Spaces:
Configuration error
Configuration error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,708 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import sys
|
| 3 |
+
import os
|
| 4 |
+
import torch
|
| 5 |
+
torch.jit.script = lambda f: f
|
| 6 |
+
|
| 7 |
+
import sys
|
| 8 |
+
sys.path.append('./')
|
| 9 |
+
import argparse
|
| 10 |
+
import hashlib
|
| 11 |
+
import json
|
| 12 |
+
import os.path
|
| 13 |
+
import numpy as np
|
| 14 |
+
import torch
|
| 15 |
+
from typing import Tuple, List
|
| 16 |
+
from diffusers import DPMSolverMultistepScheduler
|
| 17 |
+
from diffusers.models import T2IAdapter
|
| 18 |
+
from PIL import Image
|
| 19 |
+
import copy
|
| 20 |
+
from diffusers import ControlNetModel, StableDiffusionXLPipeline
|
| 21 |
+
from insightface.app import FaceAnalysis
|
| 22 |
+
import gradio as gr
|
| 23 |
+
import random
|
| 24 |
+
from PIL import Image, ImageOps
|
| 25 |
+
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
|
| 26 |
+
from controlnet_aux import OpenposeDetector
|
| 27 |
+
from controlnet_aux.open_pose.body import Body
|
| 28 |
+
|
| 29 |
+
try:
|
| 30 |
+
from inference.models import YOLOWorld
|
| 31 |
+
from src.efficientvit.models.efficientvit.sam import EfficientViTSamPredictor
|
| 32 |
+
from src.efficientvit.sam_model_zoo import create_sam_model
|
| 33 |
+
import supervision as sv
|
| 34 |
+
except:
|
| 35 |
+
print("YoloWorld can not be load")
|
| 36 |
+
|
| 37 |
+
try:
|
| 38 |
+
from groundingdino.models import build_model
|
| 39 |
+
from groundingdino.util import box_ops
|
| 40 |
+
from groundingdino.util.slconfig import SLConfig
|
| 41 |
+
from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
|
| 42 |
+
from groundingdino.util.inference import annotate, predict
|
| 43 |
+
from segment_anything import build_sam, SamPredictor
|
| 44 |
+
import groundingdino.datasets.transforms as T
|
| 45 |
+
except:
|
| 46 |
+
print("groundingdino can not be load")
|
| 47 |
+
|
| 48 |
+
from src.pipelines.instantid_pipeline import InstantidMultiConceptPipeline
|
| 49 |
+
from src.pipelines.instantid_single_pieline import InstantidSingleConceptPipeline
|
| 50 |
+
from src.prompt_attention.p2p_attention import AttentionReplace
|
| 51 |
+
from src.pipelines.instantid_pipeline import revise_regionally_controlnet_forward
|
| 52 |
+
import cv2
|
| 53 |
+
import math
|
| 54 |
+
import PIL.Image
|
| 55 |
+
|
| 56 |
+
from gradio_demo.character_template import styles, lorapath_styles
|
| 57 |
+
STYLE_NAMES = list(styles.keys())
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 62 |
+
|
| 63 |
+
title = r"""
|
| 64 |
+
<h1 align="center">OMG: Occlusion-friendly Personalized Multi-concept Generation In Diffusion Models (OMG + InstantID)</h1>
|
| 65 |
+
"""
|
| 66 |
+
|
| 67 |
+
description = r"""
|
| 68 |
+
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/kongzhecn/OMG/' target='_blank'><b>OMG: Occlusion-friendly Personalized Multi-concept Generation In Diffusion Models</b></a>.<be>.<br>
|
| 69 |
+
<a href='https://kongzhecn.github.io/omg-project/' target='_blank'><b>[Project]</b></a>.<a href='https://github.com/kongzhecn/OMG/' target='_blank'><b>[Code]</b></a>.<a href='https://arxiv.org/abs/2403.10983/' target='_blank'><b>[Arxiv]</b></a>.<br>
