File size: 29,546 Bytes
f844095
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
"""
Policy Impact Simulator Chat Integration
Provides natural language interface for policy impact simulation
"""

import re
import json
import logging
from typing import Dict, Any, Optional, List
from datetime import datetime, timedelta
from dataclasses import dataclass

from policy_impact_simulator import (
    PolicyImpactSimulator, 
    PolicyScenario, 
    PolicyParameter
)
from policy_chart_generator import PolicyChartGenerator

logger = logging.getLogger(__name__)

@dataclass
class PolicyQuery:
    """Parsed policy query from natural language"""
    intent: str
    parameter: Optional[PolicyParameter]
    current_value: Optional[float]
    proposed_value: Optional[float]
    years: int = 5
    raw_query: str = ""

class PolicySimulatorChatInterface:
    """Chat interface for policy impact simulation"""
    
    def __init__(self):
        self.simulator = PolicyImpactSimulator()
        self.chart_generator = PolicyChartGenerator()
        self.conversation_context = {}
        
        # Enhanced pattern matching for natural language queries
        self.patterns = {
            "simulate_dr": [
                r"simulate.*dearness.*relief.*(\d+).*to.*(\d+)",
                r"dr.*increase.*from.*(\d+).*to.*(\d+)",
                r"what.*if.*dr.*changes.*(\d+).*(\d+)",
                r"impact.*dearness.*(\d+).*percent.*(\d+).*percent",
                r"dr.*analysis.*(\d+).*(\d+)",
                r"dearness.*relief.*(\d+).*(\d+)",
                r"impact.*increasing.*dr.*by.*(\d+)",
                r"show.*impact.*dr.*by.*(\d+)",
                r"dr.*increase.*by.*(\d+).*percent",
                r"increase.*dr.*by.*(\d+)"
            ],
            "simulate_pension": [
                r"simulate.*basic.*pension.*(\d+).*to.*(\d+)",
                r"pension.*increase.*from.*(\d+).*to.*(\d+)",
                r"what.*if.*pension.*changes.*(\d+).*(\d+)",
                r"impact.*basic.*pension.*(\d+).*(\d+)",
                r"pension.*boost.*(\d+).*(\d+)",
                r"basic.*pension.*(\d+).*(\d+)",
                r"analyze.*minimum.*pension.*changes",
                r"analyze.*basic.*pension",
                r"minimum.*pension.*analysis",
                r"basic.*pension.*impact"
            ],
            "simulate_medical": [
                r"simulate.*medical.*allowance.*(\d+).*to.*(\d+)",
                r"medical.*increase.*from.*(\d+).*to.*(\d+)",
                r"what.*if.*medical.*changes.*(\d+).*(\d+)",
                r"medical.*allowance.*(\d+).*(\d+)"
            ],
            "scenario_analysis": [
                r"scenario.*analysis.*pension",
                r"do.*scenario.*analysis",
                r"pension.*scenario.*analysis",
                r"analyze.*pension.*scenarios",
                r"scenario.*analysis.*dr",
                r"pension.*rules.*scenario",
                r"government.*policy.*scenario",
                r"policy.*scenario.*analysis"
            ],
            "interactive_form": [
                r"start.*scenario.*analysis",
                r"interactive.*scenario",
                r"step.*by.*step.*analysis",
                r"guided.*analysis",
                r"scenario.*form"
            ],
            "general_policy": [
                r"policy.*impact.*simulation",
                r"simulate.*policy.*change",
                r"what.*if.*we.*change",
                r"impact.*analysis.*policy",
                r"policy.*analysis",
                r"government.*policy.*impact"
            ],
            "compare_scenarios": [
                r"compare.*scenarios",
                r"which.*is.*better.*policy",
                r"cost.*comparison.*policies",
                r"scenario.*comparison",
                r"best.*case.*worst.*case"
            ]
        }
    
    def process_policy_query(self, query: str, user_id: str = "default") -> Dict[str, Any]:
        """
        Process natural language policy query and return simulation results
        """
        try:
            # Parse the query
            parsed_query = self._parse_policy_query(query)
            
            if not parsed_query:
                return self._get_help_response()
            
