Spaces:
Sleeping
Sleeping
File size: 16,889 Bytes
5461eb8 5008b66 5461eb8 5008b66 95def52 5008b66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 |
---
title: Voice Cloning Backend
emoji: π€
colorFrom: purple
colorTo: blue
sdk: docker
app_file: backend/wsgi.py
pinned: false
---
# Real-Time Voice Cloning (RTVC) - Backend API
A complete full-stack voice cloning application with React frontend and PyTorch backend that can synthesize speech in anyone's voice from just a few seconds of audio reference.
[](https://www.python.org/downloads/)
[](https://pytorch.org/)
[](https://reactjs.org/)
[](https://www.typescriptlang.org/)
[](LICENSE)
## Features
- **Full Stack Application**: Modern React UI + Flask API + PyTorch backend
- **Voice Enrollment**: Record or upload voice samples directly in the browser
- **Speech Synthesis**: Generate cloned speech with intuitive interface
- **Voice Cloning**: Clone any voice with just 3-10 seconds of audio
- **Real-Time Generation**: Generate speech at 2-3x real-time speed on CPU
- **High Quality**: Natural-sounding synthetic speech using state-of-the-art models
- **Easy to Use**: Beautiful UI with 3D visualizations and audio waveforms
- **Multiple Formats**: Supports WAV, MP3, M4A, FLAC input audio
- **Multi-Language**: Supports English and Hindi text-to-speech
## Table of Contents
- [Demo](#demo)
- [Quick Start (Full Stack)](#quick-start-full-stack)
- [Deployment](#deployment)
- [How It Works](#how-it-works)
- [Installation](#installation)
- [Project Structure](#project-structure)
- [Usage Examples](#usage-examples)
- [API Documentation](#api-documentation)
- [Troubleshooting](#troubleshooting)
- [Technical Details](#technical-details)
- [Credits](#credits)
## Demo
**Frontend UI**: Modern React interface with 3D visualizations
**Voice Enrollment**: Record/upload voice samples β Backend saves to database
**Speech Synthesis**: Select voice + Enter text β Backend generates cloned speech
**Playback**: Listen to generated audio directly in browser or download
## Quick Start (Full Stack)
### Option 1: Using the Startup Script (Easiest)
```powershell
# Windows PowerShell
cd rtvc
.\start_app.ps1
```
This will:
1. Start the Backend API server (port 5000)
2. Start the Frontend dev server (port 8080)
3. Open your browser to http://localhost:8080
### Option 2: Manual Start
**Terminal 1 - Backend API:**
```bash
cd rtvc
python api_server.py
```
**Terminal 2 - Frontend:**
```bash
cd "rtvc/Frontend Voice Cloning"
npm run dev
```
Then open http://localhost:8080 in your browser.
## Deployment
### Production Deployment Stack
**Frontend**: Netlify (Free tier)
**Backend**: Render (Free tier)
**Models**: HuggingFace Hub (Free)
See [DEPLOYMENT.md](DEPLOYMENT.md) for complete deployment guide.
#### Quick Deployment
1. **Deploy Backend to Render**
- Push to GitHub
- Connect Render to GitHub repo
- Use `render.yaml` configuration
- Models auto-download on first deploy (~10 minutes)
2. **Deploy Frontend to Netlify**
- Connect Netlify to GitHub repo
- Set base directory: `frontend`
- Environment: `VITE_API_URL=your-render-backend-url`
3. **Test**
- Visit your Netlify URL
- API calls automatically route to Render backend
**Pricing**: Free tier for both (with optional paid upgrades)
### Using the Application
1. **Enroll a Voice**:
- Go to "Voice Enrollment" section
- Enter a voice name
- Record audio (3-10 seconds) or upload a file
- Click "Enroll Voice"
2. **Generate Speech**:
- Go to "Speech Synthesis" section
- Select your enrolled voice
- Enter text to synthesize
- Click "Generate Speech"
- Play or download the result
For detailed integration information, see [INTEGRATION_GUIDE.md](INTEGRATION_GUIDE.md).
