, non_causal=True) for _ in range(num_layers)])
self.use_final_norm = use_final_norm
if use_final_norm:
self.final_norm = RMSNorm(channels)
self.use_checkpoint = use_checkpoint
self.use_checkpoint_mlp = use_checkpoint_mlp
self.block_masks = {} # for local attention
def get_local_window_mask(self, x, y):
_, T, H, W, _ = x.shape
L = y.size(1) if y is not None else 0
B = H * W
N = T * B
S = L + N
A = self.block_causal
G = self.window if self.window is not None else 10000
def mask(q, k):
return (k < L) | (
((k - L) // B >= (q - L) // B + A - 1 - G) &
((k - L) // B <= torch.relu(q - L) // B + A - 1)
)
return mask(torch.arange(S, device=x.device)[:, None], torch.arange(S, device=x.device)[None, :])
def forward(self, x, y, rope, **unused):
freqs_cis = self.get_freqs_cis(x, y, rope) if rope is not None else None
if self.block_causal > 0 and x.dim() == 5:
attn_mask = self.get_local_window_mask(x, y if self.txt_dim > 0 else None)
else:
attn_mask = None
if x.dim() == 5: # video input
N, H, W, x = x.size(1), x.size(2), x.size(3), rearrange(x, 'b t h w c -> b (t h w) c') # flatten x
else:
N, H, W, x = 0, x.size(1), x.size(2), rearrange(x, 'b h w c -> b (h w) c') # flatten x
x = self.get_proj_in(x)
y = self.proj_txt(y) if self.txt_dim > 0 else None
for it, block in enumerate(self.attn_blocks):
# Frequency-based checkpointing strategy:
# - Checkpoint attention every use_checkpoint blocks (if use_checkpoint > 0)
# - Checkpoint MLP every use_checkpoint_mlp blocks (if provided), otherwise every use_checkpoint blocks
checkpoint_attn = self.training and self.use_checkpoint > 0 and ((it + 1) % self.use_checkpoint == 0)
if self.use_checkpoint_mlp is not None:
checkpoint_mlp = self.training and self.use_checkpoint_mlp > 0 and ((it + 1) % self.use_checkpoint_mlp == 0)
else:
checkpoint_mlp = self.training and self.use_checkpoint > 0 and ((it + 1) % self.use_checkpoint == 0)
x, y = block(x, y, attn_mask, 1.0, None, freqs_cis,
checkpoint_attn=checkpoint_attn, checkpoint_mlp=checkpoint_mlp)
if self.use_final_norm:
x = self.final_norm(x)
x = self.get_proj_out(x)
if N > 0:
x = rearrange(x, 'b (t h w) d -> b t h w d', t=N, h=H, w=W)
else:
x = rearrange(x, 'b (h w) d -> b h w d', h=H, w=W)
return x
class Model(torch.nn.Module):
def __init__(
self,
in_channels: int,
img_size: int,
patch_size: int,
channels: int,
num_blocks: int,
layers_per_block: List[int],
head_dim: int = 64,
num_heads: None | int = None,
num_kv_heads: None | int = None,
rope: bool = False,
pt_seq_len: None | int = None,
sos: bool = False,
txt_size: int = 0,
txt_dim: int = 0,
cond_top_only: bool = False,
use_softplus: bool = False,
use_swiglu: bool = False,
use_bias: bool = True,
use_qk_norm: bool = False,
use_post_norm: bool = False,
use_final_norm: bool = False,
hf_style_rope: bool = False,
norm_type: str = "layer_norm",
use_checkpoint: int = 0,
use_checkpoint_mlp: int = None,
use_pretrained_lm: str | None = None,
use_mm_attn: bool = False,
soft_clip: float = 0,
seq_order: str = "R2L",
learnable_self_denoiser: bool = False,
conditional_denoiser: bool = False,
temporal_causal: int = 0,
top_block_channels: int = None, # If specified, top block uses different size
