Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,153 Bytes
df68ff3 585eb54 df68ff3 f59f198 df68ff3 cdc67a5 df68ff3 efe5aeb cdc67a5 efe5aeb cdc67a5 efe5aeb cdc67a5 efe5aeb df68ff3 cdc67a5 f3dcd28 efe5aeb df68ff3 f3dcd28 df68ff3 f3dcd28 df68ff3 f3dcd28 df68ff3 efe5aeb df68ff3 585eb54 df68ff3 cdc67a5 df68ff3 585eb54 df68ff3 f3dcd28 585eb54 df68ff3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
"""
DeepSeek-OCR Gradio Interface for Hugging Face Spaces
------------------------------------------------------
Simplified Gradio app optimized for ZeroGPU deployment
"""
import gradio as gr
import torch
from PIL import Image
import tempfile
import os
from pathlib import Path
import spaces
import fitz # PyMuPDF
# Initialize model (will be loaded on first use with ZeroGPU)
model = None
processor = None
def load_model():
"""Load DeepSeek-OCR model with ZeroGPU"""
global model, processor
if model is None:
from transformers import AutoModelForCausalLM, AutoTokenizer
try:
# Try importing from backend.process first (for Hugging Face Space)
from backend.process.image_process import DeepseekOCRProcessor
except ImportError:
# Fall back to process.image_process (for local deployment)
from process.image_process import DeepseekOCRProcessor
model_path = "deepseek-ai/DeepSeek-OCR"
print("Loading DeepSeek-OCR model...")
processor = DeepseekOCRProcessor.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
print("Model loaded successfully!")
return model, processor
@spaces.GPU(duration=120)
def perform_ocr(image, prompt_text):
"""
Perform OCR on the uploaded image
Args:
image: PIL Image or file path
prompt_text: Custom prompt for OCR task
Returns:
str: Extracted text or analysis result
"""
try:
# Load model
model, processor = load_model()
# Handle image input
if isinstance(image, str):
image = Image.open(image).convert("RGB")
elif not isinstance(image, Image.Image):
raise ValueError("Invalid image input")
# Prepare prompt
if not prompt_text or prompt_text.strip() == "":
prompt = "<image>\nFree OCR."
else:
prompt = f"<image>\n{prompt_text}"
# Process image
inputs = processor.tokenize_with_images(
images=[image],
prompt=prompt,
bos=True,
eos=True,
cropping=True
)
# Move to GPU
inputs = {k: v.to(model.device) if isinstance(v, torch.Tensor) else v
for k, v in inputs.items()}
# Generate
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=2048,
do_sample=False,
temperature=1.0,
top_p=1.0,
use_cache=True,
)
# Decode output
result = processor.tokenizer.decode(
outputs[0][inputs['input_ids'].shape[1]:],
skip_special_tokens=True
)
return result
except Exception as e:
return f"Error during OCR processing: {str(e)}"
@spaces.GPU(duration=180)
def process_pdf(pdf_file, prompt_text):
"""
Process PDF file (extract text from first few pages)
Args:
pdf_file: Uploaded PDF file path (string)
prompt_text: Custom prompt for OCR task
Returns:
str: Extracted text from PDF pages
"""
try:
# Validate file upload
if pdf_file is None or pdf_file == "":
return "β Please upload a PDF file first."
# pdf_file is now a filepath string
pdf_path = pdf_file
# Check if file exists
if not os.path.exists(pdf_path):
return f"β File not found: {pdf_path}"
# Open PDF
pdf_document = fitz.open(pdf_path)
total_pages = len(pdf_document)
if total_pages == 0:
pdf_document.close()
return "β PDF file is empty (0 pages)."
