Spaces:
Sleeping
Sleeping
File size: 21,511 Bytes
5008b66 03fe1d8 5008b66 03fe1d8 5008b66 03fe1d8 5008b66 03fe1d8 5008b66 03fe1d8 5008b66 03fe1d8 5008b66 03fe1d8 5008b66 03fe1d8 5008b66 03fe1d8 5008b66 03fe1d8 5008b66 03fe1d8 5008b66 03fe1d8 5008b66 03fe1d8 5008b66 03fe1d8 5008b66 03fe1d8 5008b66 e049981 03fe1d8 e049981 03fe1d8 e049981 03fe1d8 e049981 03fe1d8 e049981 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
"""
"""Flask API Backend for Voice Cloning
Integrates the Python voice cloning backend with the React frontend
Supports multilingual synthesis: English (WaveRNN) and Hindi (XTTS)
"""
from flask import Blueprint, request, jsonify, send_file
from pathlib import Path
import uuid
import json
from datetime import datetime
import sys
import os
from .voice_cloning import synthesize
bp = Blueprint('voice_cloning', __name__, url_prefix='/api')
BASE_DIR = Path(__file__).resolve().parents[1]
# Configuration
UPLOAD_FOLDER = BASE_DIR / 'enrolled_voices'
OUTPUT_FOLDER = BASE_DIR / 'outputs'
MODELS_DIR = BASE_DIR / 'models'
VOICES_DB = UPLOAD_FOLDER / 'voices.json'
# Hindi model directory (check multiple possible locations)
HINDI_MODEL_DIR = None
possible_hindi_dirs = [
Path(os.getenv('HINDI_MODEL_PATH', '')) if os.getenv('HINDI_MODEL_PATH') else None,
BASE_DIR.parent / 'Apoorv_hindi_model' / 'models' / 'xtts_hindi', # Local development
BASE_DIR / 'models' / 'xtts_hindi', # Alternative location
]
for path in possible_hindi_dirs:
if path and path.exists():
HINDI_MODEL_DIR = path
print(f"β Hindi model found at: {HINDI_MODEL_DIR}")
break
if not HINDI_MODEL_DIR:
print("β Hindi model not found. Hindi synthesis will be unavailable.")
print(" To enable Hindi support, set HINDI_MODEL_PATH environment variable")
print(" or place model at: Apoorv_hindi_model/models/xtts_hindi")
# Create directories with parents
try:
UPLOAD_FOLDER.mkdir(parents=True, exist_ok=True)
OUTPUT_FOLDER.mkdir(parents=True, exist_ok=True)
VOICES_DB.parent.mkdir(parents=True, exist_ok=True)
except Exception as e:
print(f"Failed to create directories: {e}")
sys.exit(1)
# Allowed audio extensions
ALLOWED_EXTENSIONS = {'mp3', 'wav', 'm4a', 'flac', 'ogg', 'webm'}
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
def load_voices_db():
"""Load the voices database"""
if VOICES_DB.exists():
with open(VOICES_DB, 'r') as f:
return json.load(f)
return []
def save_voices_db(voices):
"""Save the voices database"""
with open(VOICES_DB, 'w') as f:
json.dump(voices, f, indent=2)
@bp.route('/health', methods=['GET'])
def health_check():
"""Health check endpoint"""
return jsonify({
'status': 'healthy',
'message': 'Voice Cloning API is running'
})
@bp.route('/enroll', methods=['POST'])
def enroll_voice():
"""
Enroll a new voice by accepting audio file and voice name
Frontend sends: FormData with 'audio' (File) and 'voice_name' (string)
"""
try:
# Check if audio file is present
if 'audio' not in request.files:
return jsonify({'error': 'No audio file provided'}), 400
audio_file = request.files['audio']
voice_name = request.form.get('voice_name', 'Unnamed Voice').strip()
if audio_file.filename == '':
return jsonify({'error': 'No file selected'}), 400
if not allowed_file(audio_file.filename):
return jsonify({'error': 'Invalid file type. Supported: mp3, wav, m4a, flac, ogg, webm'}), 400
# Ensure upload folder exists
UPLOAD_FOLDER.mkdir(parents=True, exist_ok=True)
# Generate unique ID and secure filename
voice_id = f"voice_{uuid.uuid4().hex[:8]}"
file_extension = audio_file.filename.rsplit('.', 1)[1].lower()
