Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,30 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
from pydantic import BaseModel, Field
|
| 3 |
from typing import Any, Optional, Dict, List
|
| 4 |
from huggingface_hub import InferenceClient
|
| 5 |
from langchain.llms.base import LLM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
|
|
|
| 7 |
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
class KwArgsModel(BaseModel):
|
| 11 |
kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
@@ -42,4 +61,124 @@ class CustomInferenceClient(LLM, KwArgsModel):
|
|
| 42 |
def _identifying_params(self) -> dict:
|
| 43 |
return {"model_name": self.model_name}
|
| 44 |
|
| 45 |
-
kwargs = {"max_new_tokens":256, "temperature":0.9, "top_p":0.6, "repetition_penalty":1.3, "do_sample":True}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
import gradio as gr
|
| 4 |
+
import time
|
| 5 |
from pydantic import BaseModel, Field
|
| 6 |
from typing import Any, Optional, Dict, List
|
| 7 |
from huggingface_hub import InferenceClient
|
| 8 |
from langchain.llms.base import LLM
|
| 9 |
+
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
| 10 |
+
from langchain.vectorstores import Chroma
|
| 11 |
+
import os
|
| 12 |
+
from dotenv import load_dotenv
|
| 13 |
+
load_dotenv()
|
| 14 |
|
| 15 |
+
path_work = "."
|
| 16 |
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
| 17 |
|
| 18 |
+
embeddings = HuggingFaceInstructEmbeddings(
|
| 19 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
| 20 |
+
model_kwargs={"device": "cpu"}
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
vectordb = Chroma(
|
| 24 |
+
persist_directory = path_work + '/cromadb_llama2-papers',
|
| 25 |
+
embedding_function=embeddings)
|
| 26 |
+
|
| 27 |
+
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
|
| 28 |
|
| 29 |
class KwArgsModel(BaseModel):
|
| 30 |
kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
|
|
| 61 |
def _identifying_params(self) -> dict:
|
| 62 |
return {"model_name": self.model_name}
|
| 63 |
|
| 64 |
+
kwargs = {"max_new_tokens":256, "temperature":0.9, "top_p":0.6, "repetition_penalty":1.3, "do_sample":True}
|
| 65 |
+
|
| 66 |
+
model_list=[
|
| 67 |
+
"meta-llama/Llama-2-13b-chat-hf",
|
| 68 |
+
"HuggingFaceH4/zephyr-7b-alpha",
|
| 69 |
+
"meta-llama/Llama-2-70b-chat-hf",
|
| 70 |
+
"tiiuae/falcon-180B-chat"
|
| 71 |
+
]
|
| 72 |
+
|
| 73 |
+
qa_chain = None
|
| 74 |
+
|
| 75 |
+
def load_model(model_selected):
|
| 76 |
+
global qa_chain
|
| 77 |
+
model_name = model_selected
|
| 78 |
+
llm = CustomInferenceClient(model_name=model_name, hf_token=hf_token, kwargs=kwargs)
|
| 79 |
+
|
| 80 |
+
from langchain.chains import RetrievalQA
|
| 81 |
+
qa_chain = RetrievalQA.from_chain_type(
|
| 82 |
+
llm=llm,
|
| 83 |
+
chain_type="stuff",
|
| 84 |
+
retriever=retriever,
|
| 85 |
+
return_source_documents=True,
|
| 86 |
+
verbose=True,
|
| 87 |
+
)
|
| 88 |
+
qa_chain
|
| 89 |
+
|
| 90 |
+
load_model("meta-llama/Llama-2-70b-chat-hf")
|
| 91 |
+
|
| 92 |
+
def model_select(model_selected):
|
| 93 |
+
load_model(model_selected)
|
| 94 |
+
return f"๋ชจ๋ธ {model_selected} ๋ก๋ฉ ์๋ฃ."
|
| 95 |
+
|
| 96 |
+
def predict(message, chatbot, temperature=0.9, max_new_tokens=512, top_p=0.6, repetition_penalty=1.3,):
|
| 97 |
+
|
| 98 |
+
temperature = float(temperature)
|
| 99 |
+
if temperature < 1e-2: temperature = 1e-2
|
| 100 |
+
top_p = float(top_p)
|
| 101 |
+
|
| 102 |
+
llm_response = qa_chain(message)
|
| 103 |
+
res_result = llm_response['result']
|
| 104 |
+
|
| 105 |
+
res_relevant_doc = [source.metadata['source'] for source in llm_response["source_documents"]]
|
| 106 |
+
response = f"{res_result}" + "\n\n" + "[๋ต๋ณ ๊ทผ๊ฑฐ ์์ค ๋
ผ๋ฌธ (ctrl + click ํ์ธ์!)] :" + "\n" + f" \n {res_relevant_doc}"
|
| 107 |
+
print("response: =====> \n", response, "\n\n")
|
| 108 |
+
|
| 109 |
+
tokens = response.split('\n')
|
| 110 |
+
token_list = []
|
| 111 |
+