            # Handle different intents
            if parsed_query.intent == "simulate":
                return self._handle_simulation_request(parsed_query, user_id)
            elif parsed_query.intent == "compare":
                return self._handle_comparison_request(parsed_query, user_id)
            elif parsed_query.intent == "help":
                return self._get_help_response()
            elif parsed_query.intent == "scenario_analysis":
                return self._handle_scenario_analysis_request(parsed_query, user_id)
            elif parsed_query.intent == "interactive_form":
                return self._start_interactive_form(user_id)
            else:
                return self._get_clarification_response(query)
                
        except Exception as e:
            logger.error(f"Policy query processing error: {e}")
            return {
                "type": "error",
                "message": f"Sorry, I encountered an error processing your policy query: {str(e)}",
                "suggestions": ["Try rephrasing your question", "Use specific numbers and policy parameters"]
            }
    
    def _parse_policy_query(self, query: str) -> Optional[PolicyQuery]:
        """Parse natural language query into structured policy query"""
        query_lower = query.lower()
        
        # Check for explicit help requests (more specific to avoid false positives)
        help_patterns = [r"^help", r"how.*do.*i", r"what.*can.*you", r"guide.*me", r"need.*help"]
        if any(re.search(pattern, query_lower) for pattern in help_patterns):
            return PolicyQuery(intent="help", parameter=None, current_value=None, proposed_value=None, raw_query=query)
        
        # Check for comparison requests
        if any(word in query_lower for word in ["compare", "vs", "versus", "which is better"]):
            return PolicyQuery(intent="compare", parameter=None, current_value=None, proposed_value=None, raw_query=query)
        
        # Try to match simulation patterns
        for intent, patterns in self.patterns.items():
            for pattern in patterns:
                match = re.search(pattern, query_lower)
                if match:
                    return self._extract_simulation_params(intent, match, query)
        
        # Check for general policy simulation intent
        if any(word in query_lower for word in ["simulate", "impact", "policy", "change", "effect"]):
            return PolicyQuery(intent="simulate", parameter=None, current_value=None, proposed_value=None, raw_query=query)
        
        return None
    
    def _extract_simulation_params(self, intent: str, match, raw_query: str) -> PolicyQuery:
        """Extract simulation parameters from regex match"""
        try:
            # Handle new intent types that don't need parameter extraction
            if intent in ["scenario_analysis", "interactive_form"]:
                return PolicyQuery(
                    intent=intent,
                    parameter=None,
                    current_value=None,
                    proposed_value=None,
                    raw_query=raw_query
                )
            
            groups = match.groups()
            
            # Map intent to parameter for simulation intents
            parameter_mapping = {
                "simulate_dr": PolicyParameter.DEARNESS_RELIEF,
                "simulate_pension": PolicyParameter.BASIC_PENSION,
                "simulate_medical": PolicyParameter.MEDICAL_ALLOWANCE
            }
            
            parameter = parameter_mapping.get(intent, PolicyParameter.DEARNESS_RELIEF)
            
            # Handle different pattern types
            if len(groups) == 0:
                # No numbers - provide default analysis scenario
                if parameter == PolicyParameter.DEARNESS_RELIEF:
                    current_value = 12.0  # Current DR is 12%
                    proposed_value = 18.0  # Standard 6% increase
                elif parameter == PolicyParameter.BASIC_PENSION:
                    current_value = 6000.0  # Current basic pension is β‚Ή6,000
                    proposed_value = 8000.0  # Standard β‚Ή2,000 increase
                elif parameter == PolicyParameter.MEDICAL_ALLOWANCE:
                    current_value = 1000.0  # Current medical allowance is β‚Ή1,000
                    proposed_value = 1500.0  # Standard β‚Ή500 increase
                else:
                    current_value = 0.0
                    proposed_value = 1.0
            elif len(groups) == 1:
                # Single number - treat as percentage increase
                increase_amount = float(groups[0])
                
