Spaces:
Sleeping
Sleeping
File size: 21,095 Bytes
f844095 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
"""
Policy Impact Simulator Service
Analyzes policy changes and their financial/social impact over time periods
"""
import json
import logging
from typing import Dict, List, Any, Optional, Tuple
from datetime import datetime, timedelta
import pandas as pd
import numpy as np
from dataclasses import dataclass
from enum import Enum
logger = logging.getLogger(__name__)
class PolicyParameter(Enum):
"""Policy parameters that can be simulated"""
PENSION_FACTOR = "pension_factor"
DEARNESS_RELIEF = "dearness_relief"
BASIC_PENSION = "basic_pension"
MINIMUM_PENSION = "minimum_pension"
COMMUTATION_FACTOR = "commutation_factor"
MEDICAL_ALLOWANCE = "medical_allowance"
FAMILY_PENSION = "family_pension"
GRATUITY_LIMIT = "gratuity_limit"
HRA_PERCENTAGE = "hra_percentage"
AGE_LIMIT = "retirement_age"
class ScenarioType(Enum):
"""Types of scenarios for impact analysis"""
BEST_CASE = "best"
BASE_CASE = "base"
WORST_CASE = "worst"
@dataclass
class PolicyScenario:
"""Configuration for a policy scenario"""
parameter: PolicyParameter
current_value: float
proposed_value: float
effective_date: datetime
affected_population: int
annual_growth_rate: float = 0.03 # Default 3% annual growth
inflation_rate: float = 0.06 # Default 6% inflation
@dataclass
class ImpactProjection:
"""Financial impact projection"""
year: int
baseline_cost: float
scenario_cost: float
impact: float
affected_beneficiaries: int
notes: str
class PolicyImpactSimulator:
"""Simulates financial and social impact of policy changes"""
def __init__(self):
self.policy_definitions = self._load_policy_definitions()
self.historical_data = self._load_historical_data()
def _load_policy_definitions(self) -> Dict[PolicyParameter, Dict]:
"""Load policy parameter definitions and constraints"""
return {
PolicyParameter.PENSION_FACTOR: {
"name": "Pension Factor",
"description": "Multiplier for calculating monthly pension",
"unit": "multiplier",
"typical_range": (0.5, 2.0),
"current_rajasthan": 1.0,
"impact_type": "direct_benefit"
},
PolicyParameter.DEARNESS_RELIEF: {
"name": "Dearness Relief (DR)",
"description": "Percentage increase to counter inflation",
"unit": "percentage",
"typical_range": (0, 50),
"current_rajasthan": 12.0,
"impact_type": "cost_adjustment"
},
PolicyParameter.BASIC_PENSION: {
"name": "Basic Pension Amount",
"description": "Minimum pension amount per month",
"unit": "rupees",
"typical_range": (3000, 15000),
"current_rajasthan": 6000,
"impact_type": "direct_benefit"
},
PolicyParameter.MINIMUM_PENSION: {
"name": "Minimum Pension Guarantee",
"description": "Guaranteed minimum pension amount",
"unit": "rupees",
"typical_range": (2000, 10000),
"current_rajasthan": 3500,
"impact_type": "safety_net"
},
PolicyParameter.MEDICAL_ALLOWANCE: {
"name": "Medical Allowance",
"description": "Monthly medical expense allowance",
"unit": "rupees",
"typical_range": (500, 5000),
"current_rajasthan": 1000,
"impact_type": "healthcare_benefit"
}
}
def _load_historical_data(self) -> Dict:
"""Load historical policy implementation data"""
return {
"rajasthan_pensioners": {
"2020": 450000,
"2021": 465000,
"2022": 480000,
"2023": 495000,
"2024": 510000
},
"average_pension": {
"2020": 8500,
"2021": 9200,
"2022": 9800,
"2023": 10400,
"2024": 11000
},
"budget_allocation": {
"2020": 3850000000, # 385 crores
"2021": 4280000000, # 428 crores
"2022": 4700000000, # 470 crores
"2023": 5100000000, # 510 crores
"2024": 5600000000 # 560 crores
}
}
def simulate_policy_impact(
self,
scenario: PolicyScenario,
years: int = 5,
include_variants: bool = True
) -> Dict[str, Any]:
"""
Simulate the impact of a policy change over specified years
Args:
scenario: Policy scenario configuration
years: Number of years to project
include_variants: Include best/worst case scenarios
Returns:
Complete impact analysis with projections and metadata
"""
try:
# Generate baseline projections
baseline_projections = self._generate_baseline_projections(scenario, years)