for idx, token in enumerate(tokens):
|
| 112 |
+
token_dict = {"id": idx + 1, "text": token}
|
| 113 |
+
token_list.append(token_dict)
|
| 114 |
+
response = {"data": {"token": token_list}}
|
| 115 |
+
response = json.dumps(response, indent=4)
|
| 116 |
+
|
| 117 |
+
response = json.loads(response)
|
| 118 |
+
data_dict = response.get('data', {})
|
| 119 |
+
token_list = data_dict.get('token', [])
|
| 120 |
+
|
| 121 |
+
partial_message = ""
|
| 122 |
+
for token_entry in token_list:
|
| 123 |
+
if token_entry:
|
| 124 |
+
try:
|
| 125 |
+
token_id = token_entry.get('id', None)
|
| 126 |
+
token_text = token_entry.get('text', None)
|
| 127 |
+
|
| 128 |
+
if token_text:
|
| 129 |
+
for char in token_text:
|
| 130 |
+
partial_message += char
|
| 131 |
+
yield partial_message
|
| 132 |
+
time.sleep(0.01)
|
| 133 |
+
else:
|
| 134 |
+
print(f"[[์๋]] ==> The key 'text' does not exist or is None in this token entry: {token_entry}")
|
| 135 |
+
pass
|
| 136 |
+
|
| 137 |
+
except KeyError as e:
|
| 138 |
+
gr.Warning(f"KeyError: {e} occurred for token entry: {token_entry}")
|
| 139 |
+
continue
|
| 140 |
+
|
| 141 |
+
title = "Llama-2 ๋ชจ๋ธ ๊ด๋ จ ๋
ผ๋ฌธ Generative QA (with RAG) ์๋น์ค (Llama-2-70b ๋ชจ๋ธ ๋ฑ ํ์ฉ)"
|
| 142 |
+
description = """Chat history ์ ์ง ๋ณด๋ค๋ QA์ ์ถฉ์คํ๋๋ก ์ ์๋์์ผ๋ฏ๋ก Single turn์ผ๋ก ํ์ฉ ํ์ฌ ์ฃผ์ธ์. Default๋ก Llama-2 70b ๋ชจ๋ธ๋ก ์ค์ ๋์ด ์์ผ๋ GPU ์๋น์ค ํ๋ ์ด๊ณผ๋ก Error๊ฐ ๋ฐ์ํ ์ ์์ผ๋ ์ํด๋ถํ๋๋ฆฌ๋ฉฐ, ํ๋ฉด ํ๋จ์ ๋ชจ๋ธ ๋ณ๊ฒฝ/๋ก๋ฉํ์์ด ๋ค๋ฅธ ๋ชจ๋ธ๋ก ๋ณ๊ฒฝํ์ฌ ์ฌ์ฉ์ ๋ถํ๋๋ฆฝ๋๋ค. (๋ค๋ง, Llama-2 70b๊ฐ ๊ฐ์ฅ ์ ํํ์ค๋ ์ฐธ๊ณ ํ์ฌ ์ฃผ์๊ธฐ ๋ฐ๋๋๋ค.) """
|
| 143 |
+
css = """.toast-wrap { display: none !important } """
|
| 144 |
+
examples=[['Can you tell me about the llama-2 model?'],['What is percent accuracy, using the SPP layer as features on the SPP (ZF-5) model?'], ["How much less accurate is using the SPP layer as features on the SPP (ZF-5) model compared to using the same model on the undistorted full image?"], ["tell me about method for human pose estimation based on DNNs"]]
|
| 145 |
+
|
| 146 |
+
def vote(data: gr.LikeData):
|
| 147 |
+
if data.liked: print("You upvoted this response: " + data.value)
|
| 148 |
+
else: print("You downvoted this response: " + data.value)
|
| 149 |
+
|
| 150 |
+
additional_inputs = [
|
| 151 |
+
gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
|
| 152 |
+
gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=4096, step=64, interactive=True, info="The maximum numbers of new tokens"),
|
| 153 |
+
gr.Slider(label="Top-p (nucleus sampling)", value=0.6, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
|
| 154 |
+
gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")
|
| 155 |
+
]
|
| 156 |
+
|
| 157 |
+
chatbot_stream = gr.Chatbot(avatar_images=(
|
| 158 |
+
"https://drive.google.com/uc?id=18xKoNOHN15H_qmGhK__VKnGjKjirrquW",
|
| 159 |
+
"https://drive.google.com/uc?id=1tfELAQW_VbPCy6QTRbexRlwAEYo8rSSv"
|
| 160 |
+
), bubble_full_width = False)
|
| 161 |
+
|
| 162 |
+
chat_interface_stream = gr.ChatInterface(
|
| 163 |
+
predict,
|
| 164 |
+
title=title,
|
| 165 |
+
description=description,
|
| 166 |
+
chatbot=chatbot_stream,
|
| 167 |
+
css=css,
|
| 168 |
+
examples=examples,
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
with gr.Blocks() as demo:
|
| 172 |
+
with gr.Tab("์คํธ๋ฆฌ๋ฐ"):
|
| 173 |
+
chatbot_stream.like(vote, None, None)
|
| 174 |
+
chat_interface_stream.render()
|
| 175 |
+
with gr.Row():
|
| 176 |
+
with gr.Column(scale=6):
|
| 177 |
+
with gr.Row():
|
| 178 |
+
model_selector = gr.Dropdown(model_list, label="๋ชจ๋ธ ์ ํ", value= "meta-llama/Llama-2-70b-chat-hf", scale=5)
|
| 179 |
+
submit_btn1 = gr.Button(value="๋ชจ๋ธ ๋ก๋", scale=1)
|
| 180 |
+
with gr.Column(scale=4):
|
| 181 |
+
model_status = gr.Textbox(value="", label="๋ชจ๋ธ ์ํ")
|
| 182 |
+
submit_btn1.click(model_select, inputs=[model_selector], outputs=[model_status])
|
| 183 |
+
|
| 184 |
+
demo.queue(concurrency_count=75, max_size=100).launch(debug=True)
|