                # Set current values based on parameter type
                if parameter == PolicyParameter.DEARNESS_RELIEF:
                    current_value = 12.0  # Current DR is 12%
                    proposed_value = current_value + increase_amount
                elif parameter == PolicyParameter.BASIC_PENSION:
                    current_value = 6000.0  # Current basic pension is β‚Ή6,000
                    proposed_value = current_value + increase_amount
                elif parameter == PolicyParameter.MEDICAL_ALLOWANCE:
                    current_value = 1000.0  # Current medical allowance is β‚Ή1,000
                    proposed_value = current_value + increase_amount
                else:
                    current_value = increase_amount
                    proposed_value = increase_amount * 1.5  # Default 50% increase
            else:
                # Two numbers - from X to Y
                current_value = float(groups[0]) if len(groups) > 0 else None
                proposed_value = float(groups[1]) if len(groups) > 1 else None
            
            # Extract years if mentioned
            years_match = re.search(r"(\d+).*years?", raw_query.lower())
            years = int(years_match.group(1)) if years_match else 5
            
            return PolicyQuery(
                intent="simulate",
                parameter=parameter,
                current_value=current_value,
                proposed_value=proposed_value,
                years=min(years, 10),  # Cap at 10 years
                raw_query=raw_query
            )
            
        except Exception as e:
            logger.error(f"Parameter extraction error: {e}")
            return PolicyQuery(intent="simulate", parameter=None, current_value=None, proposed_value=None, raw_query=raw_query)
    
    def _handle_simulation_request(self, parsed_query: PolicyQuery, user_id: str) -> Dict[str, Any]:
        """Handle policy simulation request"""
        try:
            # If missing parameters, provide clarification with specific guidance
            if not all([parsed_query.parameter, parsed_query.current_value, parsed_query.proposed_value]):
                return self._get_clarification_response(parsed_query.raw_query)
            
            # Create scenario
            scenario = PolicyScenario(
                parameter=parsed_query.parameter,
                current_value=parsed_query.current_value,
                proposed_value=parsed_query.proposed_value,
                effective_date=datetime.now() + timedelta(days=90),  # 3 months from now
                affected_population=self._estimate_affected_population(parsed_query.parameter),
                annual_growth_rate=0.03,
                inflation_rate=0.06
            )
            
            # Run simulation
            result = self.simulator.simulate_policy_impact(scenario, parsed_query.years, True)
            
            # Format for chat response
            return self._format_simulation_response(result, parsed_query)
            
        except Exception as e:
            logger.error(f"Simulation request error: {e}")
            return {
                "type": "error",
                "message": f"Simulation failed: {str(e)}",
                "raw_query": parsed_query.raw_query
            }
    
    def _estimate_affected_population(self, parameter: PolicyParameter) -> int:
        """Estimate affected population based on parameter type"""
        population_estimates = {
            PolicyParameter.DEARNESS_RELIEF: 510000,  # All pensioners
            PolicyParameter.BASIC_PENSION: 450000,   # Basic pension recipients
            PolicyParameter.MEDICAL_ALLOWANCE: 510000,  # All pensioners
            PolicyParameter.PENSION_FACTOR: 510000,
            PolicyParameter.MINIMUM_PENSION: 200000   # Lower income pensioners
        }
        return population_estimates.get(parameter, 400000)
    
    def _format_simulation_response(self, result: Dict[str, Any], query: PolicyQuery) -> Dict[str, Any]:
        """Format simulation results for chat display"""
        if "error" in result:
            return {
                "type": "error",
                "message": f"Simulation error: {result['error']}"
            }
        
        total_impact = result.get("total_impact", {})
        projections = result.get("scenario_projections", [])
        clause_analysis = result.get("clause_analysis", {})
        
