Commit
·
1bd6599
1
Parent(s):
142c453
Upd FastAPI backend img processing garbage det and cls + frontend JS side rendering
Browse files- app.py +53 -0
- statics/index.html +1 -1
- statics/script.js +24 -0
app.py
CHANGED
|
@@ -40,6 +40,7 @@ os.environ["HF_HOME"] = CACHE
|
|
| 40 |
|
| 41 |
# ── Load models once ───────────────────────────────────────────────────
|
| 42 |
print("🔄 Loading models …")
|
|
|
|
| 43 |
model_self = YOLO(f"{MODEL_DIR}/garbage_detector.pt") # YOLOv11(l)
|
| 44 |
model_yolo5 = yolov5.load(f"{MODEL_DIR}/yolov5-detect-trash-classification.pt")
|
| 45 |
processor_detr = DetrImageProcessor.from_pretrained(f"{MODEL_DIR}/detr")
|
|
@@ -48,7 +49,10 @@ feat_extractor = SegformerFeatureExtractor.from_pretrained(
|
|
| 48 |
"nvidia/segformer-b4-finetuned-ade-512-512")
|
| 49 |
segformer = SegformerForSemanticSegmentation.from_pretrained(
|
| 50 |
"nvidia/segformer-b4-finetuned-ade-512-512")
|
|
|
|
| 51 |
model_animal = YOLO(f"{MODEL_DIR}/yolov8n.pt") # Load COCO pre-trained YOLOv8 for animal detection
|
|
|
|
|
|
|
| 52 |
print("✅ Models ready\n")
|
| 53 |
|
| 54 |
# ── ADE-20K palette + custom mapping (verbatim) ─────────────────────────
|
|
@@ -413,6 +417,55 @@ async def detect_animals(file: UploadFile = File(...)):
|
|
| 413 |
return FileResponse(result_path, media_type="image/jpeg")
|
| 414 |
|
| 415 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 416 |
# ── Core pipeline (runs in background thread) ───────────────────────────
|
| 417 |
def _pipeline(uid,img_path):
|
| 418 |
print(f"▶️ [{uid}] processing")
|
|
|
|
| 40 |
|
| 41 |
# ── Load models once ───────────────────────────────────────────────────
|
| 42 |
print("🔄 Loading models …")
|
| 43 |
+
# Garbage detection
|
| 44 |
model_self = YOLO(f"{MODEL_DIR}/garbage_detector.pt") # YOLOv11(l)
|
| 45 |
model_yolo5 = yolov5.load(f"{MODEL_DIR}/yolov5-detect-trash-classification.pt")
|
| 46 |
processor_detr = DetrImageProcessor.from_pretrained(f"{MODEL_DIR}/detr")
|
|
|
|
| 49 |
"nvidia/segformer-b4-finetuned-ade-512-512")
|
| 50 |
segformer = SegformerForSemanticSegmentation.from_pretrained(
|
| 51 |
"nvidia/segformer-b4-finetuned-ade-512-512")
|
| 52 |
+
# Animal detection
|
| 53 |
model_animal = YOLO(f"{MODEL_DIR}/yolov8n.pt") # Load COCO pre-trained YOLOv8 for animal detection
|
| 54 |
+
# Garbage classification
|
| 55 |
+
model_garbage_cls = YOLO(f"{MODEL_DIR}/garbage_cls_yolov8s.pt")
|
| 56 |
print("✅ Models ready\n")
|
| 57 |
|
| 58 |
# ── ADE-20K palette + custom mapping (verbatim) ─────────────────────────
|
|
|
|
| 417 |
return FileResponse(result_path, media_type="image/jpeg")
|
| 418 |
|
| 419 |
|
| 420 |
+
# Garbage classification endpoint
|
| 421 |
+
@app.post("/classification/")
|
| 422 |
+
async def classify_garbage(file: UploadFile = File(...)):
|
| 423 |
+
img_id = _uid()
|
| 424 |
+
img_path = f"{UPLOAD_DIR}/{img_id}_{file.filename}"
|
| 425 |
+
out_path = f"{OUTPUT_DIR}/{img_id}_classified.jpg"
|
| 426 |
+
# Load file
|
| 427 |
+
with open(img_path, "wb") as f:
|
| 428 |
+
shutil.copyfileobj(file.file, f)
|
| 429 |
+
# Read image
|
| 430 |
+
print(f"[Classification] Received image: {img_path}")
|
| 431 |
+
image = cv2.imread(img_path)
|
| 432 |
+
rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 433 |
+
pil = Image.fromarray(rgb)
|
| 434 |
+
# DETR for garbage detection boxes
|
| 435 |
+
detections = []
|
| 436 |
+
inp = processor_detr(images=pil, return_tensors="pt")
|
| 437 |
+
with torch.no_grad():
|
| 438 |
+
out = model_detr(**inp)
|
| 439 |
+
results = processor_detr.post_process_object_detection(
|
| 440 |
+
outputs=out,
|
| 441 |
+
target_sizes=torch.tensor([pil.size[::-1]]),
|
| 442 |
+
threshold=0.5
|
| 443 |
+
)[0]
|
| 444 |
+
# Bbox return
|
| 445 |
+
boxes = results["boxes"]
|
| 446 |
+
print(f"[Classification] {len(boxes)} garbage objects detected by DETR.")