shallow_block_local: bool = False, # If True, shallow blocks only constrained within a frame
denoiser_window: int = None, # If specified, use local attention in the denoiser with given window size
local_attn_window: int = None, # If specified, use local attention in all blocks with given window size
**unused_kwargs,
):
super().__init__()
self.img_size = img_size
self.in_channels = in_channels
self.patch_size = patch_size
self.pt_seq_len = pt_seq_len or img_size // patch_size
self.num_patches = self.pt_seq_len ** 2
self.use_rope = rope
self.use_sos = sos
self.use_softplus = use_softplus
self.cond_top_only = cond_top_only
self.seq_order = seq_order
self.temporal_causal = temporal_causal
self.top_block_channels = top_block_channels or channels
self.shallow_block_local = shallow_block_local
self.expansion_init_std = 0.02
assert (not local_attn_window) or shallow_block_local, 'local_attn_window requires shallow_block_local'
assert (not shallow_block_local) or self.cond_top_only, 'shallow_block_local requires cond_top_only'
assert (not self.cond_top_only) or (txt_size > 0), 'cond_top_only requires txt_size > 0'
assert (seq_order == 'L2R') or (temporal_causal == 0), 'seq_order must be L2R if temporal causal is True'
permutations = [PermutationIdentity(self.num_patches), PermutationFlip(self.num_patches)] if temporal_causal == 0 else \
[PermutationIdentity(self.num_patches), PermutationFlipInBlock(self.num_patches)]
blocks = []
if len(layers_per_block) == 1:
layers_per_block = [layers_per_block[0]] * num_blocks
base_kwargs = dict(
in_channels=in_channels * patch_size**2,
channels=channels,
img_size=img_size // patch_size,
pt_seq_len=self.pt_seq_len,
txt_size=txt_size,
use_rope=self.use_rope, hf_style_rope=hf_style_rope, use_sos=self.use_sos,
use_softplus=self.use_softplus,
use_swiglu=use_swiglu, use_qk_norm=use_qk_norm,
use_post_norm=use_post_norm, use_final_norm=use_final_norm,
use_bias=use_bias, norm_type=norm_type, num_heads=num_heads,
num_kv_heads=num_kv_heads, head_dim=head_dim,
use_checkpoint=use_checkpoint,
use_checkpoint_mlp=use_checkpoint_mlp,
soft_clip=soft_clip,
)
# bottom blocks
for i in range(num_blocks-1):
permutation = permutations[i % 2] if seq_order == 'R2L' else permutations[(i+1) % 2]
Block = IdentityBlock if layers_per_block[i] == 0 else MetaBlock
blocks.append(Block(permutation=permutation, num_layers=layers_per_block[i], txt_dim=0 if cond_top_only else txt_dim, **base_kwargs))
# top block
gen_kwargs = copy.deepcopy(base_kwargs)
if self.top_block_channels != channels:
gen_kwargs['channels'] = self.top_block_channels
if num_heads is None:
gen_kwargs['num_heads'] = self.top_block_channels // head_dim
if use_pretrained_lm is not None:
gen_kwargs.update(eval(f"{use_pretrained_lm}_kwargs"))
if use_mm_attn:
gen_kwargs.update({"use_mm_attn": True}) # only top block will receive this
else:
gen_kwargs.update({"num_layers": layers_per_block[-1]})
permutation = permutations[(num_blocks-1) % 2] if seq_order == 'R2L' else permutations[(num_blocks) % 2]
top_block = MetaBlock(permutation=permutation, txt_dim=txt_dim, local_attn_window=local_attn_window, **gen_kwargs)
blocks.append(top_block)
# put together
self.blocks = torch.nn.ModuleList(blocks)