# Generate scenario projections
scenario_projections = self._generate_scenario_projections(scenario, years)
# Calculate variants if requested
variants = {}
if include_variants:
variants = self._generate_scenario_variants(scenario, years)
# Generate clause differences and timeline
clause_analysis = self._analyze_clause_changes(scenario)
# Create evidence pack
evidence_pack = self._create_evidence_pack(
scenario, baseline_projections, scenario_projections, variants
)
return {
"scenario_id": f"policy_sim_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
"parameter": scenario.parameter.value,
"parameter_name": self.policy_definitions[scenario.parameter]["name"],
"current_value": scenario.current_value,
"proposed_value": scenario.proposed_value,
"effective_date": scenario.effective_date.isoformat(),
"projection_years": years,
"baseline_projections": baseline_projections,
"scenario_projections": scenario_projections,
"variants": variants,
"total_impact": self._calculate_total_impact(baseline_projections, scenario_projections),
"clause_analysis": clause_analysis,
"evidence_pack": evidence_pack,
"generated_at": datetime.now().isoformat(),
"assumptions": self._document_assumptions(scenario)
}
except Exception as e:
logger.error(f"Policy simulation error: {e}")
return {"error": str(e)}
def _generate_baseline_projections(self, scenario: PolicyScenario, years: int) -> List[ImpactProjection]:
"""Generate baseline (no change) projections"""
projections = []
base_population = scenario.affected_population
current_avg_benefit = self._estimate_current_benefit(scenario)
for year in range(1, years + 1):
# Account for population growth and inflation
year_population = int(base_population * (1 + scenario.annual_growth_rate) ** year)
year_benefit = current_avg_benefit * (1 + scenario.inflation_rate) ** year
annual_cost = year_population * year_benefit * 12 # Monthly to annual
projections.append(ImpactProjection(
year=year,
baseline_cost=annual_cost,
scenario_cost=annual_cost, # Same for baseline
impact=0,
affected_beneficiaries=year_population,
notes=f"Baseline year {year}: No policy change, inflation adjustment only"
))
return projections
def _generate_scenario_projections(self, scenario: PolicyScenario, years: int) -> List[ImpactProjection]:
"""Generate scenario (with change) projections"""
projections = []
base_population = scenario.affected_population
current_benefit = self._estimate_current_benefit(scenario)
new_benefit = self._calculate_new_benefit(scenario)
for year in range(1, years + 1):
year_population = int(base_population * (1 + scenario.annual_growth_rate) ** year)
# Baseline cost (what it would have been)
baseline_benefit = current_benefit * (1 + scenario.inflation_rate) ** year
baseline_cost = year_population * baseline_benefit * 12
# Scenario cost (with policy change)
scenario_benefit = new_benefit * (1 + scenario.inflation_rate) ** year
scenario_cost = year_population * scenario_benefit * 12
impact = scenario_cost - baseline_cost
projections.append(ImpactProjection(
year=year,
baseline_cost=baseline_cost,
scenario_cost=scenario_cost,
impact=impact,
affected_beneficiaries=year_population,
notes=f"Year {year}: Policy change impact ₹{impact/10000000:.1f} crores"
))
return projections
def _generate_scenario_variants(self, scenario: PolicyScenario, years: int) -> Dict[str, List[ImpactProjection]]:
"""Generate best/worst case scenario variants"""
variants = {}
# Best case: Lower growth, higher efficiency
best_scenario = PolicyScenario(
parameter=scenario.parameter,
current_value=scenario.current_value,
proposed_value=scenario.proposed_value,
effective_date=scenario.effective_date,
affected_population=int(scenario.affected_population * 0.9), # 10% fewer beneficiaries
annual_growth_rate=scenario.annual_growth_rate * 0.8, # 20% lower growth
inflation_rate=scenario.inflation_rate * 0.9 # 10% lower inflation
)
variants["best_case"] = self._generate_scenario_projections(best_scenario, years)
# Worst case: Higher growth, implementation challenges
worst_scenario = PolicyScenario(