## How It Works
The system uses a 3-stage pipeline based on the SV2TTS (Speaker Verification to Text-to-Speech) architecture:
```
Reference Audio β [Encoder] β Speaker Embedding (256-d vector)
β
Text Input β [Synthesizer (Tacotron)] β Mel-Spectrogram
β
[Vocoder (WaveRNN)] β Audio Output
```
### Pipeline Stages:
1. **Speaker Encoder** - Extracts a unique voice "fingerprint" from reference audio
2. **Synthesizer** - Generates mel-spectrograms from text conditioned on speaker embedding
3. **Vocoder** - Converts mel-spectrograms to high-quality audio waveforms
## Installation
### Prerequisites
- Python 3.11 or higher
- Windows/Linux/macOS
- ~2 GB disk space for models
- 4 GB RAM minimum (8 GB recommended)
### Step 1: Clone the Repository
```bash
git clone https://github.com/yourusername/rtvc.git
cd rtvc
```
### Step 2: Install Dependencies
```bash
pip install torch numpy librosa scipy soundfile webrtcvad tqdm unidecode inflect matplotlib numba
```
Or install PyTorch with CUDA for GPU acceleration:
```bash
pip install torch --index-url https://download.pytorch.org/whl/cu118
pip install numpy librosa scipy soundfile webrtcvad tqdm unidecode inflect matplotlib numba
```
### Step 3: Download Pretrained Models
Download the pretrained models from [Google Drive](https://drive.google.com/drive/folders/1fU6umc5uQAVR2udZdHX-lDgXYzTyqG_j):
| Model | Size | Description |
|-------|------|-------------|
| encoder.pt | 17 MB | Speaker encoder model |
| synthesizer.pt | 370 MB | Tacotron synthesizer model |
| vocoder.pt | 53 MB | WaveRNN vocoder model |
Place all three files in the `models/default/` directory.
### Step 4: Verify Installation
```bash
python clone_my_voice.py
```
If you see errors about missing models, check that all three `.pt` files are in `models/default/`.
## Quick Start
### Method 1: Simple Script (Recommended)
1. Open `clone_my_voice.py`
2. Edit these lines:
```python
# Your voice sample file
VOICE_FILE = r"sample\your_voice.mp3"
# The text you want to be spoken
TEXT_TO_CLONE = """
Your text here. Can be multiple sentences or even paragraphs!
"""
# Output location
OUTPUT_FILE = r"outputs\cloned_voice.wav"
```
3. Run it:
```bash
python clone_my_voice.py
```
### Method 2: Command Line
```bash
python run_cli.py --voice "path/to/voice.wav" --text "Text to synthesize" --out "output.wav"
```
### Method 3: Advanced Runner Script
```bash
python run_voice_cloning.py
```
Edit the paths and text inside the script before running.
## Project Structure
```
rtvc/
βββ clone_my_voice.py # Simple script - EDIT THIS to clone your voice!
βββ run_cli.py # Command-line interface
β
βββ encoder/ # Speaker Encoder Module
β βββ __init__.py
β βββ audio.py # Audio preprocessing for encoder
β βββ inference.py # Encoder inference functions
β βββ model.py # SpeakerEncoder neural network
β βββ params_data.py # Data hyperparameters
β βββ params_model.py # Model hyperparameters
β
βββ synthesizer/ # Tacotron Synthesizer Module
β βββ __init__.py
β βββ audio.py # Audio processing for synthesizer
β βββ hparams.py # All synthesizer hyperparameters
β βββ inference.py # Synthesizer inference class
β β
β βββ models/
β β βββ tacotron.py # Tacotron 2 architecture
β β
β βββ utils/
β βββ cleaners.py # Text cleaning functions
β βββ numbers.py # Number-to-text conversion
β βββ symbols.py # Character/phoneme symbols
β βββ text.py # Text-to-sequence conversion
β
βββ vocoder/ # WaveRNN Vocoder Module
β βββ audio.py # Audio utilities for vocoder
β βββ display.py # Progress display utilities
β βββ distribution.py # Probability distributions
β βββ hparams.py # Vocoder hyperparameters
β βββ inference.py # Vocoder inference functions
β β
β βββ models/
β βββ fatchord_version.py # WaveRNN architecture
β
βββ utils/
β βββ default_models.py # Model download utilities
β
βββ models/
β βββ default/ # Pretrained models go here
β βββ encoder.pt # (17 MB)
β βββ synthesizer.pt # (370 MB) - Must download!
