File size: 17,212 Bytes
cf02b2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
from fastapi import WebSocket, WebSocketDisconnect
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage
import logging
import json
import asyncio
import re
from typing import Dict, Any
from hybrid_llm_service import HybridLLMService  # Fixed import
from voice_service import VoiceService
from rag_service import search_documents
from llm_service import create_graph, create_basic_graph
from lancedb_service import lancedb_service
from policy_chat_interface import PolicySimulatorChatInterface

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Initialize services
hybrid_llm_service = HybridLLMService()  # Create instance
voice_service = VoiceService()
policy_simulator = PolicySimulatorChatInterface()

# Policy simulation detection patterns
POLICY_PATTERNS = [
    r"scenario.*analy",
    r"policy.*simulat",
    r"pension.*analy",
    r"simulate.*dr|dr.*simulat",
    r"simulate.*pension|pension.*simulat",
    r"impact.*analy",
    r"dearness.*relief",
    r"basic.*pension",
    r"medical.*allowance",
    r"chart.*pension|pension.*chart",
    r"visual.*analy|analy.*visual",
    r"show.*chart|chart.*show",
    r"explain.*chart|chart.*explain",
    r"using.*chart|chart.*using",
    r"dr.*\d+.*increase|increase.*dr.*\d+",
    r"analyze.*minimum.*pension",
    r"pension.*change"
]

def is_policy_simulation_query(message: str) -> bool:
    """Check if the message is a policy simulation query"""
    message_lower = message.lower()
    return any(re.search(pattern, message_lower, re.IGNORECASE) for pattern in POLICY_PATTERNS)

async def handle_websocket_connection(websocket: WebSocket):
    """Handle WebSocket connection for the voice bot"""
    await websocket.accept()
    logger.info("๐Ÿ”Œ WebSocket client connected.")

    import uuid

    initial_data = await websocket.receive_json()
    messages = []
    
    # Check if user authentication is provided
    flag = "user_id" in initial_data
    if flag:
        thread_id = initial_data.get("user_id")
        knowledge_base = initial_data.get("knowledge_base", "government_docs")
        
        # Create graph with RAG capabilities
        graph = await create_graph(kb_tool=True, mcp_config=None)
        
        config = {
            "configurable": {
                "thread_id": thread_id,
                "knowledge_base": knowledge_base,
            }
        }
        
        # Set system prompt for government document queries
        system_message = """You are a helpful assistant that can answer questions about government documents, policies, and procedures. 
        Keep your responses clear and concise. When referencing specific documents or policies, mention the source.
        If you're uncertain about information, clearly state that and suggest where the user might find authoritative information."""
        
        messages.append(SystemMessage(content=system_message))
    else:
        # Basic graph for unauthenticated users
        graph = create_basic_graph()
        thread_id = str(uuid.uuid4())
        config = {"configurable": {"thread_id": thread_id}}

    # Send initial greeting
    greeting_message = HumanMessage(
        content="Generate a brief greeting for the user, introduce yourself as a government document assistant, and explain how you can help them find information from government policies and documents."
    )
    messages.append(greeting_message)
    
    try:
        response = await graph.ainvoke({"messages": messages}, config=config)
        greeting_response = response["messages"][-1].content
        messages.append(AIMessage(content=greeting_response))
        
        await websocket.send_json({
            "type": "connection_successful",
            "message": greeting_response
        })
    except Exception as e:
        logger.error(f"โŒ Error generating greeting: {e}")
        await websocket.send_json({
            "type": "connection_successful",
            "message": "Hello! I'm your government document assistant. How can I help you today?"
        })

    try:
        while True:
            data = await websocket.receive_json()
            
            if data["type"] == "text_message":
                # Handle text message
                user_message = data["message"]
                logger.info(f"๐Ÿ’ฌ Received text message: {user_message}")
                messages.append(HumanMessage(content=user_message))
                
                # Send acknowledgment
                await websocket.send_json({
                    "type": "message_received",
                    "message": "Processing your message..."
                })
                
                # Check if this is a policy simulation query
                if is_policy_simulation_query(user_message):
                    logger.info("๐ŸŽฏ Detected policy simulation query")
                    try:
                        # Process with policy simulator
                        policy_response = policy_simulator.process_policy_query(user_message)
                        
                        # Send policy simulation response
                        await websocket.send_json({
                            "type": "policy_simulation",
                            "data": policy_response
                        })
                        