|
| 70 |
+
How to use:<br>
|
| 71 |
+
1. Select two characters.
|
| 72 |
+
2. Enter a text prompt as done in normal text-to-image models.
|
| 73 |
+
3. Click the <b>Submit</b> button to start customizing.
|
| 74 |
+
4. Enjoy the generated image😊!
|
| 75 |
+
"""
|
| 76 |
+
|
| 77 |
+
article = r"""
|
| 78 |
+
---
|
| 79 |
+
📝 **Citation**
|
| 80 |
+
<br>
|
| 81 |
+
If our work is helpful for your research or applications, please cite us via:
|
| 82 |
+
```bibtex
|
| 83 |
+
@article{,
|
| 84 |
+
title={OMG: Occlusion-friendly Personalized Multi-concept Generation In Diffusion Models},
|
| 85 |
+
author={},
|
| 86 |
+
journal={},
|
| 87 |
+
year={}
|
| 88 |
+
}
|
| 89 |
+
```
|
| 90 |
+
"""
|
| 91 |
+
|
| 92 |
+
tips = r"""
|
| 93 |
+
### Usage tips of OMG
|
| 94 |
+
1. Input text prompts to describe a man and a woman
|
| 95 |
+
"""
|
| 96 |
+
|
| 97 |
+
css = '''
|
| 98 |
+
.gradio-container {width: 85% !important}
|
| 99 |
+
'''
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def build_dino_segment_model(ckpt_repo_id, sam_checkpoint):
|
| 104 |
+
ckpt_filenmae = "groundingdino_swinb_cogcoor.pth"
|
| 105 |
+
ckpt_config_filename = os.path.join(ckpt_repo_id, "GroundingDINO_SwinB.cfg.py")
|
| 106 |
+
groundingdino_model = load_model_hf(ckpt_repo_id, ckpt_filenmae, ckpt_config_filename)
|
| 107 |
+
sam = build_sam(checkpoint=sam_checkpoint)
|
| 108 |
+
sam.cuda()
|
| 109 |
+
sam_predictor = SamPredictor(sam)
|
| 110 |
+
return groundingdino_model, sam_predictor
|
| 111 |
+
|
| 112 |
+
def load_model_hf(repo_id, filename, ckpt_config_filename, device='cpu'):
|
| 113 |
+
args = SLConfig.fromfile(ckpt_config_filename)
|
| 114 |
+
model = build_model(args)
|
| 115 |
+
args.device = device
|
| 116 |
+
|
| 117 |
+
checkpoint = torch.load(os.path.join(repo_id, filename), map_location='cpu')
|
| 118 |
+
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
|
| 119 |
+
print("Model loaded from {} \n => {}".format(filename, log))
|
| 120 |
+
_ = model.eval()
|
| 121 |
+
return model
|
| 122 |
+
|
| 123 |
+
def build_yolo_segment_model(sam_path, device):
|
| 124 |
+
yolo_world = YOLOWorld(model_id="yolo_world/l")
|
| 125 |
+
sam = EfficientViTSamPredictor(
|
| 126 |
+
create_sam_model(name="xl1", weight_url=sam_path).to(device).eval()
|
| 127 |
+
)
|
| 128 |
+
return yolo_world, sam
|
| 129 |
+
|
| 130 |
+
def sample_image(pipe,
|
| 131 |
+
input_prompt,
|
| 132 |
+
input_neg_prompt=None,
|
| 133 |
+
generator=None,
|
| 134 |
+
concept_models=None,
|
| 135 |
+
num_inference_steps=50,
|
| 136 |
+
guidance_scale=7.5,
|
| 137 |
+
controller=None,
|
| 138 |
+
face_app=None,
|
| 139 |
+
image=None,
|
| 140 |
+
stage=None,
|
| 141 |
+
region_masks=None,
|
| 142 |
+
controlnet_conditioning_scale=None,
|
| 143 |
+
**extra_kargs
|
| 144 |
+
):
|
| 145 |
+
|
| 146 |
+
if image is not None:
|
| 147 |
+
image_condition = [image]
|
| 148 |
+
else:
|
| 149 |
+
image_condition = None
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
images = pipe(
|
| 153 |
+
prompt=input_prompt,
|
| 154 |
+
concept_models=concept_models,
|
| 155 |
+
negative_prompt=input_neg_prompt,
|
| 156 |
+
generator=generator,
|
| 157 |
+
guidance_scale=guidance_scale,
|
| 158 |
+
num_inference_steps=num_inference_steps,
|
| 159 |
+
cross_attention_kwargs={"scale": 0.8},
|
| 160 |
+
controller=controller,
|
| 161 |
+
image=image_condition,
|
| 162 |
+
face_app=face_app,
|
| 163 |
+
stage=stage,
|
| 164 |
+
controlnet_conditioning_scale = controlnet_conditioning_scale,
|
| 165 |
+
region_masks=region_masks,
|
| 166 |
+
**extra_kargs).images
|
| 167 |
+
return images
|
| 168 |
+
|
| 169 |
+
def load_image_yoloworld(image_source) -> Tuple[np.array, torch.Tensor]:
|
| 170 |
+
image = np.asarray(image_source)
|
| 171 |
+
return image
|
| 172 |
+
|
| 173 |
+
def load_image_dino(image_source) -> Tuple[np.array, torch.Tensor]:
|
| 174 |
+
transform = T.Compose(
|
| 175 |
+
[
|
| 176 |
+
T.RandomResize([800], max_size=1333),
|
| 177 |
+
T.ToTensor(),
|
| 178 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 179 |
+
]
|
| 180 |
+
)
|
| 181 |
+
image = np.asarray(image_source)
|
| 182 |
+
image_transformed, _ = transform(image_source, None)
|
| 183 |
+
return image, image_transformed
|
| 184 |
+
|
