File size: 14,840 Bytes
a4e4968
a54a192
a4e4968
a54a192
 
df128f2
6ad1309
 
087fd05
 
3abb76d
a54a192
 
f0e6e15
 
6ad1309
 
 
 
 
f0e6e15
 
 
a4e4968
 
 
f0e6e15
a54a192
f0e6e15
3c568b2
f0e6e15
 
 
 
 
 
 
6ad1309
17d162a
6ad1309
 
17d162a
05abb73
17d162a
05abb73
6ad1309
 
 
3c568b2
 
 
 
 
 
 
3abb76d
3c568b2
3abb76d
9d4caaa
3abb76d
 
 
3c568b2
3abb76d
 
 
 
 
 
 
3c568b2
3abb76d
9d4caaa
 
3abb76d
3c568b2
3abb76d
3c568b2
3abb76d
9d4caaa
3abb76d
 
087fd05
 
9d4caaa
087fd05
3c568b2
 
 
 
 
 
 
087fd05
 
 
 
 
 
 
 
 
 
 
 
 
 
9d4caaa
087fd05
9d4caaa
087fd05
 
 
 
 
 
 
 
 
3c568b2
3abb76d
3c568b2
9d4caaa
087fd05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d4caaa
087fd05
 
 
 
3c568b2
087fd05
 
3abb76d
087fd05
9d4caaa
087fd05
9d4caaa
087fd05
9d4caaa
087fd05
 
 
 
 
 
3c568b2
3abb76d
3c568b2
9d4caaa
087fd05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0e6e15
3c568b2
f0e6e15
 
 
17d162a
 
087fd05
17d162a
 
087fd05
 
 
6ad1309
f0e6e15
 
 
 
6ad1309
 
 
 
 
087fd05
 
a54a192
087fd05
a54a192
6ad1309
a54a192
3c568b2
3abb76d
 
a54a192
3abb76d
087fd05
 
3abb76d
 
3c568b2
3abb76d
 
02a1875
087fd05
 
 
3c568b2
 
 
 
087fd05
 
 
3abb76d
087fd05
 
3abb76d
087fd05
 
9d4caaa
087fd05
 
 
 
 
 
 
 
 
 
05abb73
087fd05
17d162a
087fd05
 
 
 
 
6ad1309
087fd05
 
 
 
 
 
6ad1309
087fd05
 
 
 
 
6ad1309
087fd05
 
 
 
 
 
 
 
 
6ad1309
 
 
 
 
17d162a
a54a192
6ad1309
a54a192
6ad1309
 
087fd05
 
a54a192
17d162a
 
087fd05
 
17d162a
 
 
 
a54a192
02a1875
f0e6e15
a4e4968
02a1875
6ad1309
 
5c38751
 
 
6ad1309
5c38751
6ad1309
5c38751
 
 
 
 
 
 
 
 
 
 
f0e6e15
 
 
 
 
a54a192
f0e6e15
 
3c568b2
a4e4968
f0e6e15
17d162a
 
 
f0e6e15
05abb73
f0e6e15
a54a192
f0e6e15
 
 
 
 
17d162a
f0e6e15
a4e4968
 
a54a192
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import gradio as gr
import os
import tempfile
import zipfile
import shutil
import base64
import json
import re
import concurrent.futures
import time
import random
from pdf2image import convert_from_path
from PIL import Image
from dotenv import load_dotenv

# PPTX 處理套件
from pptx import Presentation
from pptx.util import Inches, Pt
from pptx.dml.color import RGBColor

# 使用 Google 新版 SDK
from google import genai
from google.genai import types

load_dotenv()

class NotebookLMTool:
    def __init__(self):
        self.api_key = os.getenv("GEMINI_API_KEY")
        # 移除全域 client,改為動態建立以確保執行緒安全

    def set_key(self, user_key):
        if user_key and user_key.strip():
            self.api_key = user_key.strip()
            return "✅ API Key 已更新!"
        return "⚠️ Key 無效"

    def _extract_json(self, text):
        """強化版 JSON 提取"""
        try:
            match = re.search(r"```json\s*(.*)\s*```", text, re.DOTALL)
            if match: return json.loads(match.group(1))
            match = re.search(r"\[\s*\{.*\}\s*\]", text, re.DOTALL)
            if match: return json.loads(match.group(0))
            return json.loads(text)
        except:
            return []

