Spaces:
Sleeping
Sleeping
File size: 14,840 Bytes
a4e4968 a54a192 a4e4968 a54a192 df128f2 6ad1309 087fd05 3abb76d a54a192 f0e6e15 6ad1309 f0e6e15 a4e4968 f0e6e15 a54a192 f0e6e15 3c568b2 f0e6e15 6ad1309 17d162a 6ad1309 17d162a 05abb73 17d162a 05abb73 6ad1309 3c568b2 3abb76d 3c568b2 3abb76d 9d4caaa 3abb76d 3c568b2 3abb76d 3c568b2 3abb76d 9d4caaa 3abb76d 3c568b2 3abb76d 3c568b2 3abb76d 9d4caaa 3abb76d 087fd05 9d4caaa 087fd05 3c568b2 087fd05 9d4caaa 087fd05 9d4caaa 087fd05 3c568b2 3abb76d 3c568b2 9d4caaa 087fd05 9d4caaa 087fd05 3c568b2 087fd05 3abb76d 087fd05 9d4caaa 087fd05 9d4caaa 087fd05 9d4caaa 087fd05 3c568b2 3abb76d 3c568b2 9d4caaa 087fd05 f0e6e15 3c568b2 f0e6e15 17d162a 087fd05 17d162a 087fd05 6ad1309 f0e6e15 6ad1309 087fd05 a54a192 087fd05 a54a192 6ad1309 a54a192 3c568b2 3abb76d a54a192 3abb76d 087fd05 3abb76d 3c568b2 3abb76d 02a1875 087fd05 3c568b2 087fd05 3abb76d 087fd05 3abb76d 087fd05 9d4caaa 087fd05 05abb73 087fd05 17d162a 087fd05 6ad1309 087fd05 6ad1309 087fd05 6ad1309 087fd05 6ad1309 17d162a a54a192 6ad1309 a54a192 6ad1309 087fd05 a54a192 17d162a 087fd05 17d162a a54a192 02a1875 f0e6e15 a4e4968 02a1875 6ad1309 5c38751 6ad1309 5c38751 6ad1309 5c38751 f0e6e15 a54a192 f0e6e15 3c568b2 a4e4968 f0e6e15 17d162a f0e6e15 05abb73 f0e6e15 a54a192 f0e6e15 17d162a f0e6e15 a4e4968 a54a192 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
import gradio as gr
import os
import tempfile
import zipfile
import shutil
import base64
import json
import re
import concurrent.futures
import time
import random
from pdf2image import convert_from_path
from PIL import Image
from dotenv import load_dotenv
# PPTX 處理套件
from pptx import Presentation
from pptx.util import Inches, Pt
from pptx.dml.color import RGBColor
# 使用 Google 新版 SDK
from google import genai
from google.genai import types
load_dotenv()
class NotebookLMTool:
def __init__(self):
self.api_key = os.getenv("GEMINI_API_KEY")
# 移除全域 client,改為動態建立以確保執行緒安全
def set_key(self, user_key):
if user_key and user_key.strip():
self.api_key = user_key.strip()
return "✅ API Key 已更新!"