| 185 |
+
def draw_kps_multi(image_pil, kps_list, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]):
|
| 186 |
+
stickwidth = 4
|
| 187 |
+
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
w, h = image_pil.size
|
| 191 |
+
out_img = np.zeros([h, w, 3])
|
| 192 |
+
|
| 193 |
+
for kps in kps_list:
|
| 194 |
+
kps = np.array(kps)
|
| 195 |
+
for i in range(len(limbSeq)):
|
| 196 |
+
index = limbSeq[i]
|
| 197 |
+
color = color_list[index[0]]
|
| 198 |
+
|
| 199 |
+
x = kps[index][:, 0]
|
| 200 |
+
y = kps[index][:, 1]
|
| 201 |
+
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
|
| 202 |
+
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
|
| 203 |
+
polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0,
|
| 204 |
+
360, 1)
|
| 205 |
+
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
|
| 206 |
+
out_img = (out_img * 0.6).astype(np.uint8)
|
| 207 |
+
|
| 208 |
+
for idx_kp, kp in enumerate(kps):
|
| 209 |
+
color = color_list[idx_kp]
|
| 210 |
+
x, y = kp
|
| 211 |
+
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
|
| 212 |
+
|
| 213 |
+
out_img_pil = PIL.Image.fromarray(out_img.astype(np.uint8))
|
| 214 |
+
return out_img_pil
|
| 215 |
+
|
| 216 |
+
def predict_mask(segmentmodel, sam, image, TEXT_PROMPT, segmentType, confidence = 0.2, threshold = 0.5):
|
| 217 |
+
if segmentType=='GroundingDINO':
|
| 218 |
+
image_source, image = load_image_dino(image)
|
| 219 |
+
boxes, logits, phrases = predict(
|
| 220 |
+
model=segmentmodel,
|
| 221 |
+
image=image,
|
| 222 |
+
caption=TEXT_PROMPT,
|
| 223 |
+
box_threshold=0.3,
|
| 224 |
+
text_threshold=0.25
|
| 225 |
+
)
|
| 226 |
+
sam.set_image(image_source)
|
| 227 |
+
H, W, _ = image_source.shape
|
| 228 |
+
boxes_xyxy = box_ops.box_cxcywh_to_xyxy(boxes) * torch.Tensor([W, H, W, H])
|
| 229 |
+
|
| 230 |
+
transformed_boxes = sam.transform.apply_boxes_torch(boxes_xyxy, image_source.shape[:2]).cuda()
|
| 231 |
+
masks, _, _ = sam.predict_torch(
|
| 232 |
+
point_coords=None,
|
| 233 |
+
point_labels=None,
|
| 234 |
+
boxes=transformed_boxes,
|
| 235 |
+
multimask_output=False,
|
| 236 |
+
)
|
| 237 |
+
masks=masks[0].squeeze(0)
|
| 238 |
+
else:
|
| 239 |
+
image_source = load_image_yoloworld(image)
|
| 240 |
+
segmentmodel.set_classes(TEXT_PROMPT)
|
| 241 |
+
results = segmentmodel.infer(image_source, confidence=confidence)
|
| 242 |
+
detections = sv.Detections.from_inference(results).with_nms(
|
| 243 |
+
class_agnostic=True, threshold=threshold
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
masks_list = []
|
| 247 |
+
sam.set_image(image_source, image_format="RGB")
|
| 248 |
+
for xyxy in detections.xyxy:
|
| 249 |
+
mask, _, _ = sam.predict(box=xyxy, multimask_output=False)
|
| 250 |
+
masks_list.append(mask.squeeze())
|
| 251 |
+
detections.mask = np.array(masks_list)
|
| 252 |
+
|
| 253 |
+
mask_1 = []
|
| 254 |
+
mask_2 = []
|
| 255 |
+
for i, (class_id, confidence) in enumerate(zip(detections.class_id, detections.confidence)):
|
| 256 |
+
if class_id==0:
|
| 257 |
+
mask_1.append(torch.from_numpy(detections.mask[i]))
|
| 258 |
+
if class_id==1:
|
| 259 |
+
mask_2.append(torch.from_numpy(detections.mask[i]))
|
| 260 |
+
if len(mask_1)==0:
|
| 261 |
+
mask_1.append(None)
|
| 262 |
+
if len(mask_2)==0:
|
| 263 |
+
mask_2.append(None)
|
| 264 |
+
if len(TEXT_PROMPT)==2:
|
| 265 |
+
return mask_1[0], mask_2[0]
|
| 266 |
+
|
| 267 |
+
return mask_1[0]
|
| 268 |
+
|
| 269 |
+
def build_model_sd(pretrained_model, controlnet_path, face_adapter, device, prompts, antelopev2_path, width, height, style_lora):
|
| 270 |
+
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
|
| 271 |
+
pipe = InstantidMultiConceptPipeline.from_pretrained(
|
| 272 |
+
pretrained_model, controlnet=controlnet, torch_dtype=torch.float16, variant="fp16").to(device)
|
| 273 |
+
|
| 274 |
+
controller = AttentionReplace(prompts, 50, cross_replace_steps={"default_": 1.},
|
| 275 |
+
self_replace_steps=0.4, tokenizer=pipe.tokenizer, device=device, width=width, height=height,
|
| 276 |
+
dtype=torch.float16)
|
| 277 |
+
revise_regionally_controlnet_forward(pipe.unet, controller)
|
| 278 |
+
|
| 279 |
+
controlnet_concept = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
|
| 280 |
+
