Spaces:
Configuration error
Configuration error
| from typing import Tuple | |
| import numpy as np | |
| from inference.core.models.object_detection_base import ( | |
| ObjectDetectionBaseOnnxRoboflowInferenceModel, | |
| ) | |
| class YOLOv8ObjectDetection(ObjectDetectionBaseOnnxRoboflowInferenceModel): | |
| """Roboflow ONNX Object detection model (Implements an object detection specific infer method). | |
| This class is responsible for performing object detection using the YOLOv8 model | |
| with ONNX runtime. | |
| Attributes: | |
| weights_file (str): Path to the ONNX weights file. | |
| Methods: | |
| predict: Performs object detection on the given image using the ONNX session. | |
| """ | |
| def weights_file(self) -> str: | |
| """Gets the weights file for the YOLOv8 model. | |
| Returns: | |
| str: Path to the ONNX weights file. | |
| """ | |
| return "weights.onnx" | |
| def predict(self, img_in: np.ndarray, **kwargs) -> Tuple[np.ndarray]: | |
| """Performs object detection on the given image using the ONNX session. | |
| Args: | |
| img_in (np.ndarray): Input image as a NumPy array. | |
| Returns: | |
| Tuple[np.ndarray]: NumPy array representing the predictions, including boxes, confidence scores, and class confidence scores. | |
| """ | |
| predictions = self.onnx_session.run(None, {self.input_name: img_in})[0] | |
| predictions = predictions.transpose(0, 2, 1) | |
| boxes = predictions[:, :, :4] | |
| class_confs = predictions[:, :, 4:] | |
| confs = np.expand_dims(np.max(class_confs, axis=2), axis=2) | |
| predictions = np.concatenate([boxes, confs, class_confs], axis=2) | |
| return (predictions,) | |