parameter=scenario.parameter,
current_value=scenario.current_value,
proposed_value=scenario.proposed_value * 1.1, # 10% higher due to implementation costs
effective_date=scenario.effective_date,
affected_population=int(scenario.affected_population * 1.2), # 20% more beneficiaries
annual_growth_rate=scenario.annual_growth_rate * 1.3, # 30% higher growth
inflation_rate=scenario.inflation_rate * 1.1 # 10% higher inflation
)
variants["worst_case"] = self._generate_scenario_projections(worst_scenario, years)
return variants
def _analyze_clause_changes(self, scenario: PolicyScenario) -> Dict[str, Any]:
"""Analyze what policy clauses would change"""
parameter_def = self.policy_definitions[scenario.parameter]
return {
"affected_clauses": self._identify_affected_clauses(scenario.parameter),
"clause_diff": {
"before": f"{parameter_def['name']}: {scenario.current_value} {parameter_def['unit']}",
"after": f"{parameter_def['name']}: {scenario.proposed_value} {parameter_def['unit']}",
"change_type": "increase" if scenario.proposed_value > scenario.current_value else "decrease",
"change_magnitude": abs(scenario.proposed_value - scenario.current_value),
"change_percentage": ((scenario.proposed_value - scenario.current_value) / scenario.current_value) * 100
},
"effective_timeline": {
"announcement_date": (scenario.effective_date - timedelta(days=90)).isoformat(),
"legislative_process": (scenario.effective_date - timedelta(days=60)).isoformat(),
"notification_date": (scenario.effective_date - timedelta(days=30)).isoformat(),
"effective_date": scenario.effective_date.isoformat(),
"first_payment": (scenario.effective_date + timedelta(days=30)).isoformat()
},
"legal_references": self._get_legal_references(scenario.parameter)
}
def _identify_affected_clauses(self, parameter: PolicyParameter) -> List[str]:
"""Identify which policy clauses would be affected"""
clause_mapping = {
PolicyParameter.PENSION_FACTOR: [
"Rajasthan Civil Services (Pension) Rules, 1996 - Rule 35",
"Pension calculation formula - Clause 4.2.1",
"Service weightage provisions - Clause 6.1"
],
PolicyParameter.DEARNESS_RELIEF: [
"Dearness Relief calculation - Rule 42",
"Inflation adjustment mechanism - Clause 3.4",
"Automatic revision provisions - Rule 43"
],
PolicyParameter.BASIC_PENSION: [
"Minimum pension guarantee - Rule 28",
"Basic pension structure - Clause 2.1",
"Pension floor provisions - Rule 29"
],
PolicyParameter.MEDICAL_ALLOWANCE: [
"Medical benefits - Rule 52",
"Healthcare allowance - Clause 8.3",
"Medical reimbursement - Rule 53"
]
}
return clause_mapping.get(parameter, ["General pension provisions"])
def _get_legal_references(self, parameter: PolicyParameter) -> List[str]:
"""Get relevant legal references for the parameter"""
references = {
PolicyParameter.PENSION_FACTOR: [
"Rajasthan Civil Services (Pension) Rules, 1996",
"Rajasthan Government Resolution No. F.2(5)FD/Rules/96",
"Central Civil Services (Pension) Rules, 2021 - Reference"
],
PolicyParameter.DEARNESS_RELIEF: [
"Rajasthan Civil Services (Revised Pay) Rules, 2017",
"Dearness Allowance calculation guidelines",
"RCS(RP) Rules notification dated 15.08.2017"
]
}
return references.get(parameter, ["Rajasthan Civil Services (Pension) Rules, 1996"])
def _estimate_current_benefit(self, scenario: PolicyScenario) -> float:
"""Estimate current monthly benefit amount"""
parameter_def = self.policy_definitions[scenario.parameter]
if scenario.parameter == PolicyParameter.BASIC_PENSION:
return scenario.current_value
elif scenario.parameter == PolicyParameter.PENSION_FACTOR:
# Average salary * factor
return 25000 * scenario.current_value # Assumed average salary
elif scenario.parameter == PolicyParameter.DEARNESS_RELIEF:
# DR percentage of basic pension
base_pension = 8000 # Assumed base
return base_pension * (scenario.current_value / 100)
else:
return parameter_def.get("current_rajasthan", 5000)
def _calculate_new_benefit(self, scenario: PolicyScenario) -> float:
"""Calculate new monthly benefit amount after policy change"""
if scenario.parameter == PolicyParameter.BASIC_PENSION:
