File size: 17,477 Bytes
cf02b2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df5eb6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf02b2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
import lancedb
import pandas as pd
from langchain_huggingface import HuggingFaceEmbeddings
from config import EMBEDDING_MODEL_NAME, LANCEDB_PATH
from typing import List, Dict, Any, Optional
import logging
import os
import uuid
from datetime import datetime
import json

logger = logging.getLogger("voicebot")

# Lazy load embedding model to reduce startup time and memory usage
embedding_model = None

def get_embedding_model():
    """Lazy load the embedding model"""
    global embedding_model
    if embedding_model is None:
        logger.info(f"Loading embedding model: {EMBEDDING_MODEL_NAME}")
        embedding_model = HuggingFaceEmbeddings(
            model_name=EMBEDDING_MODEL_NAME,
            model_kwargs={
                "device": "cpu",
                "trust_remote_code": True
            },
            encode_kwargs={
                "normalize_embeddings": True
            }
        )
    return embedding_model

class LanceDBService:
    def __init__(self):
        self.db_path = LANCEDB_PATH
        self.db = None
        self.embedding_model = get_embedding_model()
        self._initialize_db()

    def _initialize_db(self):
        """Initialize LanceDB connection and create tables if they don't exist"""
        try:
            os.makedirs(self.db_path, exist_ok=True)
            self.db = lancedb.connect(self.db_path)
            
            # Initialize tables
            self._init_documents_table()
            self._init_personas_table()
            self._init_mcp_servers_table()
            self._init_sessions_table()
            
            logger.info("βœ… LanceDB initialized successfully")
        except Exception as e:
            logger.error(f"❌ Error initializing LanceDB: {e}")
            raise

    def _init_documents_table(self):
        """Initialize documents table for vector storage"""
        try:
            if "documents" not in self.db.table_names():
                # Create sample data to define schema
                sample_data = pd.DataFrame({
                    "id": [str(uuid.uuid4())],
                    "content": ["sample"],
                    "metadata": [json.dumps({})],
                    "user_id": ["sample"],
                    "knowledge_base": ["sample"],
                    "filename": ["sample"],
                    "upload_date": [datetime.now().isoformat()],
                    "vector": [get_embedding_model().embed_query("sample")]
                })
                self.db.create_table("documents", sample_data)
                # Delete sample data
                tbl = self.db.open_table("documents")
                tbl.delete("id = 'sample'")
        except Exception as e:
            logger.error(f"❌ Error initializing documents table: {e}")

    def _init_personas_table(self):
        """Initialize personas table"""
        try:
            if "personas" not in self.db.table_names():
                sample_data = pd.DataFrame({
                    "id": [str(uuid.uuid4())],
                    "user_id": ["sample"],
                    "name": ["sample"],
                    "description": ["sample"],
                    "icon": ["sample"],
                    "custom_prompt": ["sample"],
                    "knowledge_base": ["none"],
                    "language": ["en"],
                    "created_at": [datetime.now().isoformat()],
                    "updated_at": [datetime.now().isoformat()]
                })
                self.db.create_table("personas", sample_data)
                tbl = self.db.open_table("personas")
                tbl.delete("id = 'sample'")
        except Exception as e:
            logger.error(f"❌ Error initializing personas table: {e}")

    def _init_mcp_servers_table(self):
        """Initialize MCP servers table"""
        try:
            if "mcp_servers" not in self.db.table_names():
                sample_data = pd.DataFrame({
                    "id": [str(uuid.uuid4())],
                    "user_id": ["sample"],
                    "name": ["sample"],
                    "url": ["sample"],
                    "bearer_token": ["sample"],
                    "created_at": [datetime.now().isoformat()]
                })
                self.db.create_table("mcp_servers", sample_data)
                tbl = self.db.open_table("mcp_servers")
                tbl.delete("id = 'sample'")
        except Exception as e:
            logger.error(f"❌ Error initializing mcp_servers table: {e}")

    def _init_sessions_table(self):
        """Initialize sessions table"""
        try:
            if "sessions" not in self.db.table_names():
                sample_data = pd.DataFrame({
                    "id": [str(uuid.uuid4())],
                    "user_id": ["sample"],
                    "persona_id": ["sample"],
                    "persona_source": ["sample"],
                    "session_summary": ["sample"],
                    "created_at": [datetime.now().isoformat()],
                    "updated_at": [datetime.now().isoformat()]
                })
                self.db.create_table("sessions", sample_data)
                tbl = self.db.open_table("sessions")
                tbl.delete("id = 'sample'")
        except Exception as e:
            logger.error(f"❌ Error initializing sessions table: {e}")

    async def add_documents(self, docs, user_id: str, knowledge_base: str, filename: str):
        """Add documents to LanceDB vector store"""
        try:
            documents_to_insert = []
            for doc in docs:
                embedding = self.embedding_model.embed_query(doc.page_content)
                
                doc_data = {
                    "id": str(uuid.uuid4()),
                    "content": doc.page_content,
                    "metadata": json.dumps(doc.metadata),
                    "user_id": user_id,
                    "knowledge_base": knowledge_base,
                    "filename": filename,
                    "upload_date": datetime.now().isoformat(),
                    "vector": embedding
                }
                documents_to_insert.append(doc_data)