                        messages.append(AIMessage(content=policy_response.get('message', 'Policy simulation completed')))
                        continue
                        
                    except Exception as policy_error:
                        logger.error(f"โŒ Policy simulation failed: {policy_error}")
                        # Fall back to normal processing
                
                # First try to search for relevant documents
                search_results = None
                try:
                    # Search for documents related to the user's query
                    search_results = search_documents(user_message, limit=5)
                    logger.info(f"๐Ÿ” Found {len(search_results) if search_results else 0} documents for query")
                except Exception as search_error:
                    logger.warning(f"โš ๏ธ Document search failed: {search_error}")
                
                # Get LLM response (with or without search context)
                try:
                    if search_results and len(search_results) > 0:
                        # Add search context to the message
                        context_message = f"User query: {user_message}\n\nRelevant documents found:\n"
                        for i, doc in enumerate(search_results[:3], 1):
                            context_message += f"\n{i}. Source: {doc.get('filename', 'Unknown')}\nContent: {doc.get('content', '')[:400]}...\n"
                        
                        context_message += f"\nBased on the above documents, please provide a helpful response to the user's query: {user_message}"
                        
                        # Replace the user message with the enriched version
                        messages[-1] = HumanMessage(content=context_message)
                    
                    result = await graph.ainvoke({"messages": messages}, config=config)
                    llm_response = result["messages"][-1].content
                    
                    # Check if response contains scenario analysis images
                    if "**SCENARIO_IMAGES_START**" in llm_response and "**SCENARIO_IMAGES_END**" in llm_response:
                        # Extract images and text separately
                        parts = llm_response.split("**SCENARIO_IMAGES_START**")
                        text_response = parts[0].strip()
                        
                        image_part = parts[1].split("**SCENARIO_IMAGES_END**")[0].strip()
                        
                        try:
                            import json
                            images = json.loads(image_part)
                            
                            # Send text response first
                            await websocket.send_json({
                                "type": "text_response",
                                "message": text_response
                            })
                            
                            # Send images separately
                            await websocket.send_json({
                                "type": "scenario_images",
                                "images": images
                            })
                            
                        except json.JSONDecodeError:
                            # If JSON parsing fails, send as regular text
                            await websocket.send_json({
                                "type": "text_response",
                                "message": llm_response
                            })
                    else:
                        # Send regular text response
                        await websocket.send_json({
                            "type": "text_response",
                            "message": llm_response
                        })
                    
                    # Add AI response to messages
                    messages.append(AIMessage(content=llm_response))
                    
                    logger.info(f"โœ… Sent response to user: {thread_id}")
                    
                except Exception as e:
                    logger.error(f"โŒ Error processing message: {e}")
                    await websocket.send_json({
                        "type": "error",
                        "message": "Sorry, I encountered an error processing your message."
                    })
            
            elif data["type"] == "ping":
                # Handle ping for connection keep-alive
                await websocket.send_json({"type": "pong"})
                
            elif data["type"] == "get_knowledge_bases":
                # Send available knowledge bases
                try:
                    kb_list = await lancedb_service.get_knowledge_bases()
                    await websocket.send_json({
                        "type": "knowledge_bases",
                        "knowledge_bases": kb_list
                    })
                except Exception as e:
                    logger.error(f"โŒ Error getting knowledge bases: {e}")
                    await websocket.send_json({
                        "type": "error",
                        "message": "Error retrieving knowledge bases"
                    })
            
            elif data["type"] == "end_session":
                logger.info("๐Ÿ“ž Session ended by client")
                await websocket.close()
                break

    except WebSocketDisconnect:
        logger.info("๐Ÿ”Œ WebSocket client disconnected.")
    except Exception as e:
        logger.error(f"โŒ WebSocket error: {e}")
        try:
            await websocket.send_json({
                "type": "error",
                "message": "Connection error occurred"
            })
        except:
            pass
    finally:
        # Clean up when session ends
        logger.info(f"๐Ÿ”„ Session {thread_id} ended")

async def send_welcome_message(websocket: WebSocket):
    """Send welcome message to the client"""
    try:
        welcome_text = """๐Ÿ‡ฎ๐Ÿ‡ณ Welcome to the Government Services AI Assistant! 

I'm here to help you with:
โ€ข Government policies and procedures
โ€ข Document information and guidance
โ€ข Service-specific questions and redirects
โ€ข Voice or text interaction (your choice!)