filename = f"{voice_id}.{file_extension}"
filepath = UPLOAD_FOLDER / filename
# Save the audio file with error handling
try:
audio_file.save(str(filepath))
print(f"β Audio file saved: {filepath}")
except Exception as file_err:
print(f"β Failed to save audio file: {file_err}")
return jsonify({'error': f'Failed to save audio: {str(file_err)}'}), 500
# Create voice entry
voice_entry = {
'id': voice_id,
'name': voice_name,
'filename': filename,
'createdAt': datetime.now().isoformat()
}
# Update voices database with error handling
try:
VOICES_DB.parent.mkdir(parents=True, exist_ok=True)
voices = load_voices_db()
voices.append(voice_entry)
save_voices_db(voices)
print(f"β Voice '{voice_name}' (ID: {voice_id}) enrolled successfully")
except Exception as db_err:
print(f"β Failed to update voices DB: {db_err}")
return jsonify({'error': f'Failed to save voice metadata: {str(db_err)}'}), 500
return jsonify({
'success': True,
'message': f'Voice "{voice_name}" enrolled successfully',
'voice_id': voice_id,
'voice_name': voice_name,
'created_at': voice_entry['createdAt']
}), 201
except Exception as e:
print(f"β Error enrolling voice: {e}")
import traceback
traceback.print_exc()
return jsonify({'error': f'Failed to enroll voice: {str(e)}'}), 500
@bp.route('/voices', methods=['GET'])
def get_voices():
"""
Get list of all enrolled voices
Frontend uses this to populate the voice selection dropdown
"""
try:
voices = load_voices_db()
# Return only necessary info for frontend
voices_list = [
{
'id': v['id'],
'name': v['name'],
'createdAt': v['createdAt']
}
for v in voices
]
return jsonify({'voices': voices_list}), 200
except Exception as e:
print(f"Error getting voices: {e}")
return jsonify({'error': f'Failed to get voices: {str(e)}'}), 500
@bp.route('/synthesize', methods=['POST'])
def synthesize_speech():
"""
Synthesize speech from text using enrolled voice (multilingual support).
Frontend sends JSON:
{
"text": "Your text here",
"voice_id": "voice_xxx",
"language": "english" or "hindi" (optional, defaults to english)
}
Supports:
- English: Uses WaveRNN vocoder (existing model)
- Hindi: Uses XTTS model (requires hindi_model_dir)
"""
try:
data = request.get_json()
if not data:
return jsonify({'error': 'No data provided'}), 400
text = data.get('text', '').strip()
voice_id = data.get('voice_id', '')
language = data.get('language', 'english').lower()
if not text:
return jsonify({'error': 'No text provided'}), 400
if not voice_id:
return jsonify({'error': 'No voice selected'}), 400
if language not in ['english', 'hindi']:
return jsonify({'error': f'Unsupported language: {language}. Supported: english, hindi'}), 400
# Check if Hindi model is available for Hindi synthesis
if language == 'hindi' and not HINDI_MODEL_DIR:
return jsonify({
'error': 'Hindi synthesis unavailable. Hindi model not configured.',
'available_languages': ['english']
}), 503
# Find the voice in database
voices = load_voices_db()
voice = next((v for v in voices if v['id'] == voice_id), None)
if not voice:
return jsonify({'error': 'Voice not found'}), 404
# Reconstruct path from UPLOAD_FOLDER
voice_filepath = UPLOAD_FOLDER / voice['filename']
if not voice_filepath.exists():
return jsonify({'error': f'Voice file not found: {voice_filepath}'}), 404
# Generate unique output filename
output_filename = f"synthesis_{uuid.uuid4().hex[:8]}.wav"
output_path = OUTPUT_FOLDER / output_filename
print(f"\n[API /synthesize]")
print(f" Language: {language.upper()}")
print(f" Text: '{text[:50]}...'")