            # Insert documents
            tbl = self.db.open_table("documents")
            df = pd.DataFrame(documents_to_insert)
            tbl.add(df)
            
            logger.info(f"βœ… Added {len(docs)} documents to LanceDB")
            return len(docs)

        except Exception as e:
            logger.error(f"❌ Error adding documents to LanceDB: {e}")
            raise e

    async def similarity_search(self, query: str, user_id: str, knowledge_base: str, k: int = 4):
        """Search for similar documents"""
        try:
            query_embedding = self.embedding_model.embed_query(query)
            
            tbl = self.db.open_table("documents")
            
            # Search with filters
            results = tbl.search(query_embedding)\
                        .where(f"user_id = '{user_id}' AND knowledge_base = '{knowledge_base}'")\
                        .limit(k)\
                        .to_list()

            docs = []
            for result in results:
                docs.append(type('Document', (), {
                    'page_content': result['content'],
                    'metadata': json.loads(result['metadata']) if result['metadata'] else {}
                })())

            return docs

        except Exception as e:
            logger.error(f"❌ Error searching LanceDB: {e}")
            return []

    async def get_user_knowledge_bases(self, user_id: str) -> List[str]:
        """Get all knowledge bases for a user"""
        try:
            tbl = self.db.open_table("documents")
            df = tbl.search().where(f"user_id = '{user_id}'").to_pandas()
            
            if df.empty:
                return []
            
            knowledge_bases = df['knowledge_base'].unique().tolist()
            return [kb for kb in knowledge_bases if kb and kb != "none"]

        except Exception as e:
            logger.error(f"❌ Error fetching knowledge bases: {e}")
            return []

    async def get_kb_documents(self, user_id: str, kb_name: str):
        """Get all documents in a knowledge base"""
        try:
            tbl = self.db.open_table("documents")
            df = tbl.search().where(f"user_id = '{user_id}' AND knowledge_base = '{kb_name}'").to_pandas()
            
            documents = []
            for _, row in df.iterrows():
                documents.append({
                    "id": row['id'],
                    "filename": row['filename'],
                    "knowledge_base": row['knowledge_base'],
                    "upload_date": row['upload_date']
                })
            
            return documents

        except Exception as e:
            logger.error(f"❌ Error fetching documents: {e}")
            return []

    async def delete_document_from_kb(self, user_id: str, kb_name: str, filename: str):
        """Delete a document from knowledge base"""
        try:
            tbl = self.db.open_table("documents")
            tbl.delete(f"user_id = '{user_id}' AND knowledge_base = '{kb_name}' AND filename = '{filename}'")
            return True

        except Exception as e:
            logger.error(f"❌ Error deleting document: {e}")
            return False

    # Persona management methods
    async def insert_persona(self, name: str, description: str, icon: str, custom_prompt: str, user_id: str):
        """Insert a new persona"""
        try:
            persona_data = {
                "id": str(uuid.uuid4()),
                "user_id": user_id,
                "name": name,
                "description": description,
                "icon": icon,
                "custom_prompt": custom_prompt,
                "knowledge_base": "none",
                "language": "en",
                "created_at": datetime.now().isoformat(),
                "updated_at": datetime.now().isoformat()
            }

            tbl = self.db.open_table("personas")
            df = pd.DataFrame([persona_data])
            tbl.add(df)
            
            return persona_data

        except Exception as e:
            logger.error(f"❌ Error inserting persona: {e}")
            raise e

    async def get_user_personas(self, user_id: str):
        """Get all personas for a user"""
        try:
            tbl = self.db.open_table("personas")
            df = tbl.search().where(f"user_id = '{user_id}'").to_pandas()
            return df.to_dict('records')

        except Exception as e:
            logger.error(f"❌ Error fetching personas: {e}")
            return []