return scenario.proposed_value
elif scenario.parameter == PolicyParameter.PENSION_FACTOR:
return 25000 * scenario.proposed_value
elif scenario.parameter == PolicyParameter.DEARNESS_RELIEF:
base_pension = 8000
return base_pension * (scenario.proposed_value / 100)
else:
return scenario.proposed_value
def _calculate_total_impact(self, baseline: List[ImpactProjection], scenario: List[ImpactProjection]) -> Dict[str, float]:
"""Calculate total financial impact"""
total_additional_cost = sum(proj.impact for proj in scenario)
total_baseline_cost = sum(proj.baseline_cost for proj in baseline)
return {
"total_additional_cost_crores": total_additional_cost / 10000000, # Convert to crores
"total_baseline_cost_crores": total_baseline_cost / 10000000,
"percentage_increase": (total_additional_cost / total_baseline_cost) * 100 if total_baseline_cost > 0 else 0,
"annual_average_impact_crores": (total_additional_cost / len(scenario)) / 10000000,
"cost_per_beneficiary_annual": total_additional_cost / (scenario[0].affected_beneficiaries * len(scenario))
}
def _create_evidence_pack(self, scenario, baseline, projections, variants) -> Dict[str, Any]:
"""Create exportable evidence pack"""
return {
"summary_stats": {
"policy_parameter": self.policy_definitions[scenario.parameter]["name"],
"change_magnitude": f"{scenario.current_value} → {scenario.proposed_value}",
"affected_population": scenario.affected_population,
"projection_period": f"{len(projections)} years",
"total_impact": f"₹{sum(p.impact for p in projections)/10000000:.1f} crores"
},
"yearly_breakdown": [
{
"year": p.year,
"baseline_crores": p.baseline_cost / 10000000,
"scenario_crores": p.scenario_cost / 10000000,
"impact_crores": p.impact / 10000000,
"beneficiaries": p.affected_beneficiaries
}
for p in projections
],
"scenario_comparison": {
"best_case_total": sum(p.impact for p in variants.get("best_case", [])) / 10000000 if variants else 0,
"base_case_total": sum(p.impact for p in projections) / 10000000,
"worst_case_total": sum(p.impact for p in variants.get("worst_case", [])) / 10000000 if variants else 0
},
"export_formats": {
"csv_data": "Ready for CSV export",
"chart_data": "Ready for visualization",
"pdf_report": "Formatted for official reporting"
}
}
def _document_assumptions(self, scenario: PolicyScenario) -> Dict[str, Any]:
"""Document all assumptions used in the simulation"""
return {
"demographic_assumptions": {
"affected_population": scenario.affected_population,
"annual_growth_rate": f"{scenario.annual_growth_rate*100:.1f}%",
"population_source": "Rajasthan pension department estimates"
},
"economic_assumptions": {
"inflation_rate": f"{scenario.inflation_rate*100:.1f}%",
"salary_growth": "Aligned with inflation",
"implementation_efficiency": "100% (no leakage assumed)"
},
"policy_assumptions": {
"effective_date": scenario.effective_date.strftime("%Y-%m-%d"),
"implementation_delay": "None assumed",
"administrative_costs": "Not included in projections",
"compliance_rate": "100% (full implementation assumed)"
},
"data_sources": [
"Rajasthan Finance Department budget documents",
"Pension disbursement historical data",
"National Sample Survey Office reports",
"Reserve Bank of India inflation projections"
]
}
# Usage example and helper functions
def create_sample_scenarios() -> List[PolicyScenario]:
"""Create sample policy scenarios for testing"""
return [
PolicyScenario(
parameter=PolicyParameter.DEARNESS_RELIEF,
current_value=12.0,
proposed_value=18.0,
effective_date=datetime(2025, 4, 1),
affected_population=510000,
annual_growth_rate=0.03,
inflation_rate=0.06
),
PolicyScenario(
parameter=PolicyParameter.BASIC_PENSION,
current_value=6000,
proposed_value=8000,
effective_date=datetime(2025, 7, 1),
affected_population=450000,
annual_growth_rate=0.025,
inflation_rate=0.055
),
PolicyScenario(
parameter=PolicyParameter.MEDICAL_ALLOWANCE,
current_value=1000,
proposed_value=2000,
effective_date=datetime(2025, 10, 1),
affected_population=510000,
annual_growth_rate=0.035,
inflation_rate=0.065
)
]
|