print(f" Voice: '{voice['name']}'")
print(f" Voice file: {voice_filepath}")
print(f" Output: {output_path}")
sys.stdout.flush()
try:
if language == 'english':
# Use original English synthesis (WaveRNN)
synthesize(
voice_path=voice_filepath,
text=text,
models_dir=MODELS_DIR,
out_path=output_path
)
else:
# Use multilingual TTS for Hindi
from app.multilingual_tts import MultilingualTTSService
tts_service = MultilingualTTSService(
models_dir=MODELS_DIR,
hindi_model_dir=HINDI_MODEL_DIR
)
tts_service.synthesize_and_save(
text=text,
voice_sample_path=voice_filepath,
output_path=output_path,
language=language
)
tts_service.cleanup()
print(f"[API /synthesize] β Synthesis completed!")
sys.stdout.flush()
except Exception as synth_error:
print(f"[API /synthesize] β Synthesis error: {synth_error}")
import traceback
traceback.print_exc()
sys.stdout.flush()
return jsonify({'error': f'Synthesis failed: {str(synth_error)}'}), 500
if not output_path.exists():
error_msg = 'Synthesis failed - output not generated'
return jsonify({'error': error_msg}), 500
# Return the audio file URL
return jsonify({
'success': True,
'message': f'{language.capitalize()} speech synthesized successfully',
'audio_url': f'/api/audio/{output_filename}',
'language': language
}), 200
except Exception as e:
print(f"[API /synthesize] Unexpected error: {e}")
import traceback
traceback.print_exc()
return jsonify({'error': f'Failed to synthesize speech: {str(e)}'}), 500
@bp.route('/audio/<filename>', methods=['GET'])
def get_audio(filename):
"""
Serve synthesized audio files
Frontend uses this URL to play/download the generated audio
"""
try:
filepath = OUTPUT_FOLDER / filename
if not filepath.exists():
return jsonify({'error': 'Audio file not found'}), 404
return send_file(
str(filepath),
mimetype='audio/wav',
as_attachment=False,
download_name=filename
)
except Exception as e:
print(f"Error serving audio: {e}")
return jsonify({'error': f'Failed to serve audio: {str(e)}'}), 500
@bp.route('/voices/<voice_id>', methods=['DELETE'])
def delete_voice(voice_id):
"""
Delete an enrolled voice
Optional: Frontend can call this to remove voices
"""
try:
voices = load_voices_db()
voice = next((v for v in voices if v['id'] == voice_id), None)
if not voice:
return jsonify({'error': 'Voice not found'}), 404
# Delete the audio file
voice_filepath = UPLOAD_FOLDER / voice['filename']
if voice_filepath.exists():
voice_filepath.unlink()
# Remove from database
voices = [v for v in voices if v['id'] != voice_id]
save_voices_db(voices)
return jsonify({
'success': True,
'message': f'Voice "{voice["name"]}" deleted successfully'
}), 200
except Exception as e:
print(f"Error deleting voice: {e}")
return jsonify({'error': f'Failed to delete voice: {str(e)}'}), 500
@bp.route('/spectrogram/<audio_filename>', methods=['GET'])
def get_spectrogram(audio_filename):
"""
Generate and return mel-spectrogram data for visualization
Frontend can use this to display real-time mel-spectrogram
"""
try:
print(f"[Spectrogram] Requested file: {audio_filename}")
filepath = OUTPUT_FOLDER / audio_filename
print(f"[Spectrogram] Full path: {filepath}")
print(f"[Spectrogram] File exists: {filepath.exists()}")
if not filepath.exists():
print(f"[Spectrogram] ERROR: File not found: {filepath}")
return jsonify({'error': f'Audio file {audio_filename} not found'}), 404
# Import librosa for mel-spectrogram generation
import librosa
import numpy as np
print(f"[Spectrogram] Loading audio file...")