|
| 447 |
+
# Mapping in between
|
| 448 |
+
for i, box in enumerate(boxes):
|
| 449 |
+
x1, y1, x2, y2 = map(int, box.tolist())
|
| 450 |
+
crop = image[y1:y2, x1:x2]
|
| 451 |
+
if crop.shape[0] < 10 or crop.shape[1] < 10:
|
| 452 |
+
continue # skip tiny crops
|
| 453 |
+
# Convert crop to RGB and classify
|
| 454 |
+
pil_crop = Image.fromarray(cv2.cvtColor(crop, cv2.COLOR_BGR2RGB))
|
| 455 |
+
pred = model_garbage_cls(pil_crop, verbose=False)[0]
|
| 456 |
+
class_id = int(pred.probs.top1)
|
| 457 |
+
class_name = model_garbage_cls.names[class_id]
|
| 458 |
+
conf = pred.probs.top1conf
|
| 459 |
+
# Labelling on output image
|
| 460 |
+
label = f"{class_name} ({conf:.2f})"
|
| 461 |
+
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 165, 255), 2)
|
| 462 |
+
cv2.putText(image, label, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 165, 255), 2)
|
| 463 |
+
# Write image on render
|
| 464 |
+
cv2.imwrite(out_path, image)
|
| 465 |
+
print(f"[Classification] Output saved: {out_path}")
|
| 466 |
+
return FileResponse(out_path, media_type="image/jpeg")
|
| 467 |
+
|
| 468 |
+
|
| 469 |
# ── Core pipeline (runs in background thread) ───────────────────────────
|
| 470 |
def _pipeline(uid,img_path):
|
| 471 |
print(f"▶️ [{uid}] processing")
|
statics/index.html
CHANGED
|
@@ -24,7 +24,7 @@
|
|
| 24 |
<div id="animal-result"></div>
|
| 25 |
<div id="upload-container3">
|
| 26 |
<input type="file" id="upload3" accept="image/*">
|
| 27 |
-
<button id="checkTrashBtn" onclick="
|
| 28 |
</div>
|
| 29 |
<div id="trash-result"></div>
|
| 30 |
<script src="/statics/script.js"></script>
|
|
|
|
| 24 |
<div id="animal-result"></div>
|
| 25 |
<div id="upload-container3">
|
| 26 |
<input type="file" id="upload3" accept="image/*">
|
| 27 |
+
<button id="checkTrashBtn" onclick="uploadTrash()">Classify Garbage</button>
|
| 28 |
</div>
|
| 29 |
<div id="trash-result"></div>
|
| 30 |
<script src="/statics/script.js"></script>
|
statics/script.js
CHANGED
|
@@ -62,5 +62,29 @@ async function uploadAnimal() {
|
|
| 62 |
const imgURL = URL.createObjectURL(blob);
|
| 63 |
document.getElementById("animal-result").innerHTML =
|
| 64 |
`<p><b>Animal Detection Result:</b></p><img src="${imgURL}" width="640"/>`;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
}
|
|
|
|
| 66 |
|
|
|
|
| 62 |
const imgURL = URL.createObjectURL(blob);
|
| 63 |
document.getElementById("animal-result").innerHTML =
|
| 64 |
`<p><b>Animal Detection Result:</b></p><img src="${imgURL}" width="640"/>`;
|
| 65 |
+
}
|
| 66 |
+
|
| 67 |
+
async function uploadTrash() {
|
| 68 |
+
const fileInput = document.getElementById('upload3');
|
| 69 |
+
if (!fileInput.files.length) return alert("Upload an image first");
|
| 70 |
+
// Upload and read image file
|
| 71 |
+
const formData = new FormData();
|
| 72 |
+
formData.append("file", fileInput.files[0]);
|
| 73 |
+
// Handshake with FastAPI
|
| 74 |
+
const res = await fetch("/classification/", {
|
| 75 |
+
method: "POST",
|
| 76 |
+
body: formData
|
| 77 |
+
});
|
| 78 |
+
// Error
|
| 79 |
+
if (!res.ok) {
|
| 80 |
+
alert("Failed to process garbage classification.");
|
| 81 |
+
return;
|
| 82 |
+
}
|
| 83 |
+
// Create image
|
| 84 |
+
const blob = await res.blob();
|
| 85 |
+
const imgURL = URL.createObjectURL(blob);
|
| 86 |
+
document.getElementById("trash-result").innerHTML =
|
| 87 |
+
`<p><b>Garbage Classification Result:</b></p><img src="${imgURL}" width="640"/>`;
|
| 88 |
}
|
| 89 |
+
|
| 90 |
|