File size: 12,023 Bytes
9545fea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
"""
检查YOLOv11 backbone的YOLOP模型架构
验证backbone和neck的结构是否与预期一致
"""
import sys
import os
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(BASE_DIR)
import torch
import torch.nn as nn
from lib.models.YOLOP_YOLOv11 import YOLOPWithYOLOv11
from lib.config import cfg
from lib.config import update_config
def count_parameters(model):
"""统计模型参数数量"""
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
return total_params, trainable_params
def check_module_structure(module, name, depth=0):
"""递归检查模块结构"""
indent = " " * depth
print(f"{indent}{name}:")
if isinstance(module, nn.ModuleList):
for i, sub_module in enumerate(module):
sub_name = f"[{i}] {type(sub_module).__name__}"
if depth < 2: # 限制递归深度
check_module_structure(sub_module, sub_name, depth + 1)
else:
print(f"{indent} {sub_name}")
elif isinstance(module, nn.Sequential):
for i, sub_module in enumerate(module):
sub_name = f"[{i}] {type(sub_module).__name__}"
print(f"{indent} {sub_name}")
else:
# 打印模块的子模块
children = list(module.named_children())
if children and depth < 2:
for child_name, child_module in children:
print(f"{indent} {child_name}: {type(child_module).__name__}")
def test_forward_pass(model, input_size=(1, 3, 640, 640)):
"""测试前向传播"""
print("\n" + "="*80)
print("Testing forward pass...")
print("="*80)
model.eval()
with torch.no_grad():
dummy_input = torch.randn(input_size)
try:
det_out, da_out, ll_out = model(dummy_input)
print(f"\n✓ Forward pass successful!")
print(f"\nInput shape: {dummy_input.shape}")
# 检测输出
if isinstance(det_out, tuple):
print(f"\nDetection output (tuple with {len(det_out)} elements):")
for i, out in enumerate(det_out):
if isinstance(out, list):
print(f" Element {i} (list with {len(out)} items):")
for j, item in enumerate(out):
print(f" [{j}] shape: {item.shape}")
else:
print(f" Element {i} shape: {out.shape}")
else:
print(f"\nDetection output shape: {det_out.shape}")
# 分割输出
print(f"\nDrivable area segmentation output shape: {da_out.shape}")
print(f"Lane line segmentation output shape: {ll_out.shape}")
return True
except Exception as e:
print(f"\n✗ Forward pass failed with error:")
print(f" {type(e).__name__}: {e}")
import traceback
traceback.print_exc()
return False
def check_backbone_structure(model):
"""检查backbone结构"""
print("\n" + "="*80)
print("Checking Backbone Structure (YOLOv11)")
print("="*80)
backbone = model.backbone
print(f"\nBackbone type: {type(backbone).__name__}")
print(f"Number of layers: {len(backbone.layers)}")
print(f"Output indices (P3, P4, P5): {backbone.out_indices}")
print("\nBackbone layers:")
for i, layer in enumerate(backbone.layers):
layer_type = type(layer).__name__
# 获取输入输出通道数
if hasattr(layer, 'conv') and hasattr(layer.conv, 'in_channels'):
# Conv 层
in_ch = layer.conv.in_channels
out_ch = layer.conv.out_channels
print(f" [{i:2d}] {layer_type:15s} - {in_ch:4d} -> {out_ch:4d} channels")
elif hasattr(layer, 'cv1') and hasattr(layer, 'cv2'):
# C3k2, C2PSA 等层
in_ch = layer.cv1.conv.in_channels
out_ch = layer.cv2.conv.out_channels
print(f" [{i:2d}] {layer_type:15s} - {in_ch:4d} -> {out_ch:4d} channels")
elif hasattr(layer, 'cv1'):
# SPPF 层
in_ch = layer.cv1.conv.in_channels
out_ch = layer.cv2.conv.out_channels if hasattr(layer, 'cv2') else 'N/A'
if isinstance(out_ch, int):
print(f" [{i:2d}] {layer_type:15s} - {in_ch:4d} -> {out_ch:4d} channels")
else:
print(f" [{i:2d}] {layer_type:15s} - {in_ch:4d} -> {out_ch} channels")
else:
print(f" [{i:2d}] {layer_type}")
# 测试backbone输出
print("\nTesting backbone forward pass...")