# Load audio file
y, sr = librosa.load(str(filepath), sr=None)
print(f"[Spectrogram] Audio loaded: shape={y.shape}, sr={sr}")
# Generate mel-spectrogram
# 80 mel bands (common for Tacotron2), hop_length varies with sample rate
mel_spec = librosa.feature.melspectrogram(
y=y,
sr=sr,
n_mels=80,
hop_length=512
)
print(f"[Spectrogram] Mel-spec generated: shape={mel_spec.shape}")
# Convert to dB scale (log scale for better visualization)
mel_spec_db = librosa.power_to_db(mel_spec, ref=np.max)
# Normalize to 0-255 range for visualization
mel_spec_normalized = np.clip(
((mel_spec_db + 80) / 80 * 255),
0,
255
).astype(np.uint8)
# Convert to list for JSON serialization
# Transpose to time x frequency format for frontend
spectrogram_data = mel_spec_normalized.T.tolist()
print(f"[Spectrogram] Successfully generated spectrogram: {len(spectrogram_data)} time steps")
return jsonify({
'spectrogram': spectrogram_data,
'n_mels': 80,
'shape': {
'time_steps': len(spectrogram_data),
'frequency_bins': 80
}
}), 200
except Exception as e:
print(f"[Spectrogram] ERROR: {str(e)}")
import traceback
traceback.print_exc()
return jsonify({'error': f'Failed to generate spectrogram: {str(e)}'}), 500
@bp.route('/waveform/<audio_filename>', methods=['GET'])
def get_waveform(audio_filename):
"""
Serve audio waveform as numeric array for real-time FFT visualization
Frontend fetches this and computes FFT using Web Audio API
"""
try:
filepath = OUTPUT_FOLDER / audio_filename
if not filepath.exists():
return jsonify({'error': 'Audio file not found'}), 404
import soundfile as sf
import numpy as np
# Load audio file
# soundfile returns (data, sample_rate)
y, sr = sf.read(str(filepath))
# If stereo, convert to mono by taking first channel or averaging
if len(y.shape) > 1:
y = np.mean(y, axis=1)
# Ensure float32 for compatibility
y = np.asarray(y, dtype=np.float32)
# Downsample if very long to reduce JSON payload
# Typical waveform for 60s at 22050Hz = 1.3M samples
# For FFT we can use 8000 Hz safely (captures up to 4 kHz)
target_sr = 8000
if sr > target_sr:
# Calculate downsample factor
resample_ratio = target_sr / sr
new_length = int(len(y) * resample_ratio)
# Simple linear interpolation for downsampling
indices = np.linspace(0, len(y) - 1, new_length)
y = np.interp(indices, np.arange(len(y)), y)
sr = target_sr
# Convert to list for JSON serialization
waveform_data = y.tolist()
return jsonify({
'waveform': waveform_data,
'sample_rate': sr,
'duration': len(y) / sr,
'samples': len(y)
}), 200
except ImportError as ie:
err_msg = f'Soundfile library not available: {str(ie)}'
return jsonify({'error': err_msg}), 500
except Exception as e:
print(f"Error serving waveform: {e}")
import traceback
traceback.print_exc()
err_msg = f'Failed to generate waveform: {str(e)}'
return jsonify({'error': err_msg}), 500
# ============================================================================
# SONG GENERATION ENDPOINTS
# ============================================================================
@bp.route('/convert_song', methods=['POST'])
def convert_song():
"""
Convert a song to user's voice.
Form data:
- song: audio file (mp3, wav, etc.)