# Self-denoiser
if learnable_self_denoiser:
self.learnable_self_denoiser = NonCausalBlock(
num_layers=8, block_causal=temporal_causal, window=denoiser_window,
txt_dim=0 if not conditional_denoiser else txt_dim,
**base_kwargs)
# setup rotary embeddings
if self.use_rope:
self.feat_rope = VisionRotaryEmbeddingFast(
dim=base_kwargs['head_dim'] // 2, pt_seq_len=base_kwargs['pt_seq_len'], latent_len=txt_size)
if use_pretrained_lm is not None: # using standard 1D RoPE
self.feat_rope_gen = VisionRotaryEmbeddingFast(
dim=gen_kwargs['head_dim'] // 2, pt_seq_len=gen_kwargs['pt_seq_len'], no_buffer=True, is_1d=True)
else:
self.feat_rope_gen = VisionRotaryEmbeddingFast(
dim=gen_kwargs['head_dim'] // 2, pt_seq_len=gen_kwargs['pt_seq_len'], latent_len=txt_size, no_buffer=True)
else:
self.feat_rope = self.feat_rope_gen = None
# ----- DEPRECATED: not useful -------
self.register_buffer('var', torch.ones(self.num_patches, in_channels * patch_size**2))
def patchify(self, x: List[torch.Tensor] | torch.Tensor, p: int | None = None) -> torch.Tensor:
"""Convert an image (N,C',H,W) to a sequence of patches (N,T,C')"""
if len(x.shape) < 4:
return x # no need patchify
H, W = x.shape[-2], x.shape[-1]
p = self.patch_size * p if p is not None else self.patch_size
assert H % p == 0 and W % p == 0, "H and W must be divisible by patch_size"
x = rearrange(x, '... c (h p1) (w p2) -> ... h w (p1 p2 c)', p1=p, p2=p)
return x
def unpatchify(self, x: List[torch.Tensor] | torch.Tensor, p: int | None = None) -> torch.Tensor:
"""Convert a sequence of patches (N,T,C) to an image (N,C',H,W)"""
if len(x.shape) < 4:
return x # no need unpatchify
p = self.patch_size * p if p is not None else self.patch_size
H, W = x.shape[-3], x.shape[-2]
return rearrange(x, '... h w (p1 p2 c) -> ... c (h p1) (w p2)', h=H, w=W, p1=p, p2=p)
def get_loss(self,
z: torch.Tensor | List[torch.Tensor],
logdets: torch.Tensor | List[torch.Tensor],
weights: torch.Tensor | None = None,
drop_first=False) -> dict[str, torch.Tensor]:
if drop_first:
z, logdets = z[:, 1:], [logdet[:, 1:] for logdet in logdets]
loss_z = 0.5 * z.pow(2).mean(dim=tuple(range(1, z.dim())))
loss_logdet = -sum([logdet.mean(dim=tuple(range(1, logdet.dim()))) for logdet in logdets])
loss = loss_z + loss_logdet
if weights is not None:
loss = loss * weights
loss = loss.mean()
return {'loss': loss, 'loss_z': loss_z.detach().mean(), 'loss_logdet': loss_logdet.detach().mean()}
def forward(
self, x: torch.Tensor, y: torch.Tensor | None = None,
reverse=False, kv_caches=None, denoiser=False, context=False, **kwargs
) -> tuple[torch.Tensor, list[torch.Tensor], torch.Tensor]:
if context:
return self.forward_context(x, y, kv_caches=kv_caches, **kwargs)
if reverse: # inference mode
return self.reverse(x, y, kv_caches=kv_caches, **kwargs)
if denoiser: # forward with self-denoiser
x = self.patchify(x)
x = self.learnable_self_denoiser(x, y, self.feat_rope, **kwargs)
return self.unpatchify(x)
logdets, outputs = [], []
guidance = kwargs.get('guidance', 0)
# Bottom blocks
x = self.patchify(x)
outputs += [x]
for it, block in enumerate(self.blocks[:-1]):
if self.shallow_block_local and x.dim() == 5: # video input
x = rearrange(x, 'b t h w c -> (b t) 1 h w c')