β βββ vocoder.pt # (53 MB)
β
βββ sample/ # Put your voice samples here
β βββ your_voice.mp3
β
βββ outputs/ # Generated audio outputs
βββ cloned_voice.wav
```
### Key Files Explained
| File | Purpose |
|------|---------|
| `clone_my_voice.py` | **START HERE** - Simplest way to clone your voice |
| `run_cli.py` | Command-line tool for voice cloning |
| `encoder/inference.py` | Loads encoder and extracts speaker embeddings |
| `synthesizer/inference.py` | Loads synthesizer and generates mel-spectrograms |
| `vocoder/inference.py` | Loads vocoder and generates waveforms |
| `**/hparams.py` | Configuration files for each module |
## Usage Examples
### Example 1: Basic Voice Cloning
```bash
python clone_my_voice.py
```
Edit `clone_my_voice.py` first:
```python
VOICE_FILE = r"sample\my_voice.mp3"
TEXT_TO_CLONE = "Hello, this is my cloned voice!"
```
### Example 2: Multiple Outputs
```bash
# Generate first output
python run_cli.py --voice "voice.wav" --text "First message" --out "output1.wav"
# Generate second output with same voice
python run_cli.py --voice "voice.wav" --text "Second message" --out "output2.wav"
```
### Example 3: Long Text
```bash
python run_cli.py --voice "voice.wav" --text "This is a very long text that spans multiple sentences. The voice cloning system will synthesize all of it in the reference voice. You can make it as long as you need."
```
### Example 4: Different Voice Samples
```bash
# Clone voice A
python run_cli.py --voice "person_a.wav" --text "Message from person A"
# Clone voice B
python run_cli.py --voice "person_b.wav" --text "Message from person B"
```
## Troubleshooting
### Common Issues
#### "Model file not found"
**Solution**: Download the models from Google Drive and place them in `models/default/`:
- https://drive.google.com/drive/folders/1fU6umc5uQAVR2udZdHX-lDgXYzTyqG_j
Verify file sizes:
```bash
# Windows
dir models\default\*.pt
# Linux/Mac
ls -lh models/default/*.pt
```
Expected sizes:
- encoder.pt: 17,090,379 bytes (17 MB)
- synthesizer.pt: 370,554,559 bytes (370 MB) - Most common issue!
- vocoder.pt: 53,845,290 bytes (53 MB)
#### "Reference voice file not found"
**Solution**: Use absolute paths or check current directory:
```python
# Use absolute path
VOICE_FILE = r"C:\Users\YourName\Desktop\voice.mp3"
# Or relative from project root
VOICE_FILE = r"sample\voice.mp3"
```
#### Output sounds robotic or unclear
**Solutions**:
- Use a higher quality voice sample (16kHz+ sample rate)
- Ensure voice sample is 3-10 seconds long
- Remove background noise from voice sample
- Speak clearly and naturally in the reference audio
#### "AttributeError: module 'numpy' has no attribute 'cumproduct'"
**Solution**: This is already fixed in the code. If you see this:
```bash
pip install --upgrade numpy
```
#### Slow generation on CPU
**Solutions**:
- Normal speed: 2-3x real-time on modern CPUs
- For faster generation, install PyTorch with CUDA:
```bash
pip install torch --index-url https://download.pytorch.org/whl/cu118
```
Then the system will automatically use GPU if available.