- voice_id: ID of enrolled voice to use
- language: 'english' or 'hindi'
- add_effects: 'true' or 'false' to add reverb/compression
Returns: Generated song audio file
"""
try:
print("\n[API] POST /api/convert_song")
# Validate input
if 'song' not in request.files:
return jsonify({'error': 'No song file provided'}), 400
if 'voice_id' not in request.form:
return jsonify({'error': 'No voice_id provided'}), 400
song_file = request.files['song']
voice_id = request.form.get('voice_id')
language = request.form.get('language', 'english')
add_effects = request.form.get('add_effects', 'true').lower() == 'true'
if not allowed_file(song_file.filename):
return jsonify({'error': f'File type not allowed. Allowed: {ALLOWED_EXTENSIONS}'}), 400
# Load voices database
voices_db = load_voices_db()
voice_data = next((v for v in voices_db if v['id'] == voice_id), None)
if not voice_data:
return jsonify({'error': f'Voice {voice_id} not found'}), 404
# Save uploaded song
song_filename = f"song_{uuid.uuid4().hex}.wav"
song_path = OUTPUT_FOLDER / song_filename
song_file.save(song_path)
print(f"[API] Song saved: {song_path}")
# Get voice file path
voice_filepath = UPLOAD_FOLDER / voice_data['filename']
if not voice_filepath.exists():
return jsonify({'error': 'Voice file not found'}), 404
# Output path
output_filename = f"converted_song_{uuid.uuid4().hex}.wav"
output_path = OUTPUT_FOLDER / output_filename
print(f"[API] Starting song conversion...")
print(f"[API] Language: {language}")
print(f"[API] Add effects: {add_effects}")
# Import multilingual song processor
from app.multilingual_song_processor import MultilingualSongProcessor
processor = MultilingualSongProcessor(
models_dir=MODELS_DIR,
hindi_model_dir=HINDI_MODEL_DIR if language == 'hindi' else None
)
result_path = processor.convert_song(
song_path=song_path,
voice_path=voice_filepath,
output_path=output_path,
language=language,
add_effects=add_effects
)
print(f"[API] Song conversion complete: {result_path}")
# Return download URL
return jsonify({
'success': True,
'message': 'Song converted successfully',
'audio_url': f'/api/audio/{output_filename}',
'filename': output_filename,
'language': language
}), 200
except Exception as e:
print(f"[API] β Error in convert_song: {e}")
import traceback
traceback.print_exc()
return jsonify({'error': str(e)}), 500
@bp.route('/separate_vocals', methods=['POST'])
def separate_vocals():
"""
Separate vocals from a song file.
Form data:
- song: audio file
Returns: JSON with vocal and instrumental file URLs
"""
try:
print("\n[API] POST /api/separate_vocals")
if 'song' not in request.files:
return jsonify({'error': 'No song file provided'}), 400
song_file = request.files['song']
if not allowed_file(song_file.filename):
return jsonify({'error': f'File type not allowed'}), 400
# Save uploaded song
song_filename = f"song_{uuid.uuid4().hex}.wav"
song_path = OUTPUT_FOLDER / song_filename
song_file.save(song_path)
print(f"[API] Song saved: {song_path}")
print(f"[API] Separating vocals...")
from app.song_conversion.vocal_separator import VocalSeparator
separator = VocalSeparator()
vocals_path, instrumental_path = separator.separate_and_save(
song_path,
OUTPUT_FOLDER,
sr=16000
)
return jsonify({
'success': True,
'vocals_url': f'/api/audio/{vocals_path.name}',
'instrumental_url': f'/api/audio/{instrumental_path.name}',
'vocals_file': vocals_path.name,
'instrumental_file': instrumental_path.name
}), 200
except Exception as e:
print(f"[API] β Error in separate_vocals: {e}")
import traceback
traceback.print_exc()
return jsonify({'error': str(e)}), 500
|