# build_index.py import os import json import pickle import faiss import numpy as np from embeddings import get_embedding DOCS_FILE = "data/documents.json" with open(DOCS_FILE, "r") as f: docs = json.load(f) # Compute embeddings embs = [get_embedding(d["section"]) for d in docs] # Create FAISS index dim = len(embs[0]) index = faiss.IndexFlatL2(dim) index.add(np.array(embs).astype("float32")) # Save outputs for the Space runtime faiss.write_index(index, "data/index.faiss") with open("data/docs.pkl", "wb") as f: pickle.dump(docs, f) print("✅ Index and docs saved to data/")