### Getting Help
If you encounter other issues:
1. Check the `HOW_TO_RUN.md` file for detailed instructions
2. Verify all models are downloaded correctly
3. Ensure Python 3.11+ is installed
4. Check that all dependencies are installed
## Technical Details
### Audio Specifications
| Parameter | Value |
|-----------|-------|
| Sample Rate | 16,000 Hz |
| Channels | Mono |
| Bit Depth | 16-bit |
| FFT Size | 800 samples (50ms) |
| Hop Size | 200 samples (12.5ms) |
| Mel Channels | 80 (synthesizer/vocoder), 40 (encoder) |
### Model Architectures
#### Speaker Encoder
- **Type**: LSTM + Linear Projection
- **Input**: 40-channel mel-spectrogram
- **Output**: 256-dimensional speaker embedding
- **Parameters**: ~5M
#### Synthesizer (Tacotron 2)
- **Encoder**: CBHG (Convolution Bank + Highway + GRU)
- **Decoder**: Attention-based LSTM
- **PostNet**: 5-layer Residual CNN
- **Parameters**: ~31M
#### Vocoder (WaveRNN)
- **Type**: Recurrent Neural Vocoder
- **Mode**: Raw 9-bit with mu-law
- **Upsample Factors**: (5, 5, 8)
- **Parameters**: ~4.5M
### Text Processing
The system includes sophisticated text normalization:
- **Numbers**: "123" β "one hundred twenty three"
- **Currency**: "$5.50" β "five dollars, fifty cents"
- **Ordinals**: "1st" β "first"
- **Abbreviations**: "Dr." β "doctor"
- **Unicode**: Automatic transliteration to ASCII
### Performance
| Hardware | Generation Speed |
|----------|------------------|
| CPU (Intel i7) | 2-3x real-time |
| GPU (GTX 1060) | 10-15x real-time |
| GPU (RTX 3080) | 30-50x real-time |
Example: Generating 10 seconds of audio takes ~3-5 seconds on CPU.
## How to Use for Different Applications
### Podcast/Narration
```python
TEXT_TO_CLONE = """
Welcome to today's episode. In this podcast, we'll be discussing
the fascinating world of artificial intelligence and voice synthesis.
Let's dive right in!
"""
```
### Audiobook
```python
TEXT_TO_CLONE = """
Chapter One: The Beginning.
It was a dark and stormy night when everything changed.
The old house stood alone on the hill, its windows dark and unwelcoming.
"""
```
### Voiceover
```python
TEXT_TO_CLONE = """
Introducing the all-new product that will change your life.
With advanced features and intuitive design, it's the perfect solution.
"""
```
### Multiple Languages
The system supports English out of the box. For other languages:
1. Use English transliteration for best results
2. Or modify `synthesizer/utils/cleaners.py` for your language
## Comparison with Other Methods
| Method | Quality | Speed | Setup |
|--------|---------|-------|-------|
| Traditional TTS | Low | Fast | Easy |
| Commercial APIs | High | Fast | API Key Required |
| **This Project** | High | Medium | One-time Setup |
| Training from Scratch | High | Slow | Very Complex |
## Best Practices
### For Best Voice Quality:
1. **Reference Audio**:
- 3-10 seconds long
- Clear speech, no background noise
- Natural speaking tone (not reading/singing)
- 16kHz+ sample rate if possible
2. **Text Input**:
- Use proper punctuation for natural pauses
- Break very long texts into paragraphs
- Avoid excessive special characters
3. **Output**:
- Generate shorter clips for better quality
- Concatenate multiple clips if needed
- Post-process with audio editing software for polish
## Known Limitations
- Works best with English text
- Requires good quality reference audio
- May not perfectly capture very unique voice characteristics
- Background noise in reference affects output quality
- Very short reference audio (<3 seconds) may produce inconsistent results
## Future Improvements
- [ ] Add GUI interface
- [ ] Support for multiple languages
- [ ] Real-time streaming mode
- [ ] Voice mixing/morphing capabilities
- [ ] Fine-tuning on custom datasets
- [ ] Mobile app version
## Credits
This implementation is based on:
- **SV2TTS**: Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis
- **Tacotron 2**: Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions
- **WaveRNN**: Efficient Neural Audio Synthesis
Original research papers:
- [SV2TTS Paper](https://arxiv.org/abs/1806.04558)
- [Tacotron 2 Paper](https://arxiv.org/abs/1712.05884)
- [WaveRNN Paper](https://arxiv.org/abs/1802.08435)
## License
This project is licensed under the MIT License - see the LICENSE file for details.
## Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
1. Fork the repository
2. Create your feature branch (`git checkout -b feature/AmazingFeature`)
3. Commit your changes (`git commit -m 'Add some AmazingFeature'`)
4. Push to the branch (`git push origin feature/AmazingFeature`)
5. Open a Pull Request
## Show Your Support
If this project helped you, please give it a star!
## Contact
For questions or support, please open an issue on GitHub.
---
**Made with love by the Voice Cloning Community**
*Last Updated: October 30, 2025*
|