File size: 23,440 Bytes
c8db08b 3a002cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 |
import gradio as gr
import torch
import numpy as np
from PIL import Image, ImageDraw
import json
from tkg_dm import TKGDMPipeline
def create_canvas_image(width=512, height=512):
"""Create a blank canvas for drawing bounding boxes"""
img = Image.new('RGB', (width, height), (240, 240, 240)) # Light gray background
draw = ImageDraw.Draw(img)
# Add grid lines for better visualization
grid_size = 64
for x in range(0, width, grid_size):
draw.line([(x, 0), (x, height)], fill=(200, 200, 200), width=1)
for y in range(0, height, grid_size):
draw.line([(0, y), (width, y)], fill=(200, 200, 200), width=1)
# Add instructions
draw.text((10, 10), "Draw bounding boxes to define reserved regions", fill=(100, 100, 100))
draw.text((10, 25), "Click and drag to create boxes", fill=(100, 100, 100))
draw.text((10, 40), "Use 'Clear Boxes' to reset", fill=(100, 100, 100))
return img
def draw_boxes_on_canvas(boxes, width=512, height=512):
"""Draw bounding boxes on canvas"""
img = create_canvas_image(width, height)
draw = ImageDraw.Draw(img)
for i, (x1, y1, x2, y2) in enumerate(boxes):
# Convert normalized coordinates to pixel coordinates
px1, py1 = int(x1 * width), int(y1 * height)
px2, py2 = int(x2 * width), int(y2 * height)
# Draw bounding box
draw.rectangle([px1, py1, px2, py2], outline='red', width=3)
draw.rectangle([px1+1, py1+1, px2-1, py2-1], outline='yellow', width=2)
# Add semi-transparent fill
overlay = Image.new('RGBA', (width, height), (0, 0, 0, 0))
overlay_draw = ImageDraw.Draw(overlay)
overlay_draw.rectangle([px1, py1, px2, py2], fill=(255, 0, 0, 50))
img = Image.alpha_composite(img.convert('RGBA'), overlay).convert('RGB')
draw = ImageDraw.Draw(img)
# Add box label
label = f"Box {i+1}"
draw.text((px1+5, py1+5), label, fill='white')
draw.text((px1+4, py1+4), label, fill='black') # Shadow effect
return img
def add_bounding_box(bbox_str, x1, y1, x2, y2):
"""Add a new bounding box to the string"""
# Ensure coordinates are in correct order and valid range
x1, x2 = max(0, min(x1, x2)), min(1, max(x1, x2))
y1, y2 = max(0, min(y1, y2)), min(1, max(y1, y2))
# Check minimum size
if x2 - x1 < 0.02 or y2 - y1 < 0.02:
return bbox_str, sync_text_to_canvas(bbox_str)
new_box = f"{x1:.3f},{y1:.3f},{x2:.3f},{y2:.3f}"
if bbox_str.strip():
updated_str = bbox_str + ";" + new_box
else:
updated_str = new_box
return updated_str, sync_text_to_canvas(updated_str)
def remove_last_box(bbox_str):
"""Remove the last bounding box"""
if not bbox_str.strip():
return "", create_canvas_image()
boxes = bbox_str.split(';')
if boxes:
boxes.pop()
updated_str = ';'.join(boxes)
return updated_str, sync_text_to_canvas(updated_str)
def create_box_builder_interface():
"""Create a user-friendly box building interface"""
return """
<div style="background: #f8f9fa; padding: 20px; border-radius: 8px; border: 1px solid #dee2e6;">
<h4 style="margin-top: 0; color: #495057;">π¦ Bounding Box Builder</h4>
<p style="color: #6c757d; margin-bottom: 15px;">
Define reserved regions where content generation will be suppressed. Use coordinate inputs for precision.
</p>
<div style="background: white; padding: 15px; border-radius: 6px; border: 1px solid #ced4da; margin-bottom: 15px;">
<strong>Instructions:</strong><br>
β’ Each box is defined by (x1, y1, x2, y2) where coordinates range from 0.0 to 1.0<br>
β’ (0,0) is top-left corner, (1,1) is bottom-right corner<br>
β’ Multiple boxes are separated by semicolons<br>
β’ Red/yellow boxes in preview show reserved regions
</div>
<div style="background: #e7f3ff; padding: 10px; border-radius: 6px; border: 1px solid #b3d9ff;">
<strong>π‘ Tips:</strong> Start with default values (0.2,0.2,0.8,0.4) for a center box, then adjust coordinates as needed.