pipe_concept = InstantidSingleConceptPipeline.from_pretrained(
|
| 281 |
+
pretrained_model,
|
| 282 |
+
controlnet=controlnet_concept,
|
| 283 |
+
torch_dtype=torch.float16
|
| 284 |
+
)
|
| 285 |
+
pipe_concept.load_ip_adapter_instantid(face_adapter)
|
| 286 |
+
pipe_concept.set_ip_adapter_scale(0.8)
|
| 287 |
+
pipe_concept.to(device)
|
| 288 |
+
pipe_concept.image_proj_model.to(pipe_concept._execution_device)
|
| 289 |
+
|
| 290 |
+
if style_lora is not None and os.path.exists(style_lora):
|
| 291 |
+
pipe.load_lora_weights(style_lora, weight_name="pytorch_lora_weights.safetensors", adapter_name='style')
|
| 292 |
+
pipe_concept.load_lora_weights(style_lora, weight_name="pytorch_lora_weights.safetensors", adapter_name='style')
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
# modify
|
| 296 |
+
app = FaceAnalysis(name='antelopev2', root=antelopev2_path,
|
| 297 |
+
providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
| 298 |
+
app.prepare(ctx_id=0, det_size=(640, 640))
|
| 299 |
+
|
| 300 |
+
return pipe, controller, pipe_concept, app
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
def prepare_text(prompt, region_prompts):
|
| 304 |
+
'''
|
| 305 |
+
Args:
|
| 306 |
+
prompt_entity: [subject1]-*-[attribute1]-*-[Location1]|[subject2]-*-[attribute2]-*-[Location2]|[global text]
|
| 307 |
+
Returns:
|
| 308 |
+
full_prompt: subject1, attribute1 and subject2, attribute2, global text
|
| 309 |
+
context_prompt: subject1 and subject2, global text
|
| 310 |
+
entity_collection: [(subject1, attribute1), Location1]
|
| 311 |
+
'''
|
| 312 |
+
region_collection = []
|
| 313 |
+
|
| 314 |
+
regions = region_prompts.split('|')
|
| 315 |
+
|
| 316 |
+
for region in regions:
|
| 317 |
+
if region == '':
|
| 318 |
+
break
|
| 319 |
+
prompt_region, neg_prompt_region, ref_img = region.split('-*-')
|
| 320 |
+
prompt_region = prompt_region.replace('[', '').replace(']', '')
|
| 321 |
+
neg_prompt_region = neg_prompt_region.replace('[', '').replace(']', '')
|
| 322 |
+
|
| 323 |
+
region_collection.append((prompt_region, neg_prompt_region, ref_img))
|
| 324 |
+
return (prompt, region_collection)
|
| 325 |
+
|
| 326 |
+
def build_model_lora(pipe, pipe_concept, style_path, condition, condition_img):
|
| 327 |
+
if condition == "Human pose" and condition_img is not None:
|
| 328 |
+
controlnet = ControlNetModel.from_pretrained(args.openpose_checkpoint, torch_dtype=torch.float16).to(device)
|
| 329 |
+
pipe.controlnet2 = controlnet
|
| 330 |
+
elif condition == "Canny Edge" and condition_img is not None:
|
| 331 |
+
controlnet = ControlNetModel.from_pretrained(args.canny_checkpoint, torch_dtype=torch.float16, variant="fp16").to(device)
|
| 332 |
+
pipe.controlnet2 = controlnet
|
| 333 |
+
elif condition == "Depth" and condition_img is not None:
|
| 334 |
+
controlnet = ControlNetModel.from_pretrained(args.depth_checkpoint, torch_dtype=torch.float16).to(device)
|
| 335 |
+
pipe.controlnet2 = controlnet
|
| 336 |
+
|
| 337 |
+
if style_path is not None and os.path.exists(style_path):
|
| 338 |
+
pipe_concept.load_lora_weights(style_path, weight_name="pytorch_lora_weights.safetensors", adapter_name='style')
|
| 339 |
+
pipe.load_lora_weights(style_path, weight_name="pytorch_lora_weights.safetensors", adapter_name='style')
|
| 340 |
+
|
| 341 |
+
def resize_and_center_crop(image, output_size=(1024, 576)):
|
| 342 |
+
width, height = image.size
|
| 343 |
+
aspect_ratio = width / height
|
| 344 |
+
new_height = output_size[1]
|
| 345 |
+
new_width = int(aspect_ratio * new_height)
|
| 346 |
+
|
| 347 |
+
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
| 348 |
+
|
| 349 |
+
if new_width < output_size[0] or new_height < output_size[1]:
|
| 350 |
+
padding_color = "gray"
|
| 351 |
+
resized_image = ImageOps.expand(resized_image,
|
| 352 |
+
((output_size[0] - new_width) // 2,
|
| 353 |
+
(output_size[1] - new_height) // 2,
|
| 354 |
+
(output_size[0] - new_width + 1) // 2,
|
| 355 |
+
(output_size[1] - new_height + 1) // 2),
|
| 356 |
+
fill=padding_color)
|
| 357 |
+
|
| 358 |
+
left = (resized_image.width - output_size[0]) / 2
|
| 359 |
+
top = (resized_image.height - output_size[1]) / 2
|
| 360 |
+
right = (resized_image.width + output_size[0]) / 2
|
| 361 |