return "⚠️ Key 無效"
def _extract_json(self, text):
"""強化版 JSON 提取"""
try:
match = re.search(r"```json\s*(.*)\s*```", text, re.DOTALL)
if match: return json.loads(match.group(1))
match = re.search(r"\[\s*\{.*\}\s*\]", text, re.DOTALL)
if match: return json.loads(match.group(0))
return json.loads(text)
except:
return []
def _create_client(self):
"""為每個執行緒建立獨立的 Client"""
if not self.api_key:
raise ValueError("API Key 未設定")
return genai.Client(api_key=self.api_key)
def _call_gemini_with_retry(self, client, model_name, contents, config=None, retries=5):
"""
封裝 Gemini 呼叫,加入指數退避重試機制
"""
delay = 5 # 初始等待秒數
for attempt in range(retries):
try:
response = client.models.generate_content(
model=model_name,
contents=contents,
config=config
)
return response
except Exception as e:
error_str = str(e)
# 檢查是否為 Rate Limit 相關錯誤
if "429" in error_str or "RESOURCE_EXHAUSTED" in error_str or "503" in error_str:
wait_time = delay + random.uniform(0, 3)
print(f"⚠️ API 忙碌 (Attempt {attempt+1}/{retries}),休息 {wait_time:.1f} 秒...", flush=True)
time.sleep(wait_time)
delay *= 1.5
else:
raise e
raise Exception("API 重試多次失敗,請檢查配額。")
# --- 單頁處理邏輯 ---
def process_single_page(self, page_index, img, img_output_dir):
"""處理單一頁面的:去字(背景) + 文字分析(Layout)"""
print(f"🚀 [Page {page_index+1}] 啟動處理...", flush=True)
# 關鍵修改:在此處建立獨立的 Client,避免執行緒衝突
try:
local_client = self._create_client()
except Exception as e:
print(f"❌ [Page {page_index+1}] Client Init Error: {e}")
return None
result = {
"index": page_index,
"bg_path": None,
"blocks": [],
"log": "",
"preview": None,
"tokens_in": 0,
"tokens_out": 0
}
save_name = f"slide_{page_index+1:02d}.png"
final_bg_path = os.path.join(img_output_dir, save_name)
bg_success = False
# ==========================================
# 1. 背景去字 (Image Cleaning)
# ==========================================
try:
clean_prompt = """
Strictly remove all text, titles, text-boxes, and bullet points from this slide image.
CRITICAL INSTRUCTION:
1. Preserve the original background pattern, colors, logos, and non-text graphics EXACTLY as they are.
2. Do NOT add any new objects, decorations, or hallucinations.
3. Output ONLY the image.
"""
# 使用 gemini-2.5-flash-image (支援繪圖)
resp_img = self._call_gemini_with_retry(
client=local_client,
model_name="gemini-2.5-flash-image",
contents=[clean_prompt, img],
config=types.GenerateContentConfig(response_modalities=["IMAGE"])
)
# Token 統計
if resp_img.usage_metadata:
result["tokens_in"] += resp_img.usage_metadata.prompt_token_count
result["tokens_out"] += resp_img.usage_metadata.candidates_token_count
# 存圖邏輯
image_data = None
if hasattr(resp_img, 'parts') and resp_img.parts:
for part in resp_img.parts:
if part.inline_data: image_data = part.inline_data.data; break
if image_data is None and hasattr(resp_img, 'bytes') and resp_img.bytes:
image_data = resp_img.bytes
if image_data:
if isinstance(image_data, str): image_data = base64.b64decode(image_data)
with open(final_bg_path, "wb") as f: f.write(image_data)
bg_success = True
result["bg_path"] = final_bg_path
result["preview"] = (final_bg_path, f"Page {page_index+1} Cleaned")
else:
print(f"⚠️ [Page {page_index+1}] 去字失敗: 模型未回傳圖片", flush=True)
except Exception as e:
print(f"❌ [Page {page_index+1}] Clean Error: {e}", flush=True)
# 失敗回退原圖
if not bg_success:
img.save(final_bg_path)
result["bg_path"] = final_bg_path
result["preview"] = (final_bg_path, f"Page {page_index+1} (Original)")
result["log"] += f"[P{page_index+1}] Warning: Background cleaning failed. Used original image.\n"
# ==========================================
# 2. 文字與佈局分析 (Layout Analysis)
# ==========================================
try:
layout_prompt = """
Analyze this slide. Return a JSON list of all text blocks.