x, _, logdet = block(x, y.chunk(2, dim=0)[0] if self.cond_top_only and guidance > 0 else y,
self.feat_rope, kv_cache=kv_caches[-(it+1)] if kv_caches is not None else None)
if self.shallow_block_local and x.dim() == 5: # video input
x = rearrange(x, '(b t) 1 h w c -> b t h w c', b=outputs[0].size(0), t=outputs[0].size(1))
logdet = rearrange(logdet, '(b t) l c -> b t l c', b=outputs[0].size(0), t=outputs[0].size(1))
logdets += [logdet]
outputs += x if isinstance(x, list) else [x]
# Top block
x, y, logdet = self.blocks[-1](x, y, self.feat_rope_gen,
kv_cache=kv_caches[0] if kv_caches is not None else None,
guidance=guidance)
outputs += [x]
x = self.unpatchify(x)
logdets += [logdet]
return x, y, outputs, logdets
def forward_context(self, x: torch.Tensor, y: torch.Tensor | None = None, kv_caches: List[KVCache] | None = None, **kwargs):
if kv_caches is None:
kv_caches = [KVCache() for _ in range(len(self.blocks))]
use_cfg = (x.size(0) * 2 == y.size(0)) if (y is not None and self.cond_top_only) else False
if use_cfg:
x = torch.cat([x, x], 0) # duplicate for classifier-free guidance generation
self.forward(x, y, kv_caches=kv_caches, **kwargs) # run once to fill the cache
if use_cfg:
for kv in kv_caches[1:]:
kv.remove_negative_cache() # remove negative cache except for the first block
kv.prefix_cache = kv.prefix_cache.chunk(2, dim=0)[0] if kv.prefix_cache is not None else None
return kv_caches
def reverse_deep(self,
x: List[torch.Tensor] | torch.Tensor,
y: torch.Tensor | None = None,
guidance: float = 0,
verbose: bool = False,
kv_caches: List[KVCache] | None = None,
jacobi: bool = False,
need_caches: bool = False,
seq: List[torch.Tensor] = [],
**sampling_kwargs,):
x = self.patchify(x)
x = (self.blocks[-1].jacobi if jacobi else self.blocks[-1].reverse)(
x, y, guidance, rope=self.feat_rope_gen, kv_cache=kv_caches[0], verbose=verbose, **sampling_kwargs)
x = self.unpatchify(x)
if not need_caches:
kv_caches[0].delete()
seq.append(x)
return x
def reverse_shallow(self,
x: List[torch.Tensor] | torch.Tensor,
y: torch.Tensor | None = None,
guidance: float = 0,
verbose: bool = False,
kv_caches: List[KVCache] | None = None,
jacobi: bool = False,
need_caches: bool = False,
seq: List[torch.Tensor] = [],
**sampling_kwargs,):
x = self.patchify(x)
for it, block in enumerate(reversed(self.blocks[:-1])):
if self.shallow_block_local and x.dim() == 5: # video input
x = rearrange(x, 'b t h w c -> (b t) 1 h w c')
kv_caches[it+1]._is_empty = True
kv_caches[it+1].prefix_cache = None
x = (block.jacobi if jacobi else block.reverse)(
x, y, guidance, rope=self.feat_rope, kv_cache=kv_caches[it+1], verbose=verbose, **sampling_kwargs)
if self.shallow_block_local and x.dim() == 5: # video input
x = rearrange(x, '(b t) 1 h w c -> b t h w c', b=seq[0].size(0), t=seq[0].size(1))
seq.append(self.unpatchify(x))
if not need_caches:
kv_caches[it+1].delete()
x = self.unpatchify(x)
return x
def reverse(
self,
x: List[torch.Tensor] | torch.Tensor,
y: torch.Tensor | None = None,
guidance: float = 0,
guide_top: int | None = None,
return_sequence: bool = False,
verbose: bool = False,
kv_caches: List[KVCache] | None = None,
jacobi: bool = False,