</div>
</div>
"""
def load_preset_boxes(preset_name):
"""Load preset bounding box configurations"""
presets = {
"center_box": "0.3,0.3,0.7,0.7",
"top_strip": "0.0,0.0,1.0,0.3",
"bottom_strip": "0.0,0.7,1.0,1.0",
"left_right": "0.0,0.2,0.3,0.8;0.7,0.2,1.0,0.8",
"corners": "0.0,0.0,0.4,0.4;0.6,0.0,1.0,0.4;0.0,0.6,0.4,1.0;0.6,0.6,1.0,1.0",
"frame": "0.0,0.0,1.0,0.2;0.0,0.8,1.0,1.0;0.0,0.2,0.2,0.8;0.8,0.2,1.0,0.8"
}
return presets.get(preset_name, "")
def extract_boxes_from_annotated_image(annotated_data):
"""Extract bounding boxes from annotated image data - placeholder for future enhancement"""
# This would be used with more advanced annotation tools
return []
def update_canvas_with_boxes(annotated_data):
"""Update canvas when boxes are drawn - placeholder for future enhancement"""
# For now, return the current canvas
return create_canvas_image(), ""
def clear_bounding_boxes():
"""Clear all bounding boxes"""
return create_canvas_image(), ""
def parse_bounding_boxes(bbox_str):
"""
Parse bounding boxes from string format
Expected format: "x1,y1,x2,y2;x1,y1,x2,y2" or empty for legacy mode
"""
if not bbox_str or not bbox_str.strip():
return None
try:
boxes = []
for box_str in bbox_str.split(';'):
if box_str.strip():
coords = [float(x.strip()) for x in box_str.split(',')]
if len(coords) == 4:
x1, y1, x2, y2 = coords
# Ensure coordinates are in [0,1] range and valid
x1, x2 = max(0, min(x1, x2)), min(1, max(x1, x2))
y1, y2 = max(0, min(y1, y2)), min(1, max(y1, y2))
boxes.append((x1, y1, x2, y2))
return boxes if boxes else None
except Exception as e:
print(f"Error parsing bounding boxes: {e}")
return None
def sync_text_to_canvas(bbox_str):
"""Sync text input to canvas visualization"""
boxes = parse_bounding_boxes(bbox_str)
if boxes:
return draw_boxes_on_canvas(boxes)
else:
return create_canvas_image()
def generate_tkg_dm_image(prompt, ch0_shift, ch1_shift, ch2_shift, ch3_shift, intensity, steps, shift_percent, blur_sigma, model_type, custom_model_id, bounding_boxes_str):
"""Generate image using TKG-DM or fallback demo"""
try:
# Try to use actual TKG-DM pipeline with CPU fallback
device = "cuda" if torch.cuda.is_available() else "cpu"
# Parse bounding boxes from string input
bounding_boxes = parse_bounding_boxes(bounding_boxes_str)
# Initialize pipeline with selected model type and optional custom model ID
model_id = custom_model_id.strip() if custom_model_id.strip() else None
pipeline = TKGDMPipeline(model_id=model_id, model_type=model_type, device=device)
if pipeline.pipe is not None:
# Use actual pipeline with direct latent channel control
channel_shifts = [ch0_shift, ch1_shift, ch2_shift, ch3_shift]
# Generate with TKG-DM using direct channel shifts and user controls
# Apply intensity multiplier to base shift percent
final_shift_percent = shift_percent * intensity
# Use blur sigma (0 means auto-calculate)
blur_sigma_param = None if blur_sigma == 0 else blur_sigma
# Generate with space-aware TKG-DM using bounding boxes
if not bounding_boxes:
# Default to center box if no boxes specified
bounding_boxes = [(0.3, 0.3, 0.7, 0.7)]
image = pipeline(
prompt=prompt,
channel_shifts=channel_shifts,
bounding_boxes=bounding_boxes,
target_shift_percent=final_shift_percent,
blur_sigma=blur_sigma_param,
num_inference_steps=steps,
guidance_scale=7.5
)
return image
else:
raise Exception("Pipeline not available")
except Exception as e:
print(f"Using demo mode due to: {e}")