How can I assist you today?"""
        
        await websocket.send_text(json.dumps({
            "type": "bot_message",
            "content": welcome_text,
            "timestamp": asyncio.get_event_loop().time()
        }))
        
    except Exception as e:
        logger.error(f"โŒ Error sending welcome message: {e}")

async def handle_text_message(websocket: WebSocket, message_data: Dict[str, Any]):
    """Handle text-based messages"""
    try:
        user_message = message_data.get("content", "")
        logger.info(f"๐Ÿ’ฌ Processing text message: {user_message}")
        
        # Search for relevant documents
        context = ""
        try:
            search_results = search_documents(user_message, limit=3)
            if search_results:
                context = "\n".join([doc.get("content", "") for doc in search_results])
                logger.info(f"๐Ÿ“š Found {len(search_results)} relevant documents")
        except Exception as e:
            logger.warning(f"โš ๏ธ Document search failed: {e}")
        
        # Get response from hybrid LLM
        response_text = ""
        try:
            # Check if this is a streaming request
            stream_response = message_data.get("stream", True)
            
            if stream_response:
                # Send streaming response
                await websocket.send_text(json.dumps({
                    "type": "bot_message_start",
                    "timestamp": asyncio.get_event_loop().time()
                }))
                
                async for chunk in hybrid_llm_service.get_streaming_response(user_message, context):
                    response_text += chunk
                    await websocket.send_text(json.dumps({
                        "type": "bot_message_chunk",
                        "content": chunk,
                        "timestamp": asyncio.get_event_loop().time()
                    }))
                    await asyncio.sleep(0.01)  # Small delay for better streaming
                
                await websocket.send_text(json.dumps({
                    "type": "bot_message_end",
                    "timestamp": asyncio.get_event_loop().time()
                }))
            else:
                # Send complete response
                response_text = await hybrid_llm_service.get_response(user_message, context)
                await websocket.send_text(json.dumps({
                    "type": "bot_message",
                    "content": response_text,
                    "timestamp": asyncio.get_event_loop().time()
                }))
                
        except Exception as e:
            logger.error(f"โŒ Error getting LLM response: {e}")
            await websocket.send_text(json.dumps({
                "type": "bot_message",
                "content": f"I apologize, but I encountered an error processing your request: {str(e)}",
                "timestamp": asyncio.get_event_loop().time()
            }))
        
        # Add government service redirect suggestions
        try:
            redirect_suggestions = voice_service.generate_redirect_suggestions(user_message, "text")
            if redirect_suggestions:
                await websocket.send_text(json.dumps({
                    "type": "redirect_suggestions",
                    "content": redirect_suggestions,
                    "timestamp": asyncio.get_event_loop().time()
                }))
        except Exception as e:
            logger.warning(f"โš ๏ธ Could not generate redirect suggestions: {e}")
            
    except Exception as e:
        logger.error(f"โŒ Error handling text message: {e}")
        await websocket.send_text(json.dumps({
            "type": "error",
            "content": f"Error processing your message: {str(e)}"
        }))

async def handle_voice_message(websocket: WebSocket, message_data: Dict[str, Any]):
    """Handle voice-based messages"""
    try:
        # Check if voice features are enabled
        if not voice_service.voice_enabled:
            await websocket.send_text(json.dumps({
                "type": "error",
                "content": "Voice features are currently disabled. Please use text input."
            }))
            return
        
        audio_data = message_data.get("audio_data", "")
        if not audio_data:
            await websocket.send_text(json.dumps({
                "type": "error",
                "content": "No audio data received"
            }))
            return
        
        logger.info("๐ŸŽค Processing voice message")
        
        # Convert speech to text
        try:
            transcribed_text = await voice_service.speech_to_text(audio_data)
            logger.info(f"๐Ÿ“ Transcribed: {transcribed_text}")
            
            # Send transcription to client
            await websocket.send_text(json.dumps({
                "type": "transcription",
                "content": transcribed_text,
                "timestamp": asyncio.get_event_loop().time()
            }))
            
        except Exception as e:
            logger.error(f"โŒ Speech-to-text failed: {e}")
            await websocket.send_text(json.dumps({
                "type": "error",
                "content": f"Speech recognition failed: {str(e)}"
            }))
    except Exception as e:
        logger.error(f"โŒ Error handling voice message: {e}")
        await websocket.send_text(json.dumps({
            "type": "error",
            "content": f"Error processing voice message: {str(e)}"
        }))