    def _create_client(self):
        """為每個執行緒建立獨立的 Client"""
        if not self.api_key:
            raise ValueError("API Key 未設定")
        return genai.Client(api_key=self.api_key)

    def _call_gemini_with_retry(self, client, model_name, contents, config=None, retries=5):
        """
        封裝 Gemini 呼叫,加入指數退避重試機制
        """
        delay = 5 # 初始等待秒數
        
        for attempt in range(retries):
            try:
                response = client.models.generate_content(
                    model=model_name,
                    contents=contents,
                    config=config
                )
                return response
            except Exception as e:
                error_str = str(e)
                # 檢查是否為 Rate Limit 相關錯誤
                if "429" in error_str or "RESOURCE_EXHAUSTED" in error_str or "503" in error_str:
                    wait_time = delay + random.uniform(0, 3) 
                    print(f"⚠️ API 忙碌 (Attempt {attempt+1}/{retries}),休息 {wait_time:.1f} 秒...", flush=True)
                    time.sleep(wait_time)
                    delay *= 1.5 
                else:
                    raise e 
        
        raise Exception("API 重試多次失敗,請檢查配額。")

    # --- 單頁處理邏輯 ---
    def process_single_page(self, page_index, img, img_output_dir):
        """處理單一頁面的:去字(背景) + 文字分析(Layout)"""
        print(f"🚀 [Page {page_index+1}] 啟動處理...", flush=True)
        
        # 關鍵修改:在此處建立獨立的 Client,避免執行緒衝突
        try:
            local_client = self._create_client()
        except Exception as e:
            print(f"❌ [Page {page_index+1}] Client Init Error: {e}")
            return None

        result = {
            "index": page_index,
            "bg_path": None,
            "blocks": [],
            "log": "",
            "preview": None,
            "tokens_in": 0,
            "tokens_out": 0
        }

        save_name = f"slide_{page_index+1:02d}.png"
        final_bg_path = os.path.join(img_output_dir, save_name)
        bg_success = False

        # ==========================================
        # 1. 背景去字 (Image Cleaning)
        # ==========================================
        try:
            clean_prompt = """
            Strictly remove all text, titles, text-boxes, and bullet points from this slide image.
            CRITICAL INSTRUCTION:
            1. Preserve the original background pattern, colors, logos, and non-text graphics EXACTLY as they are.
            2. Do NOT add any new objects, decorations, or hallucinations.
            3. Output ONLY the image.
            """
            
            # 使用 gemini-2.5-flash-image (支援繪圖)
            resp_img = self._call_gemini_with_retry(
                client=local_client,
                model_name="gemini-2.5-flash-image", 
                contents=[clean_prompt, img],
                config=types.GenerateContentConfig(response_modalities=["IMAGE"])
            )

            # Token 統計
            if resp_img.usage_metadata:
                result["tokens_in"] += resp_img.usage_metadata.prompt_token_count
                result["tokens_out"] += resp_img.usage_metadata.candidates_token_count

            # 存圖邏輯
            image_data = None
            if hasattr(resp_img, 'parts') and resp_img.parts:
                for part in resp_img.parts:
                    if part.inline_data: image_data = part.inline_data.data; break
            if image_data is None and hasattr(resp_img, 'bytes') and resp_img.bytes:
                image_data = resp_img.bytes

            if image_data:
                if isinstance(image_data, str): image_data = base64.b64decode(image_data)
                with open(final_bg_path, "wb") as f: f.write(image_data)
                bg_success = True
                result["bg_path"] = final_bg_path
                result["preview"] = (final_bg_path, f"Page {page_index+1} Cleaned")
            else:
                print(f"⚠️ [Page {page_index+1}] 去字失敗: 模型未回傳圖片", flush=True)

        except Exception as e:
            print(f"❌ [Page {page_index+1}] Clean Error: {e}", flush=True)

        # 失敗回退原圖
        if not bg_success:
            img.save(final_bg_path)
            result["bg_path"] = final_bg_path 
            result["preview"] = (final_bg_path, f"Page {page_index+1} (Original)")
            result["log"] += f"[P{page_index+1}] Warning: Background cleaning failed. Used original image.\n"