# Fallback to demo visualization
return create_demo_visualization(prompt, ch0_shift, ch1_shift, ch2_shift, ch3_shift, bounding_boxes)
def create_demo_visualization(prompt, ch0_shift, ch1_shift, ch2_shift, ch3_shift, bounding_boxes=None):
"""Create demo visualization of TKG-DM concept"""
# Create image with background based on channel shifts
# Convert latent channel shifts to approximate RGB for visualization
approx_color = (
max(0, min(255, 128 + int(ch0_shift * 127))), # Luminance -> Red
max(0, min(255, 128 + int(ch1_shift * 127))), # Color1 -> Green
max(0, min(255, 128 + int(ch2_shift * 127))) # Color2 -> Blue
)
img = Image.new('RGB', (512, 512), approx_color)
draw = ImageDraw.Draw(img)
# Draw space-aware bounding boxes
if not bounding_boxes:
# Default to center box if none specified
bounding_boxes = [(0.3, 0.3, 0.7, 0.7)]
for i, (x1, y1, x2, y2) in enumerate(bounding_boxes):
px1, py1 = int(x1 * 512), int(y1 * 512)
px2, py2 = int(x2 * 512), int(y2 * 512)
# Draw bounding box with gradient effect
draw.rectangle([px1, py1, px2, py2], outline='yellow', width=3)
draw.rectangle([px1+2, py1+2, px2-2, py2-2], outline='orange', width=2)
# Add box label
draw.text((px1+5, py1+5), f"Box {i+1}", fill='white')
# Add text
draw.text((10, 10), f"TKG-DM Demo", fill='white')
draw.text((10, 30), f"Prompt: {prompt[:40]}...", fill='white')
draw.text((10, 480), f"Channels: [{ch0_shift:+.2f},{ch1_shift:+.2f},{ch2_shift:+.2f},{ch3_shift:+.2f}]", fill='white')
return img
# Create intuitive interface with step-by-step workflow
with gr.Blocks(title="π¨ SAWNA: Space-Aware Text-to-Image Generation", theme=gr.themes.Default()) as demo:
# Header section with workflow explanation
with gr.Row():
with gr.Column(scale=3):
gr.Markdown("""
# π¨ SAWNA: Space-Aware Text-to-Image Generation
Create professional images with **guaranteed empty spaces** for headlines, logos, and product shots.
Perfect for advertisements, posters, and UI mockups.
""")
with gr.Column(scale=2):
gr.Markdown("""
### π Quick Start:
1. **Describe** your image in the text prompt
2. **Choose** where to keep empty (preset or custom)
3. **Adjust** colors and style (optional)
4. **Generate** with guaranteed reserved regions
""")
with gr.Row():
gr.Markdown("""
---
π‘ **How it works**: SAWNA uses advanced noise manipulation to suppress content generation in your specified regions,
ensuring they remain empty for your design elements while maintaining high quality in other areas.
""")
gr.Markdown("## π― Create Your Space-Aware Image")
# Main workflow section
with gr.Row():
# Left column - Input and controls
with gr.Column(scale=2):
# Step 1: Text Prompt
with gr.Group():
gr.Markdown("## π Step 1: Describe Your Image")
prompt = gr.Textbox(
value="A majestic lion in a natural landscape",
label="Text Prompt",
placeholder="Describe what you want to generate...",
lines=2
)
# Step 2: Reserved Regions
with gr.Group():
gr.Markdown("## π² Step 2: Define Empty Regions")
gr.Markdown("*Choose areas that must stay empty for your design elements*")
# Quick presets
with gr.Row():
preset_dropdown = gr.Dropdown(
choices=[
("None (Default Center)", "center_box"),
("Top Banner", "top_strip"),
("Bottom Banner", "bottom_strip"),
("Side Panels", "left_right"),
("Corner Logos", "corners"),
("Full Frame", "frame")
],
label="π Quick Presets",
value="center_box"
)
# Manual box creation
gr.Markdown("**Or Create Custom Boxes:**")
with gr.Row():
with gr.Column(scale=1):
x1_input = gr.Number(value=0.3, minimum=0.0, maximum=1.0, step=0.01, label="Left (X1)")