        # Create summary message
        summary = f"""
🎯 **Policy Impact Simulation Results**

**Parameter**: {result.get('parameter_name', 'Unknown')}
**Change**: {result.get('current_value')} β†’ {result.get('proposed_value')}
**Effective Date**: {result.get('effective_date', '').split('T')[0]}

πŸ“Š **Financial Impact Over {result.get('projection_years')} Years**:
β€’ **Total Additional Cost**: β‚Ή{total_impact.get('total_additional_cost_crores', 0):.1f} crores
β€’ **Percentage Increase**: {total_impact.get('percentage_increase', 0):.1f}%
β€’ **Annual Average**: β‚Ή{total_impact.get('annual_average_impact_crores', 0):.1f} crores
β€’ **Cost per Beneficiary**: β‚Ή{total_impact.get('cost_per_beneficiary_annual', 0):,.0f} per year

πŸ“ˆ **Year-by-Year Breakdown**:
"""
        
        # Add yearly breakdown
        for i, proj in enumerate(projections[:3]):  # Show first 3 years
            summary += f"Year {proj.year}: β‚Ή{proj.impact/10000000:.1f} crores impact ({proj.affected_beneficiaries:,} beneficiaries)\n"
        
        if len(projections) > 3:
            summary += f"... and {len(projections)-3} more years\n"
        
        # Add clause information
        if clause_analysis:
            clause_diff = clause_analysis.get("clause_diff", {})
            summary += f"""
βš–οΈ **Policy Changes**:
β€’ **Change Type**: {clause_diff.get('change_type', 'Unknown').title()}
β€’ **Magnitude**: {clause_diff.get('change_percentage', 0):.1f}% change
β€’ **Affected Clauses**: {len(clause_analysis.get('affected_clauses', []))} clauses modified
"""
        
        # Add scenario variants
        variants = result.get("variants", {})
        charts = []
        
        if variants:
            best_case = sum(p.impact for p in variants.get("best_case", [])) / 10000000
            worst_case = sum(p.impact for p in variants.get("worst_case", [])) / 10000000
            base_case = total_impact.get('total_additional_cost_crores', 0)
            
            summary += f"""
πŸ“Š **Scenario Analysis**:
β€’ **Best Case**: β‚Ή{best_case:.1f} crores
β€’ **Base Case**: β‚Ή{base_case:.1f} crores  
β€’ **Worst Case**: β‚Ή{worst_case:.1f} crores
"""
            
            # Generate charts
            try:
                # Scenario comparison chart
                scenario_data = {
                    'best_case': {'total_cost': best_case},
                    'base_case': {'total_cost': base_case},
                    'worst_case': {'total_cost': worst_case}
                }
                
                chart_title = f"{result.get('parameter_name', 'Policy')} Impact Analysis"
                scenario_chart = self.chart_generator.generate_scenario_comparison_chart(
                    scenario_data, chart_title
                )
                
                if scenario_chart:
                    charts.append({
                        "type": "scenario_comparison",
                        "title": chart_title,
                        "data": scenario_chart
                    })
                
                # Year-by-year breakdown chart
                if projections:
                    # Convert projections to the format expected by chart generator
                    yearly_data = []
                    for proj in projections:
                        yearly_data.append({
                            'year': proj.year,
                            'impact': proj.impact / 10000000,  # Convert to crores
                            'beneficiaries': proj.affected_beneficiaries
                        })
                    
                    trend_chart = self.chart_generator.generate_yearly_breakdown_chart(
                        yearly_data, f"{result.get('parameter_name', 'Policy')} 5-Year Impact"
                    )
                    
                    if trend_chart:
                        charts.append({
                            "type": "yearly_trend", 
                            "title": "5-Year Financial Impact Trend",
                            "data": trend_chart
                        })
                        
            except Exception as e:
                logger.error(f"Chart generation error: {e}")
        