+
bottom = (resized_image.height + output_size[1]) / 2
|
| 362 |
+
|
| 363 |
+
cropped_image = resized_image.crop((left, top, right, bottom))
|
| 364 |
+
|
| 365 |
+
return cropped_image
|
| 366 |
+
|
| 367 |
+
def main(device, segment_type):
|
| 368 |
+
pipe, controller, pipe_concepts, face_app = build_model_sd(args.pretrained_model, args.controlnet_path,
|
| 369 |
+
args.face_adapter_path, device, prompts_tmp,
|
| 370 |
+
args.antelopev2_path, width // 32, height // 32,
|
| 371 |
+
args.style_lora)
|
| 372 |
+
if segment_type == 'GroundingDINO':
|
| 373 |
+
detect_model, sam = build_dino_segment_model(args.dino_checkpoint, args.sam_checkpoint)
|
| 374 |
+
else:
|
| 375 |
+
detect_model, sam = build_yolo_segment_model(args.efficientViT_checkpoint, device)
|
| 376 |
+
|
| 377 |
+
resolution_list = ["1440*728",
|
| 378 |
+
"1344*768",
|
| 379 |
+
"1216*832",
|
| 380 |
+
"1152*896",
|
| 381 |
+
"1024*1024",
|
| 382 |
+
"896*1152",
|
| 383 |
+
"832*1216",
|
| 384 |
+
"768*1344",
|
| 385 |
+
"728*1440"]
|
| 386 |
+
ratio_list = [1440 / 728, 1344 / 768, 1216 / 832, 1152 / 896, 1024 / 1024, 896 / 1152, 832 / 1216, 768 / 1344,
|
| 387 |
+
728 / 1440]
|
| 388 |
+
condition_list = ["None",
|
| 389 |
+
"Human pose",
|
| 390 |
+
"Canny Edge",
|
| 391 |
+
"Depth"]
|
| 392 |
+
|
| 393 |
+
depth_estimator = DPTForDepthEstimation.from_pretrained(args.dpt_checkpoint).to("cuda")
|
| 394 |
+
feature_extractor = DPTFeatureExtractor.from_pretrained(args.dpt_checkpoint)
|
| 395 |
+
body_model = Body(args.pose_detector_checkpoint)
|
| 396 |
+
openpose = OpenposeDetector(body_model)
|
| 397 |
+
|
| 398 |
+
prompts_rewrite = [args.prompt_rewrite]
|
| 399 |
+
input_prompt_test = [prepare_text(p, p_w) for p, p_w in zip(prompts, prompts_rewrite)]
|
| 400 |
+
input_prompt_test = [prompts, input_prompt_test[0][1]]
|
| 401 |
+
|
| 402 |
+
def remove_tips():
|
| 403 |
+
return gr.update(visible=False)
|
| 404 |
+
|
| 405 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 406 |
+
if randomize_seed:
|
| 407 |
+
seed = random.randint(0, MAX_SEED)
|
| 408 |
+
return seed
|
| 409 |
+
|
| 410 |
+
def get_humanpose(img):
|
| 411 |
+
openpose_image = openpose(img)
|
| 412 |
+
return openpose_image
|
| 413 |
+
|
| 414 |
+
def get_cannyedge(image):
|
| 415 |
+
image = np.array(image)
|
| 416 |
+
image = cv2.Canny(image, 100, 200)
|
| 417 |
+
image = image[:, :, None]
|
| 418 |
+
image = np.concatenate([image, image, image], axis=2)
|
| 419 |
+
canny_image = Image.fromarray(image)
|
| 420 |
+
return canny_image
|
| 421 |
+
|
| 422 |
+
def get_depth(image):
|
| 423 |
+
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
|
| 424 |
+
with torch.no_grad(), torch.autocast("cuda"):
|
| 425 |
+
depth_map = depth_estimator(image).predicted_depth
|
| 426 |
+
|
| 427 |
+
depth_map = torch.nn.functional.interpolate(
|
| 428 |
+
depth_map.unsqueeze(1),
|
| 429 |
+
size=(1024, 1024),
|
| 430 |
+
mode="bicubic",
|
| 431 |
+
align_corners=False,
|
| 432 |
+
)
|
| 433 |
+
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
|
| 434 |
+
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
|
| 435 |
+
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
|
| 436 |
+
image = torch.cat([depth_map] * 3, dim=1)
|
| 437 |
+
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
|
| 438 |
+
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
|
| 439 |
+
return image
|
| 440 |
+
|
| 441 |
+
@spaces.GPU
|
| 442 |
+
def generate_image(prompt1, negative_prompt, reference_1, reference_2, resolution, local_prompt1, local_prompt2, seed, style, identitynet_strength_ratio, adapter_strength_ratio, condition, condition_img, controlnet_ratio):
|
| 443 |
+
identitynet_strength_ratio = float(identitynet_strength_ratio)
|
| 444 |
+
adapter_strength_ratio = float(adapter_strength_ratio)
|
| 445 |
+
controlnet_ratio = float(controlnet_ratio)
|
| 446 |
+
if lorapath_styles[style] is not None and os.path.exists(lorapath_styles[style]):
|
| 447 |
+
styleL = True
|
| 448 |
+
else:
|
| 449 |
+
styleL = False
|
| 450 |
+
|
| 451 |
+
width, height = int(resolution.split("*")[0]), int(resolution.split("*")[1])
|
| 452 |
+
kwargs = {
|
| 453 |
+
'height': height,
|
| 454 |
+
'width': width,
|
| 455 |
+