Each item: {"text": string, "box_2d": [ymin, xmin, ymax, xmax] (0-1000), "font_size": int, "color": hex, "is_bold": bool}
"""
# 使用一般的 flash 模型做文字分析
resp_layout = self._call_gemini_with_retry(
client=local_client,
model_name="gemini-2.5-flash",
contents=[layout_prompt, img],
config=types.GenerateContentConfig(response_mime_type="application/json")
)
if resp_layout.usage_metadata:
result["tokens_in"] += resp_layout.usage_metadata.prompt_token_count
result["tokens_out"] += resp_layout.usage_metadata.candidates_token_count
blocks = self._extract_json(resp_layout.text)
result["blocks"] = blocks
except Exception as e:
print(f"❌ [Page {page_index+1}] Layout Error: {e}", flush=True)
result["log"] += f"[P{page_index+1}] Layout Analysis Failed.\n"
print(f"✅ [Page {page_index+1}] 完成!", flush=True)
return result
def process_pdf(self, pdf_file, progress=gr.Progress()):
if not self.api_key:
raise ValueError("請先輸入 Google API Key!")
if pdf_file is None:
return None, None, None, ""
# 統計數據
total_input_tokens = 0
total_output_tokens = 0
full_text_log = ""
gallery_preview = []
# 1. 準備環境
temp_dir = tempfile.mkdtemp()
img_output_dir = os.path.join(temp_dir, "cleaned_images")
os.makedirs(img_output_dir, exist_ok=True)
# 初始化 PPTX
prs = Presentation()
prs.slide_width = Inches(16)
prs.slide_height = Inches(9)
# 2. PDF 轉圖片 (降低 DPI 加速)
progress(0.1, desc="正在將 PDF 轉為圖片 (DPI=150)...")
try:
images = convert_from_path(pdf_file, dpi=150)
except Exception as e:
raise ValueError(f"PDF 轉換失敗: {str(e)}")
# 3. 平行處理 (Parallel Execution)
max_workers = 2
results_map = {}
progress(0.2, desc="🚀 AI 處理中 (已啟用速率保護)...")
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
future_to_page = {}
for i, img in enumerate(images):
time.sleep(1.5) # 錯開請求
future = executor.submit(self.process_single_page, i, img, img_output_dir)
future_to_page[future] = i
for future in concurrent.futures.as_completed(future_to_page):
try:
res = future.result()
if res:
results_map[res["index"]] = res
total_input_tokens += res["tokens_in"]
total_output_tokens += res["tokens_out"]
except Exception as exc:
print(f"Page processing generated an exception: {exc}")
# 4. 依序組裝 PPTX
progress(0.8, desc="正在組裝 PPTX...")
cleaned_images_paths = []
for i in range(len(images)):
if i not in results_map: continue
res = results_map[i]
full_text_log += res["log"]
if res["preview"]: gallery_preview.append(res["preview"])
if res["bg_path"]: cleaned_images_paths.append(res["bg_path"])
slide = prs.slides.add_slide(prs.slide_layouts[6])
# A. 貼背景
if res["bg_path"] and os.path.exists(res["bg_path"]):
try:
slide.shapes.add_picture(res["bg_path"], 0, 0, width=prs.slide_width, height=prs.slide_height)
except: pass
# B. 貼文字
for block in res["blocks"]:
text_content = block.get("text", "")
if not text_content: continue
box = block.get("box_2d", [0, 0, 100, 100])
ymin, xmin, ymax, xmax = box
left = Inches((xmin / 1000) * 16)
top = Inches((ymin / 1000) * 9)
width = Inches(((xmax - xmin) / 1000) * 16)
height = Inches(((ymax - ymin) / 1000) * 9)
textbox = slide.shapes.add_textbox(left, top, width, height)
tf = textbox.text_frame
tf.word_wrap = True
p = tf.paragraphs[0]
p.text = text_content
try: p.font.size = Pt(int(block.get("font_size", 18)))
except: p.font.size = Pt(18)
p.font.bold = block.get("is_bold", False)
try:
hex_c = block.get("color", "#000000").replace("#", "")
p.font.color.rgb = RGBColor.from_string(hex_c)
except: pass
# 5. 打包
progress(0.9, desc="正在打包檔案...")
