Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (2025) Bytedance Ltd. and/or its affiliates | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import argparse | |
| import numpy as np | |
| import os | |
| import torch | |
| from extern.video_depth_anything.video_depth import VideoDepthAnything | |
| class VDADemo: | |
| def __init__( | |
| self, | |
| pre_train_path: str, | |
| encoder: str = "vitl", | |
| device: str = "cuda:0", | |
| ): | |
| model_configs = { | |
| 'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, | |
| 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, | |
| } | |
| self.video_depth_anything = VideoDepthAnything(**model_configs[encoder]) | |
| self.video_depth_anything.load_state_dict(torch.load(pre_train_path, map_location='cpu'), strict=True) | |
| self.video_depth_anything = self.video_depth_anything.to(device).eval() | |
| self.device = device | |
| def infer( | |
| self, | |
| frames, | |
| near, | |
| far, | |
| input_size = 518, | |
| target_fps = -1, | |
| ): | |
| if frames.max() < 2.: | |
| frames = frames*255. | |
| with torch.inference_mode(): | |
| depths, fps = self.video_depth_anything.infer_video_depth(frames, target_fps, input_size, self.device) | |
| depths = torch.from_numpy(depths).unsqueeze(1) # 49 576 1024 -> | |
| depths[depths < 1e-5] = 1e-5 | |
| depths = 10000. / depths | |
| depths = depths.clip(near, far) | |
| return depths | |