't2i_controlnet_conditioning_scale': controlnet_ratio,
|
| 456 |
+
}
|
| 457 |
+
|
| 458 |
+
if condition == 'Human pose' and condition_img is not None:
|
| 459 |
+
index = ratio_list.index(
|
| 460 |
+
min(ratio_list, key=lambda x: abs(x - condition_img.shape[1] / condition_img.shape[0])))
|
| 461 |
+
resolution = resolution_list[index]
|
| 462 |
+
width, height = int(resolution.split("*")[0]), int(resolution.split("*")[1])
|
| 463 |
+
kwargs['height'] = height
|
| 464 |
+
kwargs['width'] = width
|
| 465 |
+
condition_img = resize_and_center_crop(Image.fromarray(condition_img), (width, height))
|
| 466 |
+
spatial_condition = get_humanpose(condition_img)
|
| 467 |
+
elif condition == 'Canny Edge' and condition_img is not None:
|
| 468 |
+
index = ratio_list.index(
|
| 469 |
+
min(ratio_list, key=lambda x: abs(x - condition_img.shape[1] / condition_img.shape[0])))
|
| 470 |
+
resolution = resolution_list[index]
|
| 471 |
+
width, height = int(resolution.split("*")[0]), int(resolution.split("*")[1])
|
| 472 |
+
kwargs['height'] = height
|
| 473 |
+
kwargs['width'] = width
|
| 474 |
+
condition_img = resize_and_center_crop(Image.fromarray(condition_img), (width, height))
|
| 475 |
+
spatial_condition = get_cannyedge(condition_img)
|
| 476 |
+
elif condition == 'Depth' and condition_img is not None:
|
| 477 |
+
index = ratio_list.index(
|
| 478 |
+
min(ratio_list, key=lambda x: abs(x - condition_img.shape[1] / condition_img.shape[0])))
|
| 479 |
+
resolution = resolution_list[index]
|
| 480 |
+
width, height = int(resolution.split("*")[0]), int(resolution.split("*")[1])
|
| 481 |
+
kwargs['height'] = height
|
| 482 |
+
kwargs['width'] = width
|
| 483 |
+
condition_img = resize_and_center_crop(Image.fromarray(condition_img), (width, height))
|
| 484 |
+
spatial_condition = get_depth(condition_img)
|
| 485 |
+
else:
|
| 486 |
+
spatial_condition = None
|
| 487 |
+
|
| 488 |
+
kwargs['t2i_image'] = spatial_condition
|
| 489 |
+
pipe.unload_lora_weights()
|
| 490 |
+
pipe_concepts.unload_lora_weights()
|
| 491 |
+
build_model_lora(pipe, pipe_concepts, lorapath_styles[style], condition, condition_img)
|
| 492 |
+
pipe_concepts.set_ip_adapter_scale(adapter_strength_ratio)
|
| 493 |
+
|
| 494 |
+
input_list = [prompt1]
|
| 495 |
+
|
| 496 |
+
|
| 497 |
+
for prompt in input_list:
|
| 498 |
+
if prompt != '':
|
| 499 |
+
input_prompt = []
|
| 500 |
+
p = '{prompt}, 35mm photograph, film, professional, 4k, highly detailed.'
|
| 501 |
+
if styleL:
|
| 502 |
+
p = styles[style] + p
|
| 503 |
+
input_prompt.append([p.replace('{prompt}', prompt), p.replace("{prompt}", prompt)])
|
| 504 |
+
if styleL:
|
| 505 |
+
input_prompt.append([(styles[style] + local_prompt1, 'noisy, blurry, soft, deformed, ugly',
|
| 506 |
+
PIL.Image.fromarray(reference_1)),
|
| 507 |
+
(styles[style] + local_prompt2, 'noisy, blurry, soft, deformed, ugly',
|
| 508 |
+
PIL.Image.fromarray(reference_2))])
|
| 509 |
+
else:
|
| 510 |
+
input_prompt.append(
|
| 511 |
+
[(local_prompt1, 'noisy, blurry, soft, deformed, ugly', PIL.Image.fromarray(reference_1)),
|
| 512 |
+
(local_prompt2, 'noisy, blurry, soft, deformed, ugly', PIL.Image.fromarray(reference_2))])
|
| 513 |
+
|
| 514 |
+
|
| 515 |
+
controller.reset()
|
| 516 |
+
image = sample_image(
|
| 517 |
+
pipe,
|
| 518 |
+
input_prompt=input_prompt,
|
| 519 |
+
concept_models=pipe_concepts,
|
| 520 |
+
input_neg_prompt=[negative_prompt] * len(input_prompt),
|
| 521 |
+
generator=torch.Generator(device).manual_seed(seed),
|
| 522 |
+
controller=controller,
|
| 523 |
+
face_app=face_app,
|
| 524 |
+
controlnet_conditioning_scale=identitynet_strength_ratio,
|
| 525 |
+
stage=1,
|
| 526 |
+
**kwargs)
|
| 527 |
+
|
| 528 |
+
controller.reset()
|
| 529 |
+
|
| 530 |
+
if (pipe.tokenizer("man")["input_ids"][1] in pipe.tokenizer(args.prompt)["input_ids"][1:-1]) and (
|
| 531 |
+
pipe.tokenizer("woman")["input_ids"][1] in pipe.tokenizer(args.prompt)["input_ids"][1:-1]):
|
| 532 |
+
mask1, mask2 = predict_mask(detect_model, sam, image[0], ['man', 'woman'], args.segment_type, confidence=0.3,
|
| 533 |
+
threshold=0.5)
|
| 534 |
+
|
| 535 |
+
elif pipe.tokenizer("man")["input_ids"][1] in pipe.tokenizer(args.prompt)["input_ids"][1:-1]:
|
| 536 |
+