        # ==========================================
        # 2. 文字與佈局分析 (Layout Analysis)
        # ==========================================
        try:
            layout_prompt = """
            Analyze this slide. Return a JSON list of all text blocks.
            Each item: {"text": string, "box_2d": [ymin, xmin, ymax, xmax] (0-1000), "font_size": int, "color": hex, "is_bold": bool}
            """
            
            # 使用一般的 flash 模型做文字分析
            resp_layout = self._call_gemini_with_retry(
                client=local_client,
                model_name="gemini-2.5-flash", 
                contents=[layout_prompt, img],
                config=types.GenerateContentConfig(response_mime_type="application/json")
            )

            if resp_layout.usage_metadata:
                result["tokens_in"] += resp_layout.usage_metadata.prompt_token_count
                result["tokens_out"] += resp_layout.usage_metadata.candidates_token_count

            blocks = self._extract_json(resp_layout.text)
            result["blocks"] = blocks
            
        except Exception as e:
            print(f"❌ [Page {page_index+1}] Layout Error: {e}", flush=True)
            result["log"] += f"[P{page_index+1}] Layout Analysis Failed.\n"

        print(f"✅ [Page {page_index+1}] 完成!", flush=True)
        return result

    def process_pdf(self, pdf_file, progress=gr.Progress()):
        if not self.api_key:
            raise ValueError("請先輸入 Google API Key!")
        
        if pdf_file is None:
            return None, None, None, ""

        # 統計數據
        total_input_tokens = 0
        total_output_tokens = 0
        full_text_log = ""
        gallery_preview = []
        
        # 1. 準備環境
        temp_dir = tempfile.mkdtemp()
        img_output_dir = os.path.join(temp_dir, "cleaned_images")
        os.makedirs(img_output_dir, exist_ok=True)
        
        # 初始化 PPTX
        prs = Presentation()
        prs.slide_width = Inches(16)
        prs.slide_height = Inches(9)

        # 2. PDF 轉圖片 (降低 DPI 加速)
        progress(0.1, desc="正在將 PDF 轉為圖片 (DPI=150)...")
        try:
            images = convert_from_path(pdf_file, dpi=150) 
        except Exception as e:
            raise ValueError(f"PDF 轉換失敗: {str(e)}")

        # 3. 平行處理 (Parallel Execution)
        max_workers = 2 
        results_map = {} 

        progress(0.2, desc="🚀 AI 處理中 (已啟用速率保護)...")
        
        with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
            future_to_page = {}
            for i, img in enumerate(images):
                time.sleep(1.5) # 錯開請求
                future = executor.submit(self.process_single_page, i, img, img_output_dir)
                future_to_page[future] = i
            
            for future in concurrent.futures.as_completed(future_to_page):
                try:
                    res = future.result()
                    if res:
                        results_map[res["index"]] = res
                        total_input_tokens += res["tokens_in"]
                        total_output_tokens += res["tokens_out"]
                except Exception as exc:
                    print(f"Page processing generated an exception: {exc}")

        # 4. 依序組裝 PPTX
        progress(0.8, desc="正在組裝 PPTX...")
        
        cleaned_images_paths = [] 
        
        for i in range(len(images)):
            if i not in results_map: continue
            res = results_map[i]
            
            full_text_log += res["log"]
            if res["preview"]: gallery_preview.append(res["preview"])
            if res["bg_path"]: cleaned_images_paths.append(res["bg_path"])

            slide = prs.slides.add_slide(prs.slide_layouts[6])
            
            # A. 貼背景
            if res["bg_path"] and os.path.exists(res["bg_path"]):
                try:
                    slide.shapes.add_picture(res["bg_path"], 0, 0, width=prs.slide_width, height=prs.slide_height)
                except: pass
            
            # B. 貼文字
            for block in res["blocks"]:
                text_content = block.get("text", "")
                if not text_content: continue
                
                box = block.get("box_2d", [0, 0, 100, 100])
                ymin, xmin, ymax, xmax = box
                left = Inches((xmin / 1000) * 16)
                top = Inches((ymin / 1000) * 9)
                width = Inches(((xmax - xmin) / 1000) * 16)
                height = Inches(((ymax - ymin) / 1000) * 9)
                
                textbox = slide.shapes.add_textbox(left, top, width, height)
                tf = textbox.text_frame
                tf.word_wrap = True
                p = tf.paragraphs[0]
                p.text = text_content
                
                try: p.font.size = Pt(int(block.get("font_size", 18)))
                except: p.font.size = Pt(18)
                p.font.bold = block.get("is_bold", False)
                try:
                    hex_c = block.get("color", "#000000").replace("#", "")
                    p.font.color.rgb = RGBColor.from_string(hex_c)
                except: pass