        return {
            "type": "policy_simulation",
            "message": summary,
            "simulation_id": result.get("scenario_id"),
            "detailed_results": result,
            "charts": charts,
            "export_options": ["CSV", "PDF", "JSON"],
            "follow_up_suggestions": [
                "Compare with other policy scenarios",
                "Analyze implementation timeline",
                "Export detailed evidence pack",
                "Simulate different effective dates"
            ]
        }
    
    def _get_interactive_form(self, parsed_query: PolicyQuery) -> Dict[str, Any]:
        """Provide interactive form for missing parameters"""
        available_parameters = [
            {"id": "dearness_relief", "name": "Dearness Relief (%)", "current": 12.0, "unit": "%"},
            {"id": "basic_pension", "name": "Basic Pension (β‚Ή)", "current": 6000, "unit": "β‚Ή"},
            {"id": "medical_allowance", "name": "Medical Allowance (β‚Ή)", "current": 1000, "unit": "β‚Ή"},
            {"id": "pension_factor", "name": "Pension Factor", "current": 1.0, "unit": "multiplier"},
            {"id": "minimum_pension", "name": "Minimum Pension (β‚Ή)", "current": 3500, "unit": "β‚Ή"}
        ]
        
        return {
            "type": "interactive_form",
            "message": "I'd be happy to help you simulate policy impact! Please provide the following details:",
            "form_fields": [
                {
                    "name": "parameter",
                    "label": "Policy Parameter",
                    "type": "select",
                    "options": available_parameters,
                    "required": True
                },
                {
                    "name": "current_value",
                    "label": "Current Value",
                    "type": "number",
                    "required": True
                },
                {
                    "name": "proposed_value", 
                    "label": "Proposed Value",
                    "type": "number",
                    "required": True
                },
                {
                    "name": "years",
                    "label": "Projection Years",
                    "type": "number",
                    "default": 5,
                    "min": 1,
                    "max": 10
                }
            ],
            "examples": [
                "Simulate DR increase from 12% to 18% over 5 years",
                "What if basic pension changes from β‚Ή6000 to β‚Ή8000?",
                "Impact of medical allowance increase to β‚Ή2000"
            ]
        }
    
    def _handle_comparison_request(self, parsed_query: PolicyQuery, user_id: str) -> Dict[str, Any]:
        """Handle policy comparison request"""
        sample_comparisons = [
            {
                "name": "DR vs Basic Pension Increase",
                "scenarios": [
                    {"parameter": "DR", "change": "12% β†’ 18%", "impact": "β‚Ή85.2 crores"},
                    {"parameter": "Basic Pension", "change": "β‚Ή6000 β†’ β‚Ή8000", "impact": "β‚Ή108.0 crores"}
                ],
                "recommendation": "DR increase is more cost-effective"
            },
            {
                "name": "Short vs Long Term Impact",
                "scenarios": [
                    {"period": "3 years", "total_impact": "β‚Ή150.5 crores"},
                    {"period": "10 years", "total_impact": "β‚Ή628.3 crores"}
                ],
                "recommendation": "Long-term planning essential"
            }
        ]
        
        return {
            "type": "policy_comparison",
            "message": "Here are some policy comparison examples. Would you like to compare specific scenarios?",
            "comparisons": sample_comparisons,
            "custom_comparison": {
                "description": "I can help you compare up to 5 different policy scenarios",
                "example": "Compare DR increase vs pension boost vs medical allowance increase"
            }
        }
    
    def _get_help_response(self) -> Dict[str, Any]:
        """Provide help information"""
        return {
            "type": "help",
            "message": """
🎯 **Policy Impact Simulator Help**

I can help you simulate the financial impact of government policy changes. Here's what I can do:

**πŸ“Š Simulation Capabilities**:
β€’ Dearness Relief (DR) changes
β€’ Basic pension adjustments  
β€’ Medical allowance modifications
β€’ Pension factor changes
β€’ Minimum pension guarantees