mask1 = predict_mask(detect_model, sam, image[0], ['man'], args.segment_type, confidence=0.3,
|
| 537 |
+
threshold=0.5)
|
| 538 |
+
mask2 = None
|
| 539 |
+
|
| 540 |
+
elif pipe.tokenizer("woman")["input_ids"][1] in pipe.tokenizer(args.prompt)["input_ids"][1:-1]:
|
| 541 |
+
mask2 = predict_mask(detect_model, sam, image[0], ['woman'], args.segment_type, confidence=0.3,
|
| 542 |
+
threshold=0.5)
|
| 543 |
+
mask1 = None
|
| 544 |
+
else:
|
| 545 |
+
mask1 = mask2 = None
|
| 546 |
+
|
| 547 |
+
if mask1 is not None or mask2 is not None:
|
| 548 |
+
face_info = face_app.get(cv2.cvtColor(np.array(image[0]), cv2.COLOR_RGB2BGR))
|
| 549 |
+
face_kps = draw_kps_multi(image[0], [face['kps'] for face in face_info])
|
| 550 |
+
|
| 551 |
+
image = sample_image(
|
| 552 |
+
pipe,
|
| 553 |
+
input_prompt=input_prompt,
|
| 554 |
+
concept_models=pipe_concepts,
|
| 555 |
+
input_neg_prompt=[negative_prompt] * len(input_prompt),
|
| 556 |
+
generator=torch.Generator(device).manual_seed(seed),
|
| 557 |
+
controller=controller,
|
| 558 |
+
face_app=face_app,
|
| 559 |
+
image=face_kps,
|
| 560 |
+
stage=2,
|
| 561 |
+
controlnet_conditioning_scale=identitynet_strength_ratio,
|
| 562 |
+
region_masks=[mask1, mask2],
|
| 563 |
+
**kwargs)
|
| 564 |
+
|
| 565 |
+
# return [image[1], spatial_condition]
|
| 566 |
+
return image
|
| 567 |
+
|
| 568 |
+
with gr.Blocks(css=css) as demo:
|
| 569 |
+
# description
|
| 570 |
+
gr.Markdown(title)
|
| 571 |
+
gr.Markdown(description)
|
| 572 |
+
|
| 573 |
+
with gr.Row():
|
| 574 |
+
gallery = gr.Image(label="Generated Images", height=512, width=512)
|
| 575 |
+
gallery1 = gr.Image(label="Generated Images", height=512, width=512)
|
| 576 |
+
usage_tips = gr.Markdown(label="Usage tips of OMG", value=tips, visible=False)
|
| 577 |
+
|
| 578 |
+
|
| 579 |
+
with gr.Row():
|
| 580 |
+
reference_1 = gr.Image(label="Input an RGB image for Character man", height=128, width=128)
|
| 581 |
+
reference_2 = gr.Image(label="Input an RGB image for Character woman", height=128, width=128)
|
| 582 |
+
condition_img1 = gr.Image(label="Input an RGB image for condition (Optional)", height=128, width=128)
|
| 583 |
+
|
| 584 |
+
|
| 585 |
+
|
| 586 |
+
|
| 587 |
+
with gr.Row():
|
| 588 |
+
local_prompt1 = gr.Textbox(label="Character1_prompt",
|
| 589 |
+
info="Describe the Character 1",
|
| 590 |
+
value="Close-up photo of the a man, 35mm photograph, professional, 4k, highly detailed.")
|
| 591 |
+
local_prompt2 = gr.Textbox(label="Character2_prompt",
|
| 592 |
+
info="Describe the Character 2",
|
| 593 |
+
value="Close-up photo of the a woman, 35mm photograph, professional, 4k, highly detailed.")
|
| 594 |
+
with gr.Row():
|
| 595 |
+
identitynet_strength_ratio = gr.Slider(
|
| 596 |
+
label="IdentityNet strength (for fidelity)",
|
| 597 |
+
minimum=0,
|
| 598 |
+
maximum=1.5,
|
| 599 |
+
step=0.05,
|
| 600 |
+
value=0.80,
|
| 601 |
+
)
|
| 602 |
+
adapter_strength_ratio = gr.Slider(
|
| 603 |
+
label="Image adapter strength (for detail)",
|
| 604 |
+
minimum=0,
|
| 605 |
+
maximum=1.5,
|
| 606 |
+
step=0.05,
|
| 607 |
+
value=0.80,
|
| 608 |
+
)
|
| 609 |
+
controlnet_ratio = gr.Slider(
|
| 610 |
+
label="ControlNet strength",
|
| 611 |
+
minimum=0,
|
| 612 |
+
maximum=1.5,
|
| 613 |
+
step=0.05,
|
| 614 |
+
value=1,
|
| 615 |
+
)
|
| 616 |
+
resolution = gr.Dropdown(label="Image Resolution (width*height)", choices=resolution_list,
|
| 617 |
+
value="1024*1024")
|
| 618 |
+
style = gr.Dropdown(label="style", choices=STYLE_NAMES, value="None")
|
| 619 |
+
condition = gr.Dropdown(label="Input condition type", choices=condition_list, value="None")
|
| 620 |
+
|
| 621 |
+
|
| 622 |
+
# prompt
|
| 623 |
+
with gr.Column():
|
| 624 |
+
prompt = gr.Textbox(label="Prompt 1",
|
| 625 |
+
info="Give a simple prompt to describe the first image content",
|
| 626 |
+
placeholder="Required",
|
| 627 |
+
value="close-up shot, photography, a man and a woman on the street, facing the camera smiling")
|
| 628 |
+
|
| 629 |
+
|
| 630 |
+
with gr.Accordion(open=False, label="Advanced Options"):
|
| 631 |
+
seed = gr.Slider(
|
| 632 |
+
label="Seed",
|
| 633 |
+
minimum=0,
|
| 634 |
+
maximum=MAX_SEED,
|
| 635 |
+
step=1,
|
| 636 |
+
value=42,
|
| 637 |
+
)
|
| 638 |
+
