File size: 4,589 Bytes
591ba45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch.nn as nn


class ResidualBlock(nn.Module):
    def __init__(self, in_planes, planes, norm_fn="group", stride=1):
        super(ResidualBlock, self).__init__()

        self.conv1 = nn.Conv2d(
            in_planes, planes, kernel_size=3, padding=1, stride=stride
        )
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1)
        self.relu = nn.ReLU(inplace=True)

        num_groups = planes // 8

        if norm_fn == "batch":
            self.norm1 = nn.BatchNorm2d(planes)
            self.norm2 = nn.BatchNorm2d(planes)
            if not stride == 1:
                self.norm3 = nn.BatchNorm2d(planes)

        elif norm_fn == "instance":
            self.norm1 = nn.InstanceNorm2d(planes)
            self.norm2 = nn.InstanceNorm2d(planes)
            if not stride == 1:
                self.norm3 = nn.InstanceNorm2d(planes)

        if stride == 1:
            self.downsample = None
        else:
            self.downsample = nn.Sequential(
                nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3
            )

    def forward(self, x):
        y = x
        y = self.relu(self.norm1(self.conv1(y)))
        y = self.relu(self.norm2(self.conv2(y)))

        if self.downsample is not None:
            x = self.downsample(x)

        return self.relu(x + y)


class BottleneckBlock(nn.Module):
    def __init__(self, in_planes, planes, norm_fn="group", stride=1):
        super(BottleneckBlock, self).__init__()

        self.conv1 = nn.Conv2d(in_planes, planes // 4, kernel_size=1, padding=0)
        self.conv2 = nn.Conv2d(
            planes // 4, planes // 4, kernel_size=3, padding=1, stride=stride
        )
        self.conv3 = nn.Conv2d(planes // 4, planes, kernel_size=1, padding=0)
        self.relu = nn.ReLU(inplace=True)

        if norm_fn == "batch":
            self.norm1 = nn.BatchNorm2d(planes // 4)
            self.norm2 = nn.BatchNorm2d(planes // 4)
            self.norm3 = nn.BatchNorm2d(planes)
            if not stride == 1:
                self.norm4 = nn.BatchNorm2d(planes)

        elif norm_fn == "instance":
            self.norm1 = nn.InstanceNorm2d(planes // 4)
            self.norm2 = nn.InstanceNorm2d(planes // 4)
            self.norm3 = nn.InstanceNorm2d(planes)
            if not stride == 1:
                self.norm4 = nn.InstanceNorm2d(planes)

        if stride == 1:
            self.downsample = None
        else:
            self.downsample = nn.Sequential(
                nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm4
            )

    def forward(self, x):
        y = x
        y = self.relu(self.norm1(self.conv1(y)))
        y = self.relu(self.norm2(self.conv2(y)))
        y = self.relu(self.norm3(self.conv3(y)))

        if self.downsample is not None:
            x = self.downsample(x)

        return self.relu(x + y)


class BasicEncoder(nn.Module):
    def __init__(self, output_dim=128, norm_fn="batch", dropout=0.0):
        super(BasicEncoder, self).__init__()
        self.norm_fn = norm_fn

        if self.norm_fn == "batch":
            self.norm1 = nn.BatchNorm2d(64)

        elif self.norm_fn == "instance":
            self.norm1 = nn.InstanceNorm2d(64)

        self.conv1 = nn.Conv2d(3, 80, kernel_size=7, stride=2, padding=3)
        self.relu1 = nn.ReLU(inplace=True)

        self.in_planes = 80
        self.layer1 = self._make_layer(80, stride=1)
        self.layer2 = self._make_layer(160, stride=2)
        self.layer3 = self._make_layer(240, stride=2)

        # output convolution
        self.conv2 = nn.Conv2d(240, output_dim, kernel_size=1)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
            elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)):
                if m.weight is not None:
                    nn.init.constant_(m.weight, 1)
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)

    def _make_layer(self, dim, stride=1):
        layer1 = ResidualBlock(self.in_planes, dim, self.norm_fn, stride=stride)
        layer2 = ResidualBlock(dim, dim, self.norm_fn, stride=1)
        layers = (layer1, layer2)

        self.in_planes = dim
        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.norm1(x)
        x = self.relu1(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)

        x = self.conv2(x)

        return x