        # 5. 打包
        progress(0.9, desc="正在打包檔案...")
        pptx_path = os.path.join(temp_dir, "restored_presentation.pptx")
        prs.save(pptx_path)

        txt_path = os.path.join(temp_dir, "content_log.txt")
        with open(txt_path, "w", encoding="utf-8") as f: f.write(full_text_log)

        zip_path = os.path.join(temp_dir, "notebooklm_restore_pack.zip")
        with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zf:
            zf.write(pptx_path, "restored_slides.pptx")
            zf.write(txt_path, "content_log.txt")
            for img_path in cleaned_images_paths:
                zf.write(img_path, os.path.join("cleaned_backgrounds", os.path.basename(img_path)))

        token_stats = f"""
        ### 📊 Token 用量統計
        - **總輸入:** {total_input_tokens:,}
        - **總輸出:** {total_output_tokens:,}
        - **總計消耗:** {total_input_tokens + total_output_tokens:,}
        """

        return zip_path, pptx_path, gallery_preview, token_stats

# Init
tool = NotebookLMTool()

# --- Gradio UI ---
with gr.Blocks(title="NotebookLM Slide Restorer,PPT.404", theme=gr.themes.Soft()) as demo:
    gr.Markdown("# 🛠️ NotebookLM 投影片 PDF 還原神器 (PPT.404)")
    gr.Markdown("""
    <div align="center">
    
    # 🪄 上傳 PDF,AI 自動:**去字背景** + **版面分析** + **合成可編輯 PPTX**
    👉 歡迎 Star [GitHub](https://github.com/Deep-Learning-101/) ⭐ 覺得不錯 👈  
    
    <h3>🧠 補腦專區:<a href="https://deep-learning-101.github.io/" target="_blank">Deep Learning 101</a></h3>  
    
    | 🔥 技術傳送門 (Tech Stack) | 📚 必讀心法 (Must Read) |
    | :--- | :--- |
    | 🤖 [**大語言模型 (LLM)**](https://deep-learning-101.github.io/Large-Language-Model) | 🏹 [**策略篇:企業入門策略**](https://deep-learning-101.github.io/Blog/AIBeginner) |
    | 📝 [**自然語言處理 (NLP)**](https://deep-learning-101.github.io/Natural-Language-Processing) | 📊 [**評測篇:臺灣 LLM 分析**](https://deep-learning-101.github.io/Blog/TW-LLM-Benchmark) |
    | 👁️ [**電腦視覺 (CV)**](https://deep-learning-101.github.io//Computer-Vision) | 🛠️ [**實戰篇:打造高精準 RAG**](https://deep-learning-101.github.io/RAG) |
    | 🎤 [**語音處理 (Speech)**](https://deep-learning-101.github.io/Speech-Processing) | 🕳️ [**避坑篇:AI Agent 開發陷阱**](https://deep-learning-101.github.io/agent) |
    </div>
    """)
    
    with gr.Row():
        with gr.Column():
            api_input = gr.Textbox(label="Google API Key", type="password", placeholder="貼上你的 Gemini API Key")
            btn_set_key = gr.Button("設定 Key")
            status_msg = gr.Markdown("")
            
            gr.Markdown("---")
            pdf_input = gr.File(label="上傳 PDF")
            btn_process = gr.Button("🚀 開始還原 PPTX (穩定版)", variant="primary")
        
        with gr.Column():
            out_zip = gr.File(label="📦 下載完整包")
            out_pptx = gr.File(label="📊 直接下載 PPTX")
            out_tokens = gr.Markdown("### 📊 等待處理...")
    
    gr.Markdown("### 🖼️ 背景去字效果預覽")
    out_gallery = gr.Gallery(columns=4)

    btn_set_key.click(tool.set_key, inputs=api_input, outputs=status_msg)
    
    btn_process.click(
        tool.process_pdf,
        inputs=[pdf_input],
        outputs=[out_zip, out_pptx, out_gallery, out_tokens]
    )

if __name__ == "__main__":
    demo.launch()