Spaces:
Runtime error
Runtime error
| # LSTM for sequence classification in the IMDB dataset | |
| import tensorflow as tf | |
| from tensorflow.keras.datasets import imdb | |
| from tensorflow.keras.models import Sequential | |
| from tensorflow.keras.layers import Dense | |
| from tensorflow.keras.layers import LSTM | |
| from tensorflow.keras.layers import Embedding | |
| from tensorflow.keras.preprocessing import sequence | |
| # fix random seed for reproducibility | |
| tf.random.set_seed(7) | |
| # load the dataset but only keep the top n words, zero the rest | |
| top_words = 5000 | |
| (X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=top_words) | |
| # truncate and pad input sequences | |
| max_review_length = 500 | |
| X_train = sequence.pad_sequences(X_train, maxlen=max_review_length) | |
| X_test = sequence.pad_sequences(X_test, maxlen=max_review_length) | |
| # create the model | |
| embedding_vecor_length = 32 | |
| model = Sequential() | |
| model.add(Embedding(top_words, embedding_vecor_length, input_length=max_review_length)) | |
| model.add(LSTM(200)) | |
| model.add(Dense(1, activation='sigmoid')) | |
| model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) | |
| print(model.summary()) | |
| model.fit(X_train, y_train, epochs=20, batch_size=64) | |
| # Final evaluation of the model | |
| scores = model.evaluate(X_test, y_test, verbose=0) | |
| print("Accuracy: %.2f%%" % (scores[1]*100)) | |
| model.save(r'C:\Users\shahi\Desktop\My Projects\DeepPredictorHub\LS.keras') | |