**πŸ’¬ How to Ask**:
β€’ "Simulate DR increase from 12% to 18%"
β€’ "What if basic pension changes from β‚Ή6000 to β‚Ή8000?"
β€’ "Impact of medical allowance increase to β‚Ή2000 over 5 years"
β€’ "Compare DR increase vs pension boost"

**πŸ“ˆ What You Get**:
β€’ Total financial impact over 3-10 years
β€’ Year-by-year breakdown
β€’ Best/base/worst case scenarios
β€’ Affected population estimates
β€’ Policy clause analysis
β€’ Implementation timeline
β€’ Exportable evidence pack

**πŸš€ Quick Examples**:
Try asking: "Show me the impact of increasing DR by 6%"
""",
            "quick_actions": [
                {"label": "Sample DR Simulation", "query": "simulate DR from 12 to 18 percent"},
                {"label": "Basic Pension Impact", "query": "what if basic pension increases to 8000"},
                {"label": "Compare Scenarios", "query": "compare policy scenarios"},
                {"label": "View Parameters", "query": "show available policy parameters"}
            ]
        }
    
    def _get_clarification_response(self, query: str) -> Dict[str, Any]:
        """Request clarification for unclear queries"""
        
        # Provide specific guidance based on the query content
        query_lower = query.lower()
        
        if "da" in query_lower or "dearness allowance" in query_lower or "dr" in query_lower:
            specific_message = """🎯 **DA/DR Impact Analysis**

I can help you analyze the Dearness Allowance (DA) impact! To provide accurate calculations, please specify:

πŸ“Š **Required Details:**
β€’ **Current DA Rate**: What's the existing DA percentage? (e.g., 12%)
β€’ **Proposed DA Rate**: What should the new DA be? (e.g., 18% for a 6% increase)
β€’ **Base Pension Amount**: What's the basic pension amount? (e.g., β‚Ή6,000)
β€’ **Analysis Period**: How many years to analyze? (default: 5 years)

πŸ’‘ **Quick Examples:**
β€’ "Show DA impact from 12% to 18% for pension β‚Ή6000"
β€’ "Analyze 6% DA increase from current 12% to 18%"
β€’ "DA simulation: current 12%, increase to 18%, basic pension β‚Ή6000"

πŸ“ˆ **What You'll Get:**
β€’ Financial impact over 5 years with charts
β€’ Cost per beneficiary calculations  
β€’ Best/Base/Worst case scenarios
β€’ Implementation timeline and evidence pack"""
            
        elif "pension" in query_lower and ("basic" in query_lower or "minimum" in query_lower):
            specific_message = """🎯 **Basic Pension Impact Analysis**

I can help analyze basic pension changes! Please provide:

πŸ“Š **Required Details:**
β€’ **Current Basic Pension**: What's the existing amount? (e.g., β‚Ή6,000)
β€’ **Proposed Basic Pension**: What should the new amount be? (e.g., β‚Ή8,000)
β€’ **Analysis Period**: How many years to analyze? (default: 5 years)

πŸ’‘ **Quick Examples:**
β€’ "Show basic pension impact from β‚Ή6000 to β‚Ή8000"
β€’ "Analyze pension increase to β‚Ή8000 over 5 years"
β€’ "Basic pension simulation: current β‚Ή6000, increase to β‚Ή8000"

πŸ“ˆ **What You'll Get:**
β€’ Financial impact projections with charts
β€’ Affected population estimates
β€’ Cost analysis and implementation timeline"""
            
        else:
            specific_message = """🎯 **Policy Impact Simulation Help**

I understand you want to analyze policy impact! To provide accurate calculations, please specify:

πŸ“Š **Choose Your Analysis:**
β€’ **DA/DR Changes**: Dearness Allowance adjustments (e.g., "DA from 12% to 18%")
β€’ **Basic Pension**: Minimum pension amount changes (e.g., "Pension from β‚Ή6000 to β‚Ή8000")
β€’ **Medical Allowance**: Healthcare support changes (e.g., "Medical allowance to β‚Ή1500")