test_input = torch.randn(1, 3, 384, 640)
with torch.no_grad():
features = backbone(test_input)
print(f"Backbone outputs {len(features)} feature maps:")
for i, feat in enumerate(features):
print(f" P{i+3} shape: {feat.shape}")
def check_adapters(model):
"""检查通道适配器"""
print("\n" + "="*80)
print("Checking Channel Adapters")
print("="*80)
for i, adapter in enumerate(model.adapters):
in_ch = adapter.conv.in_channels
out_ch = adapter.conv.out_channels
print(f" Adapter {i}: {in_ch} -> {out_ch} channels")
def check_neck_structure(model):
"""检查neck结构"""
print("\n" + "="*80)
print("Checking Neck Structure (YOLOP FPN+PAN)")
print("="*80)
print(f"\nNeck has {len(model.neck)} layers:")
for i, layer in enumerate(model.neck):
layer_type = type(layer).__name__
if hasattr(layer, 'conv'):
if hasattr(layer.conv, 'in_channels'):
in_ch = layer.conv.in_channels
out_ch = layer.conv.out_channels
print(f" [{i:2d}] {layer_type:15s} - {in_ch:4d} -> {out_ch:4d} channels")
elif hasattr(layer, 'Upsample'):
in_ch = layer.Upsample.in_channels
out_ch = layer.Upsample.out_channels
print(f" [{i:2d}] {layer_type:15s} - {in_ch:4d} -> {out_ch:4d} channels")
else:
print(f" [{i:2d}] {layer_type}")
else:
print(f" [{i:2d}] {layer_type}")
def check_heads(model):
"""检查检测和分割头"""
print("\n" + "="*80)
print("Checking Detection and Segmentation Heads")
print("="*80)
# 检测头
print("\nDetection Head:")
print(f" Type: {type(model.detect_head).__name__}")
print(f" Number of classes: {model.detect_head.nc}")
print(f" Number of detection layers: {model.detect_head.nl}")
print(f" Number of anchors per layer: {model.detect_head.na}")
print(f" Anchors shape: {model.detect_head.anchors.shape}")
print(f" Strides: {model.detect_head.stride}")
# 可驾驶区域分割头
print(f"\nDrivable Area Segmentation Head:")
print(f" Number of layers: {len(model.drivable_seg_head)}")
for i, layer in enumerate(model.drivable_seg_head):
layer_type = type(layer).__name__
if hasattr(layer, 'conv'):
if hasattr(layer.conv, 'in_channels'):
in_ch = layer.conv.in_channels
out_ch = layer.conv.out_channels
print(f" [{i}] {layer_type:15s} - {in_ch:4d} -> {out_ch:4d} channels")
else:
print(f" [{i}] {layer_type}")
else:
print(f" [{i}] {layer_type}")
# 车道线分割头
print(f"\nLane Line Segmentation Head:")
print(f" Number of layers: {len(model.lane_seg_head)}")
for i, layer in enumerate(model.lane_seg_head):
layer_type = type(layer).__name__
if hasattr(layer, 'conv'):
if hasattr(layer.conv, 'in_channels'):
in_ch = layer.conv.in_channels
out_ch = layer.conv.out_channels
print(f" [{i}] {layer_type:15s} - {in_ch:4d} -> {out_ch:4d} channels")
else:
print(f" [{i}] {layer_type}")
else:
print(f" [{i}] {layer_type}")
def check_frozen_parameters(model):
"""检查哪些参数被冻结"""
print("\n" + "="*80)
print("Checking Frozen Parameters")
print("="*80)
frozen_params = sum(p.numel() for p in model.parameters() if not p.requires_grad)
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
total_params = frozen_params + trainable_params
print(f"\nTotal parameters: {total_params:,}")
print(f"Trainable parameters: {trainable_params:,}")
print(f"Frozen parameters: {frozen_params:,}")
print(f"Frozen percentage: {frozen_params/total_params*100:.2f}%")
# 检查各部分的冻结状态
parts = {
'Backbone': model.backbone,
'Adapters': model.adapters,
'Neck': model.neck,
'Detection Head': model.detect_head,
'Drivable Seg Head': model.drivable_seg_head,
'Lane Seg Head': model.lane_seg_head
}
print("\nParameter status by component:")
for name, module in parts.items():
total = sum(p.numel() for p in module.parameters())
frozen = sum(p.numel() for p in module.parameters() if not p.requires_grad)
trainable = total - frozen
status = "FROZEN" if frozen == total else ("TRAINABLE" if frozen == 0 else "PARTIAL")
print(f" {name:20s}: {trainable:>10,} trainable, {frozen:>10,} frozen [{status}]")
def main():
print("="*80)
print("YOLOP with YOLOv11 Backbone - Architecture Check")
print("="*80)
# 创建模型 - 使用 nano 版本
yolo_scale = 'n' # 可以改为 'n', 's', 'm', 'l', 'x'
# yolov11_weights = '' # f'weights/yolo11{yolo_scale}.pt'
yolov11_weights = f'weights/yolo11{yolo_scale}.pt'
print(f"\n1. Creating model with YOLOv11{yolo_scale} backbone...")
if os.path.exists(yolov11_weights):
print(f" Loading pretrained weights from: {yolov11_weights}")
model = YOLOPWithYOLOv11(num_seg_class=2, yolo_scale=yolo_scale, yolo_weights_path=yolov11_weights)
print("✓ Model created with pretrained backbone")
else:
print(f" ⚠ Weights not found at: {yolov11_weights}")
print(" Creating model from scratch...")
model = YOLOPWithYOLOv11(num_seg_class=2, yolo_scale=yolo_scale, yolo_weights_path=None)
print("✓ Model created from scratch")
# 统计参数
print("\n2. Counting parameters...")
total_params, trainable_params = count_parameters(model)
print(f" Total parameters: {total_params:,}")
print(f" Trainable parameters: {trainable_params:,}")
# 检查各部分结构
check_backbone_structure(model)
check_adapters(model)
check_neck_structure(model)
check_heads(model)
# 测试前向传播
success = test_forward_pass(model, input_size=(1, 3, 384, 640))
# 测试冻结backbone功能
if os.path.exists(yolov11_weights):
print("\n" + "="*80)
print(f"Testing Backbone Freezing")
print("="*80)
print("\nFreezing backbone parameters...")
model.freeze_backbone()
check_frozen_parameters(model)
else:
print("\n" + "="*80)
print("Checking Parameters (without pretrained weights)")
print("="*80)
check_frozen_parameters(model)
# 总结
print("\n" + "="*80)
print("Summary")
print("="*80)
if success:
print("✓ All checks passed!")
print("✓ Model architecture is correct and ready for training")
else:
print("✗ Some checks failed. Please review the errors above.")
print("\nModel attributes:")
print(f" model.nc = {model.nc}")
print(f" model.detector_index = {model.detector_index}")
print(f" model.names = {model.names}")
if __name__ == '__main__':
main()
|