results = []
# Process first 3 pages (to avoid timeout)
max_pages = min(3, total_pages)
for page_num in range(max_pages):
page = pdf_document[page_num]
# Convert page to image
pix = page.get_pixmap(matrix=fitz.Matrix(2, 2)) # 2x resolution
img_data = pix.tobytes("png")
# Save to temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
tmp.write(img_data)
tmp_path = tmp.name
# Perform OCR
image = Image.open(tmp_path)
result = perform_ocr(image, prompt_text)
results.append(f"--- Page {page_num + 1} ---\n{result}\n")
# Cleanup
os.unlink(tmp_path)
# Close PDF before checking total_pages
pdf_document.close()
# Add note if PDF has more pages
if max_pages < total_pages:
results.append(f"\n(Only first {max_pages} pages processed. Full PDF has {total_pages} pages)")
return "\n".join(results)
except Exception as e:
import traceback
error_details = traceback.format_exc()
return f"β Error processing PDF: {str(e)}\n\nPlease make sure you uploaded a valid PDF file."
# Create Gradio Interface
with gr.Blocks(title="DeepSeek-OCR Studio", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π DeepSeek-OCR Studio
Advanced OCR system supporting:
- π Multi-language text recognition (Chinese, English, etc.)
- π Table & chart extraction
- π¨ Professional drawing analysis (CAD, flowcharts)
- π PDF document processing & OCR
- π Layout analysis & Markdown conversion
**Note**: Running on ZeroGPU - first request may take longer to load the model.
""")
with gr.Tab("Image OCR"):
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="Upload Image")
image_prompt = gr.Textbox(
label="Custom Prompt (Optional)",
placeholder="Free OCR.",
value="Free OCR.",
lines=2
)
image_btn = gr.Button("Extract Text", variant="primary")
with gr.Column():
image_output = gr.Textbox(
label="Extracted Text",
lines=20,
show_copy_button=True
)
image_btn.click(
fn=perform_ocr,
inputs=[image_input, image_prompt],
outputs=image_output
)
gr.Examples(
examples=[
["examples/sample1.png", "Free OCR."],
["examples/sample2.jpg", "Extract all text and tables."],
],
inputs=[image_input, image_prompt],
label="Example Images (if available)"
)
with gr.Tab("PDF OCR"):
with gr.Row():
with gr.Column():
pdf_input = gr.File(
label="Upload PDF",
file_types=[".pdf"],
type="filepath"
)
pdf_prompt = gr.Textbox(
label="Custom Prompt (Optional)",
placeholder="Free OCR.",
value="Free OCR.",
lines=2
)
pdf_btn = gr.Button("Process PDF (First 3 Pages)", variant="primary")
with gr.Column():
pdf_output = gr.Textbox(
label="Extracted Text",
lines=20,
show_copy_button=True
)
pdf_btn.click(
fn=process_pdf,
inputs=[pdf_input, pdf_prompt],
outputs=pdf_output
)
with gr.Tab("Advanced Prompts"):
gr.Markdown("""
### Prompt Examples
**Basic OCR:**
```
Free OCR.
```
**Table Extraction:**
```
Extract all tables and convert to markdown format.
```
**Chart Analysis:**
```
Analyze this chart and extract data in table format.
```
**Multi-language:**
```
Extract all text in multiple languages.
```
**CAD Drawing:**
```
Analyze this technical drawing and describe its components.
```
""")
gr.Markdown("""
---
### About
- **Model**: [DeepSeek-OCR](https://huggingface.co/deepseek-ai/DeepSeek-OCR)
- **Project**: [DeepSeek-OCR-Web](https://github.com/fufankeji/DeepSeek-OCR-Web)
- **GPU**: ZeroGPU (Hugging Face Spaces)
### Features
- π **Image OCR**: Upload images for text extraction
- π **PDF OCR**: Extract text from PDF documents (first 3 pages)
- π **Table & Chart**: Extract tables and analyze charts
- π **Multi-language**: Support for 100+ languages
### Note
- Processing time: 30-120 seconds per image/page
- PDF OCR limited to first 3 pages on ZeroGPU
- For full functionality, deploy locally with GPU
""")
if __name__ == "__main__":
demo.queue(max_size=20)
demo.launch()
|