x2_input = gr.Number(value=0.7, minimum=0.0, maximum=1.0, step=0.01, label="Right (X2)")
with gr.Column(scale=1):
y1_input = gr.Number(value=0.3, minimum=0.0, maximum=1.0, step=0.01, label="Top (Y1)")
y2_input = gr.Number(value=0.7, minimum=0.0, maximum=1.0, step=0.01, label="Bottom (Y2)")
with gr.Row():
add_box_btn = gr.Button("β Add Region", variant="primary", size="sm")
remove_box_btn = gr.Button("β Remove Last", variant="secondary", size="sm")
clear_btn = gr.Button("ποΈ Clear All", variant="secondary", size="sm")
# Text representation
bounding_boxes_str = gr.Textbox(
value="0.3,0.3,0.7,0.7",
label="π Region Coordinates",
placeholder="x1,y1,x2,y2;x1,y1,x2,y2 (auto-updated)",
lines=2,
info="Coordinates are normalized (0.0 = left/top, 1.0 = right/bottom)"
)
# Step 3: Color and Style Controls
with gr.Group():
gr.Markdown("## π¨ Step 3: Fine-tune Colors")
gr.Markdown("*Adjust the 4 latent channels to control image colors and style*")
with gr.Row():
ch0_shift = gr.Slider(-1.0, 1.0, 0.0, label="π‘ Brightness", info="Overall image brightness")
ch1_shift = gr.Slider(-1.0, 1.0, 1.0, label="π΅ Blue-Red Balance", info="Shift toward blue (+) or red (-)")
with gr.Row():
ch2_shift = gr.Slider(-1.0, 1.0, 1.0, label="π‘ Yellow-Blue Balance", info="Shift toward yellow (+) or dark blue (-)")
ch3_shift = gr.Slider(-1.0, 1.0, 0.0, label="βͺ Contrast", info="Adjust overall contrast")
# Right column - Preview and results
with gr.Column(scale=1):
# Preview section
with gr.Group():
gr.Markdown("## ποΈ Preview: Empty Regions")
bbox_preview = gr.Image(
value=create_canvas_image(),
label="Reserved Regions Visualization",
interactive=False,
type="pil"
)
gr.Markdown("*Yellow boxes show where content will be suppressed*")
# Advanced controls (collapsible)
with gr.Accordion("ποΈ Advanced Generation Settings", open=True):
with gr.Row():
with gr.Column():
gr.Markdown("### Generation Settings")
intensity = gr.Slider(0.5, 3.0, 1.0, label="Effect Intensity", info="How strongly to suppress content in empty regions")
steps = gr.Slider(10, 100, 25, label="Quality Steps", info="More steps = higher quality, slower generation")
gr.Markdown("### TKG-DM Technical Controls")
shift_percent = gr.Slider(0.01, 0.15, 0.07, step=0.005, label="π― Shift Percent", info="Base shift percentage for noise optimization (Β±7% default)")
blur_sigma = gr.Slider(0.0, 5.0, 0.0, step=0.1, label="π«οΈ Blur Sigma", info="Gaussian blur for soft transitions (0 = auto)")
with gr.Column():
gr.Markdown("### Model Selection")
model_type = gr.Dropdown(
["sd1.5", "sdxl", "sd2.1"],
value="sd1.5",
label="Model Architecture",
info="SDXL for highest quality, SD1.5 for speed"
)
custom_model_id = gr.Textbox(
"",
label="Custom Model (Optional)",
placeholder="e.g., dreamlike-art/dreamlike-diffusion-1.0",
info="Use any Hugging Face Stable Diffusion model"
)
# Generation section
with gr.Row():
with gr.Column(scale=1):
generate_btn = gr.Button(
"π¨ Generate Space-Aware Image",
variant="primary",
size="lg",
elem_id="generate-btn"
)
gr.Markdown("*Click to create your image with guaranteed empty regions*")
with gr.Column(scale=3):
output_image = gr.Image(
label="β¨ Generated Image",
type="pil",
height=500,
elem_id="output-image"
)
# Examples section
with gr.Accordion("π Example Prompts & Layouts", open=False):
gr.Markdown("""
### Try these professional design scenarios:
Click any example to load it automatically and see how SAWNA handles different layout requirements.