negative_prompt = gr.Textbox(label="Negative Prompt",
|
| 639 |
+
placeholder="noisy, blurry, soft, deformed, ugly",
|
| 640 |
+
value="noisy, blurry, soft, deformed, ugly")
|
| 641 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 642 |
+
|
| 643 |
+
submit = gr.Button("Submit", variant="primary")
|
| 644 |
+
|
| 645 |
+
submit.click(
|
| 646 |
+
fn=remove_tips,
|
| 647 |
+
outputs=usage_tips,
|
| 648 |
+
).then(
|
| 649 |
+
fn=randomize_seed_fn,
|
| 650 |
+
inputs=[seed, randomize_seed],
|
| 651 |
+
outputs=seed,
|
| 652 |
+
queue=False,
|
| 653 |
+
api_name=False,
|
| 654 |
+
).then(
|
| 655 |
+
fn=generate_image,
|
| 656 |
+
inputs=[prompt, negative_prompt, reference_1, reference_2, resolution, local_prompt1, local_prompt2, seed, style, identitynet_strength_ratio, adapter_strength_ratio, condition, condition_img1, controlnet_ratio],
|
| 657 |
+
outputs=[gallery, gallery1]
|
| 658 |
+
)
|
| 659 |
+
demo.launch(server_name='0.0.0.0',server_port=7861, debug=True)
|
| 660 |
+
|
| 661 |
+
def parse_args():
|
| 662 |
+
parser = argparse.ArgumentParser('', add_help=False)
|
| 663 |
+
parser.add_argument('--pretrained_model', default='/home/data1/kz_dir/checkpoint/YamerMIX_v8', type=str)
|
| 664 |
+
parser.add_argument('--controlnet_path', default='../checkpoint/InstantID/ControlNetModel', type=str)
|
| 665 |
+
parser.add_argument('--face_adapter_path', default='../checkpoint/InstantID/ip-adapter.bin', type=str)
|
| 666 |
+
parser.add_argument('--openpose_checkpoint', default='../checkpoint/controlnet-openpose-sdxl-1.0', type=str)
|
| 667 |
+
parser.add_argument('--canny_checkpoint', default='../checkpoint/controlnet-canny-sdxl-1.0', type=str)
|
| 668 |
+
parser.add_argument('--depth_checkpoint', default='../checkpoint/controlnet-depth-sdxl-1.0', type=str)
|
| 669 |
+
parser.add_argument('--dpt_checkpoint', default='../checkpoint/dpt-hybrid-midas', type=str)
|
| 670 |
+
parser.add_argument('--pose_detector_checkpoint',
|
| 671 |
+
default='../checkpoint/ControlNet/annotator/ckpts/body_pose_model.pth', type=str)
|
| 672 |
+
parser.add_argument('--efficientViT_checkpoint', default='../checkpoint/sam/xl1.pt', type=str)
|
| 673 |
+
parser.add_argument('--dino_checkpoint', default='../checkpoint/GroundingDINO', type=str)
|
| 674 |
+
parser.add_argument('--sam_checkpoint', default='../checkpoint/sam/sam_vit_h_4b8939.pth', type=str)
|
| 675 |
+
parser.add_argument('--antelopev2_path', default='../checkpoint/antelopev2', type=str)
|
| 676 |
+
parser.add_argument('--save_dir', default='results/instantID', type=str)
|
| 677 |
+
parser.add_argument('--prompt', default='Close-up photo of the cool man and beautiful woman as they accidentally discover a mysterious island while on vacation by the sea, facing the camera smiling, 35mm photograph, film, professional, 4k, highly detailed.', type=str)
|
| 678 |
+
parser.add_argument('--negative_prompt', default='noisy, blurry, soft, deformed, ugly', type=str)
|
| 679 |
+
parser.add_argument('--prompt_rewrite',
|
| 680 |
+
default='[Close-up photo of a man, 35mm photograph, professional, 4k, highly detailed.]-*'
|
| 681 |
+
'-[noisy, blurry, soft, deformed, ugly]-*-'
|
| 682 |
+
'../example/chris-evans.jpg|'
|
| 683 |
+
'[Close-up photo of a woman, 35mm photograph, professional, 4k, highly detailed.]-'
|
| 684 |
+
'*-[noisy, blurry, soft, deformed, ugly]-*-'
|
| 685 |
+
'../example/TaylorSwift.png',
|
| 686 |
+
type=str)
|
| 687 |
+
parser.add_argument('--seed', default=0, type=int)
|
| 688 |
+
parser.add_argument('--suffix', default='', type=str)
|
| 689 |
+
parser.add_argument('--segment_type', default='yoloworld', help='GroundingDINO or yoloworld', type=str)
|
| 690 |
+
parser.add_argument('--style_lora', default='', type=str)
|
| 691 |
+
return parser.parse_args()
|
| 692 |
+
|
| 693 |
+
if __name__ == '__main__':
|
| 694 |
+
args = parse_args()
|
| 695 |
+
|
| 696 |
+
prompts = [args.prompt] * 2
|
| 697 |
+
|
| 698 |
+
prompts_tmp = copy.deepcopy(prompts)
|
| 699 |
+
|
| 700 |
+
width, height = 1024, 1024
|
| 701 |
+
kwargs = {
|
| 702 |
+
'height': height,
|
| 703 |
+
'width': width,
|
| 704 |
+
}
|
| 705 |
+
|
| 706 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
| 707 |
+
main(device, args.segment_type)
|
| 708 |
+
|