πŸ’‘ **Format Your Request:**
Include: Current value β†’ Proposed value β†’ Base amount (if applicable)

πŸ“ˆ **Quick Examples:**
β€’ "Show DA impact from 12% to 18% for pension β‚Ή6000"
β€’ "Analyze basic pension increase from β‚Ή6000 to β‚Ή8000"
β€’ "Medical allowance impact from β‚Ή1000 to β‚Ή1500" """
        
        return {
            "type": "clarification",
            "message": specific_message,
            "original_query": query,
            "suggestions": [
                "πŸ“Š Use the format: 'Show [policy] impact from [current] to [proposed]'",
                "πŸ“ˆ Include specific numbers and amounts",
                "⏱️ Specify time period if different from 5 years"
            ],
            "quick_actions": [
                {"text": "πŸ“ˆ DA Analysis Example", "query": "Show DA impact from 12% to 18% for pension β‚Ή6000"},
                {"text": "πŸ’° Pension Analysis Example", "query": "Show basic pension impact from β‚Ή6000 to β‚Ή8000"},
                {"text": "πŸ“‹ Start Interactive Form", "query": "start scenario analysis"}
            ]
        }

    def _handle_scenario_analysis_request(self, parsed_query: PolicyQuery, user_id: str) -> Dict[str, Any]:
        """Handle general scenario analysis requests"""
        return {
            "type": "scenario_analysis_help",
            "message": """🎯 **Scenario Analysis for Rajasthan Pension Policies**

I can help you analyze different scenarios for pension policy changes. Here are the most common analyses:

πŸ“Š **Available Scenario Analyses:**
β€’ **Dearness Relief (DR)**: Analyze inflation adjustments (current: 12%)
β€’ **Basic Pension**: Analyze minimum pension changes (current: β‚Ή6,000)  
β€’ **Medical Allowance**: Analyze healthcare support changes (current: β‚Ή1,000)
β€’ **Pension Factor**: Analyze salary multiplier changes (current: 1.0x)

πŸ’¬ **How to Request Analysis:**
β€’ "Simulate DR increase from 12% to 18% over 5 years"
β€’ "What if basic pension increases to β‚Ή8,000?"
β€’ "Compare best and worst case scenarios for medical allowance"

πŸ“ˆ **What You'll Get:**
β€’ Financial impact projections (3-10 years)
β€’ Best/Base/Worst case scenarios  
β€’ Affected population estimates
β€’ Implementation timeline and complexity
β€’ Exportable evidence packs

πŸš€ **Try These Examples:**""",
            "quick_actions": [
                {"text": "πŸ“ˆ Analyze DR Scenarios", "query": "Show DR scenario analysis from 12% to 18%"},
                {"text": "πŸ’° Analyze Pension Scenarios", "query": "Show basic pension scenarios from 6000 to 8000"},
                {"text": "πŸ₯ Analyze Medical Allowance", "query": "Show medical allowance scenarios"},
                {"text": "πŸ“‹ Start Interactive Form", "query": "start scenario analysis"}
            ]
        }

    def _start_interactive_form(self, user_id: str) -> Dict[str, Any]:
        """Start interactive scenario analysis form"""
        try:
            from scenario_chat_form import start_scenario_analysis_form
            return start_scenario_analysis_form(user_id)
        except Exception as e:
            logger.error(f"Interactive form start failed: {e}")
            return {
                "type": "error",
                "message": "Sorry, I couldn't start the interactive form. Let me help you with a quick simulation instead.",
                "fallback_form": self._get_clarification_response("")
            }

# Usage integration function
def process_policy_chat_query(query: str, user_id: str = "default") -> Dict[str, Any]:
    """
    Main function to process policy-related chat queries
    Use this in your main chat system
    """
    interface = PolicySimulatorChatInterface()
    return interface.process_policy_query(query, user_id)