""")
gr.Examples(
examples=[
[
"A majestic lion in African savanna",
0.2, 0.3, 0.0, 0.0, 1.0, 25, 0.07, 0.0, "sd1.5", "",
"0.3,0.3,0.7,0.7"
],
[
"Modern cityscape with skyscrapers at sunset",
-0.1, -0.3, 0.2, 0.1, 1.2, 30, 0.08, 0.0, "sdxl", "",
"0.0,0.0,1.0,0.3"
],
[
"Vintage luxury car on mountain road",
0.1, 0.2, -0.1, -0.2, 0.9, 25, 0.06, 0.0, "sd1.5", "",
"0.0,0.7,1.0,1.0"
],
[
"Space astronaut floating in nebula",
0.0, 0.4, -0.2, 0.3, 1.1, 35, 0.09, 1.8, "sd2.1", "",
"0.0,0.2,0.3,0.8;0.7,0.2,1.0,0.8"
],
[
"Product photography: premium watch (fine-tuned)",
0.2, 0.0, 0.1, -0.1, 1.3, 40, 0.12, 2.5, "sdxl", "",
"0.0,0.0,1.0,0.2;0.0,0.8,1.0,1.0;0.0,0.2,0.2,0.8;0.8,0.2,1.0,0.8"
]
],
inputs=[prompt, ch0_shift, ch1_shift, ch2_shift, ch3_shift,
intensity, steps, shift_percent, blur_sigma, model_type, custom_model_id, bounding_boxes_str],
label="Professional Use Cases"
)
# Add custom CSS for better styling
demo.load(fn=None, js="""
function() {
// Add custom styling
const style = document.createElement('style');
style.textContent = `
.gradio-container {
max-width: 1400px !important;
margin: auto;
}
#generate-btn {
background: linear-gradient(45deg, #7c3aed, #a855f7) !important;
border: none !important;
font-weight: bold !important;
padding: 15px 30px !important;
font-size: 16px !important;
}
#output-image {
border-radius: 12px !important;
box-shadow: 0 8px 32px rgba(0,0,0,0.1) !important;
}
.gr-group {
border-radius: 12px !important;
border: 1px solid #e5e7eb !important;
padding: 20px !important;
margin-bottom: 20px !important;
}
.gr-accordion {
border-radius: 8px !important;
border: 1px solid #d1d5db !important;
}
`;
document.head.appendChild(style);
return [];
}
""")
# Event handlers
def generate_wrapper(*args):
return generate_tkg_dm_image(*args)
def clear_boxes_handler():
"""Clear boxes and update preview"""
return "", create_canvas_image()
def update_preview_from_text(bbox_str):
"""Update preview image from text input"""
return sync_text_to_canvas(bbox_str)
def add_box_handler(bbox_str, x1, y1, x2, y2):
"""Add a new box and update preview"""
updated_str, preview_img = add_bounding_box(bbox_str, x1, y1, x2, y2)
return updated_str, preview_img
def remove_box_handler(bbox_str):
"""Remove last box and update preview"""
return remove_last_box(bbox_str)
def load_preset_handler(preset_name):
"""Load preset boxes and update preview"""
if preset_name and preset_name != "center_box": # Don't reload default
preset_str = load_preset_boxes(preset_name)
return preset_str, sync_text_to_canvas(preset_str)
elif preset_name == "center_box":
preset_str = "0.3,0.3,0.7,0.7"
return preset_str, sync_text_to_canvas(preset_str)
return "", create_canvas_image()
# Preset dropdown
preset_dropdown.change(
fn=load_preset_handler,
inputs=[preset_dropdown],
outputs=[bounding_boxes_str, bbox_preview]
)
# Add box button
add_box_btn.click(
fn=add_box_handler,
inputs=[bounding_boxes_str, x1_input, y1_input, x2_input, y2_input],
outputs=[bounding_boxes_str, bbox_preview]
)
# Remove last box button
remove_box_btn.click(
fn=remove_box_handler,
inputs=[bounding_boxes_str],
outputs=[bounding_boxes_str, bbox_preview]
)
# Clear all boxes button
clear_btn.click(
fn=clear_boxes_handler,
outputs=[bounding_boxes_str, bbox_preview]
)
# Sync text to preview canvas
bounding_boxes_str.change(
fn=update_preview_from_text,
inputs=[bounding_boxes_str],
outputs=[bbox_preview]
)
# Generate button
generate_btn.click(
fn=generate_wrapper,
inputs=[prompt, ch0_shift, ch1_shift, ch2_shift, ch3_shift,
intensity, steps, shift_percent, blur_sigma, model_type, custom_model_id, bounding_boxes_str],
outputs=[output_image]
)
if __name__ == "__main__":
demo.launch(share=True)
|