pptx_path = os.path.join(temp_dir, "restored_presentation.pptx")
prs.save(pptx_path)
txt_path = os.path.join(temp_dir, "content_log.txt")
with open(txt_path, "w", encoding="utf-8") as f: f.write(full_text_log)
zip_path = os.path.join(temp_dir, "notebooklm_restore_pack.zip")
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zf:
zf.write(pptx_path, "restored_slides.pptx")
zf.write(txt_path, "content_log.txt")
for img_path in cleaned_images_paths:
zf.write(img_path, os.path.join("cleaned_backgrounds", os.path.basename(img_path)))
token_stats = f"""
### 📊 Token 用量統計
- **總輸入:** {total_input_tokens:,}
- **總輸出:** {total_output_tokens:,}
- **總計消耗:** {total_input_tokens + total_output_tokens:,}
"""
return zip_path, pptx_path, gallery_preview, token_stats
# Init
tool = NotebookLMTool()
# --- Gradio UI ---
with gr.Blocks(title="NotebookLM Slide Restorer,PPT.404", theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🛠️ NotebookLM 投影片 PDF 還原神器 (PPT.404)")
gr.Markdown("""
<div align="center">
# 🪄 上傳 PDF,AI 自動:**去字背景** + **版面分析** + **合成可編輯 PPTX**
👉 歡迎 Star [GitHub](https://github.com/Deep-Learning-101/) ⭐ 覺得不錯 👈
<h3>🧠 補腦專區:<a href="https://deep-learning-101.github.io/" target="_blank">Deep Learning 101</a></h3>
| 🔥 技術傳送門 (Tech Stack) | 📚 必讀心法 (Must Read) |
| :--- | :--- |
| 🤖 [**大語言模型 (LLM)**](https://deep-learning-101.github.io/Large-Language-Model) | 🏹 [**策略篇:企業入門策略**](https://deep-learning-101.github.io/Blog/AIBeginner) |
| 📝 [**自然語言處理 (NLP)**](https://deep-learning-101.github.io/Natural-Language-Processing) | 📊 [**評測篇:臺灣 LLM 分析**](https://deep-learning-101.github.io/Blog/TW-LLM-Benchmark) |
| 👁️ [**電腦視覺 (CV)**](https://deep-learning-101.github.io//Computer-Vision) | 🛠️ [**實戰篇:打造高精準 RAG**](https://deep-learning-101.github.io/RAG) |
| 🎤 [**語音處理 (Speech)**](https://deep-learning-101.github.io/Speech-Processing) | 🕳️ [**避坑篇:AI Agent 開發陷阱**](https://deep-learning-101.github.io/agent) |
</div>
""")
with gr.Row():
with gr.Column():
api_input = gr.Textbox(label="Google API Key", type="password", placeholder="貼上你的 Gemini API Key")
btn_set_key = gr.Button("設定 Key")
status_msg = gr.Markdown("")
gr.Markdown("---")
pdf_input = gr.File(label="上傳 PDF")
btn_process = gr.Button("🚀 開始還原 PPTX (穩定版)", variant="primary")
with gr.Column():
out_zip = gr.File(label="📦 下載完整包")
out_pptx = gr.File(label="📊 直接下載 PPTX")
out_tokens = gr.Markdown("### 📊 等待處理...")
gr.Markdown("### 🖼️ 背景去字效果預覽")
out_gallery = gr.Gallery(columns=4)
btn_set_key.click(tool.set_key, inputs=api_input, outputs=status_msg)
btn_process.click(
tool.process_pdf,
inputs=[pdf_input],
outputs=[out_zip, out_pptx, out_gallery, out_tokens]
)
if __name__ == "__main__":
demo.launch() |