**sampling_kwargs,
) -> torch.Tensor | list[torch.Tensor]:
seq, need_caches, kv_caches = [x], (kv_caches is not None), kv_caches or [KVCache() for _ in range(len(self.blocks))]
# run the deep block first
x = self.reverse_deep(x, y, guidance, verbose, kv_caches, jacobi, need_caches, seq, **sampling_kwargs)
# remove guidance if bottom is unconditional
if (guide_top is not None or self.cond_top_only) and guidance > 0:
guidance, y = 0, y.chunk(2, dim=0)[0]
# run the shallow blocks
x = self.reverse_shallow(x, y, guidance, verbose, kv_caches, jacobi, need_caches, seq, **sampling_kwargs)
return seq if return_sequence else x
#################################################################################
# TARFLow Configs #
#################################################################################
def TarFlow_XL_1(**kwargs):
return Model(num_blocks=6, layers_per_block=[2,2,2,2,10,10],
channels=2048, patch_size=1, head_dim=64, rope=1, **kwargs)
def TarFlow_XL_2(**kwargs):
return Model(num_blocks=6, layers_per_block=[2,2,2,2,10,10],
channels=2048, patch_size=2, head_dim=64, rope=1, **kwargs)
def TarFlow_XXL_1(**kwargs):
return Model(num_blocks=6, layers_per_block=[2,2,2,2,13,13],
channels=3072, patch_size=1, head_dim=64, rope=1, **kwargs)
def TarFlow_XLv2_1(**kwargs): # 1.4B
return Model(num_blocks=6, layers_per_block=[2,2,2,2,2,18],
channels=2048, patch_size=1, head_dim=64, rope=1, **kwargs)
def TarFlow_XXLv2_1(**kwargs): # 4B
return Model(num_blocks=6, layers_per_block=[2,2,2,2,2,24],
channels=3072, patch_size=1, head_dim=64, rope=1, **kwargs)
def TarFlow_Gemma2B(**kwargs): # 2B
return Model(num_blocks=6, layers_per_block=[2,2,2,2,2,26],
channels=2304, patch_size=1, rope=1,
use_rope=True, hf_style_rope=True, use_adaln=False,
use_swiglu=True, use_qk_norm=False, use_post_norm=True,
use_final_norm=True, use_bias=False, norm_type="rms_norm",
num_heads=8, num_kv_heads=4, head_dim=256, **kwargs)
# Pre-trained model configs
pre_model_configs = {
"TarFlow_XL_1": TarFlow_XL_1,
"TarFlow_XLv2_1": TarFlow_XLv2_1,
"TarFlow_XL_2": TarFlow_XL_2,
"TarFlow_XXL_1": TarFlow_XXL_1,
"TarFlow_XXLv2_1": TarFlow_XXLv2_1,
}
#################################################################################
# Pretrained LLMs #
#################################################################################
gemma3_4b_kwargs = dict(
use_rope=True, hf_style_rope=True, use_adaln=False,
use_swiglu=True, use_qk_norm=True, use_post_norm=True,
use_final_norm=True, use_bias=False, norm_type="rms_norm",
num_heads=8, num_kv_heads=4, head_dim=256, channels=2560,
num_layers=34, use_proj_txt=False)
gemma3_1b_kwargs = dict(
use_rope=True, hf_style_rope=True, use_adaln=False,
use_swiglu=True, use_qk_norm=True, use_post_norm=True,
use_final_norm=True, use_bias=False, norm_type="rms_norm",
num_heads=4, num_kv_heads=1, head_dim=256, channels=1152, expansion=6,
num_layers=26, use_proj_txt=False)
gemma2_2b_kwargs = dict(
use_rope=True, hf_style_rope=True, use_adaln=False,
use_swiglu=True, use_qk_norm=False, use_post_norm=True,
use_final_norm=True, use_bias=False, norm_type="rms_norm",
num_heads=8, num_kv_heads=4, head_dim=256, channels=2304,
num_layers=26, use_proj_txt=False) |