    # MCP Server methods
    async def create_mcp_server(self, user_id: str, name: str, url: str, bearer_token: str = None):
        """Create MCP server entry"""
        try:
            server_data = {
                "id": str(uuid.uuid4()),
                "user_id": user_id,
                "name": name,
                "url": url,
                "bearer_token": bearer_token,
                "created_at": datetime.now().isoformat()
            }

            tbl = self.db.open_table("mcp_servers")
            df = pd.DataFrame([server_data])
            tbl.add(df)
            
            return server_data

        except Exception as e:
            logger.error(f"❌ Error creating MCP server: {e}")
            raise e

    async def get_mcp_servers_for_user(self, user_id: str):
        """Get MCP servers for user"""
        try:
            tbl = self.db.open_table("mcp_servers")
            df = tbl.search().where(f"user_id = '{user_id}'").to_pandas()
            return df.to_dict('records')

        except Exception as e:
            logger.error(f"❌ Error fetching MCP servers: {e}")
            return []

    async def delete_mcp_server(self, user_id: str, server_id: str):
        """Delete MCP server"""
        try:
            tbl = self.db.open_table("mcp_servers")
            tbl.delete(f"user_id = '{user_id}' AND id = '{server_id}'")
            return True

        except Exception as e:
            logger.error(f"❌ Error deleting MCP server: {e}")
            return False

    # Session management
    async def upsert_session_summary(self, user_id: str, persona_id: str, persona_source: str, summary: str):
        """Create or update session summary"""
        try:
            session_data = {
                "id": str(uuid.uuid4()),
                "user_id": user_id,
                "persona_id": persona_id,
                "persona_source": persona_source,
                "session_summary": summary,
                "created_at": datetime.now().isoformat(),
                "updated_at": datetime.now().isoformat()
            }

            tbl = self.db.open_table("sessions")
            df = pd.DataFrame([session_data])
            tbl.add(df)
            
            return session_data

        except Exception as e:
            logger.error(f"❌ Error upserting session: {e}")
            return None

    async def get_knowledge_bases(self) -> List[str]:
        """Get all unique knowledge bases"""
        try:
            tbl = self.db.open_table("documents")
            df = tbl.search().to_pandas()
            
            if df.empty:
                return []
            
            knowledge_bases = df['knowledge_base'].unique().tolist()
            return [kb for kb in knowledge_bases if kb and kb != "none"]

        except Exception as e:
            logger.error(f"❌ Error getting knowledge bases: {e}")
            return []

    async def get_documents_by_knowledge_base(self, knowledge_base: str) -> List[dict]:
        """Get list of documents in a specific knowledge base"""
        try:
            tbl = self.db.open_table("documents")
            df = tbl.search().where(f"knowledge_base = '{knowledge_base}'").to_pandas()
            
            if df.empty:
                return []
            
            # Group by filename and get document info
            documents = []
            for filename in df['filename'].unique():
                file_docs = df[df['filename'] == filename]
                documents.append({
                    "filename": filename,
                    "knowledge_base": knowledge_base,
                    "chunks": len(file_docs),
                    "upload_date": file_docs['upload_date'].iloc[0] if not file_docs.empty else None
                })
            
            return documents

        except Exception as e:
            logger.error(f"❌ Error getting documents by knowledge base: {e}")
            return []

    async def delete_document(self, filename: str, knowledge_base: str, user_id: str = None):
        """Delete a document from the knowledge base"""
        try:
            tbl = self.db.open_table("documents")
            
            where_clause = f"filename = '{filename}' AND knowledge_base = '{knowledge_base}'"
            if user_id:
                where_clause += f" AND user_id = '{user_id}'"
            
            # Delete the document chunks
            tbl.delete(where_clause)
            
            logger.info(f"βœ… Deleted document {filename} from knowledge base {knowledge_base}")
            return True

        except Exception as e:
            logger.error(f"❌ Error deleting document: {e}")
            return False

    async def search_documents(self, query: str, limit: int = 5, knowledge_base: str = None):
        """Search for documents with specific query and limit"""
        try:
            query_embedding = self.embedding_model.embed_query(query)
            
            tbl = self.db.open_table("documents")
            
            # Build search query
            search_query = tbl.search(query_embedding).limit(limit)
            
            # Add knowledge base filter if specified
            if knowledge_base:
                search_query = search_query.where(f"knowledge_base = '{knowledge_base}'")
            
            results = search_query.to_list()

            docs = []
            for result in results:
                docs.append({
                    'content': result['content'],
                    'metadata': json.loads(result['metadata']) if result['metadata'] else {},
                    'score': result.get('_distance', 0.0),
                    'knowledge_base': result.get('knowledge_base', 'unknown')
                })

            return docs

        except Exception as e:
            logger.error(f"❌ Error searching documents: {e}")
            return []

    async def search_all_knowledge_bases(self, query: str, k: int = 4):
        """Search across all knowledge bases"""
        try:
            query_embedding = self.embedding_model.embed_query(query)
            
            tbl = self.db.open_table("documents")
            
            # Search without user filters for system-wide search
            results = tbl.search(query_embedding).limit(k).to_list()

            docs = []
            for result in results:
                docs.append(type('Document', (), {
                    'page_content': result['content'],
                    'metadata': json.loads(result['metadata']) if result['metadata'] else {}
                })())

            return docs

        except Exception as e:
            logger.error(f"❌ Error searching all knowledge bases: {e}")
            return []

# Global instance
lancedb_service = LanceDBService()