- Supervised Seeded Iterated Learning for Interactive Language Learning Language drift has been one of the major obstacles to train language models through interaction. When word-based conversational agents are trained towards completing a task, they tend to invent their language rather than leveraging natural language. In recent literature, two general methods partially counter this phenomenon: Supervised Selfplay (S2P) and Seeded Iterated Learning (SIL). While S2P jointly trains interactive and supervised losses to counter the drift, SIL changes the training dynamics to prevent language drift from occurring. In this paper, we first highlight their respective weaknesses, i.e., late-stage training collapses and higher negative likelihood when evaluated on human corpus. Given these observations, we introduce Supervised Seeded Iterated Learning to combine both methods to minimize their respective weaknesses. We then show the effectiveness of \algo in the language-drift translation game. 5 authors · Oct 6, 2020
1 Countering Language Drift with Seeded Iterated Learning Pretraining on human corpus and then finetuning in a simulator has become a standard pipeline for training a goal-oriented dialogue agent. Nevertheless, as soon as the agents are finetuned to maximize task completion, they suffer from the so-called language drift phenomenon: they slowly lose syntactic and semantic properties of language as they only focus on solving the task. In this paper, we propose a generic approach to counter language drift called Seeded iterated learning (SIL). We periodically refine a pretrained student agent by imitating data sampled from a newly generated teacher agent. At each time step, the teacher is created by copying the student agent, before being finetuned to maximize task completion. SIL does not require external syntactic constraint nor semantic knowledge, making it a valuable task-agnostic finetuning protocol. We evaluate SIL in a toy-setting Lewis Game, and then scale it up to the translation game with natural language. In both settings, SIL helps counter language drift as well as it improves the task completion compared to baselines. 5 authors · Mar 27, 2020
- Rationalization: A Neural Machine Translation Approach to Generating Natural Language Explanations We introduce AI rationalization, an approach for generating explanations of autonomous system behavior as if a human had performed the behavior. We describe a rationalization technique that uses neural machine translation to translate internal state-action representations of an autonomous agent into natural language. We evaluate our technique in the Frogger game environment, training an autonomous game playing agent to rationalize its action choices using natural language. A natural language training corpus is collected from human players thinking out loud as they play the game. We motivate the use of rationalization as an approach to explanation generation and show the results of two experiments evaluating the effectiveness of rationalization. Results of these evaluations show that neural machine translation is able to accurately generate rationalizations that describe agent behavior, and that rationalizations are more satisfying to humans than other alternative methods of explanation. 4 authors · Feb 24, 2017
- REGEN: Real-Time Photorealism Enhancement in Games via a Dual-Stage Generative Network Framework Photorealism is an important aspect of modern video games since it can shape the player experience and simultaneously impact the immersion, narrative engagement, and visual fidelity. Although recent hardware technological breakthroughs, along with state-of-the-art rendering technologies, have significantly improved the visual realism of video games, achieving true photorealism in dynamic environments at real-time frame rates still remains a major challenge due to the tradeoff between visual quality and performance. In this short paper, we present a novel approach for enhancing the photorealism of rendered game frames using generative adversarial networks. To this end, we propose Real-time photorealism Enhancement in Games via a dual-stage gEnerative Network framework (REGEN), which employs a robust unpaired image-to-image translation model to produce semantically consistent photorealistic frames that transform the problem into a simpler paired image-to-image translation task. This enables training with a lightweight method that can achieve real-time inference time without compromising visual quality. We demonstrate the effectiveness of our framework on Grand Theft Auto V, showing that the approach achieves visual results comparable to the ones produced by the robust unpaired Im2Im method while improving inference speed by 32.14 times. Our findings also indicate that the results outperform the photorealism-enhanced frames produced by directly training a lightweight unpaired Im2Im translation method to translate the video game frames towards the visual characteristics of real-world images. Code, pre-trained models, and demos for this work are available at: https://github.com/stefanos50/REGEN. 2 authors · Aug 23, 2025 2
- RIVAL: Reinforcement Learning with Iterative and Adversarial Optimization for Machine Translation Large language models (LLMs) possess strong multilingual capabilities, and combining Reinforcement Learning from Human Feedback (RLHF) with translation tasks has shown great potential. However, we observe that this paradigm performs unexpectedly poorly when applied to colloquial subtitle translation tasks. In this work, we investigate this issue and find that the offline reward model (RM) gradually diverges from the online LLM due to distributional shift, ultimately leading to undesirable training outcomes. To address this, we propose RIVAL, an adversarial training framework that formulates the process as a min-max game between the RM and the LLM. RIVAL iteratively updates the both models, with the RM trained to distinguish strong from weak translations (qualitative preference reward), and the LLM trained to enhance its translation for closing this gap. To stabilize training and improve generalizability, we also incorporate quantitative preference reward (e.g., BLEU) into the RM, enabling reference-free quality modeling aligned with human evaluation. Through extensive experiments, we demonstrate that the proposed adversarial training framework significantly improves upon translation baselines. 9 authors · Jun 5, 2025
- Deep Reinforcement Learning: An Overview We give an overview of recent exciting achievements of deep reinforcement learning (RL). We discuss six core elements, six important mechanisms, and twelve applications. We start with background of machine learning, deep learning and reinforcement learning. Next we discuss core RL elements, including value function, in particular, Deep Q-Network (DQN), policy, reward, model, planning, and exploration. After that, we discuss important mechanisms for RL, including attention and memory, unsupervised learning, transfer learning, multi-agent RL, hierarchical RL, and learning to learn. Then we discuss various applications of RL, including games, in particular, AlphaGo, robotics, natural language processing, including dialogue systems, machine translation, and text generation, computer vision, neural architecture design, business management, finance, healthcare, Industry 4.0, smart grid, intelligent transportation systems, and computer systems. We mention topics not reviewed yet, and list a collection of RL resources. After presenting a brief summary, we close with discussions. Please see Deep Reinforcement Learning, arXiv:1810.06339, for a significant update. 1 authors · Jan 25, 2017
- The Computational Limits of Deep Learning Deep learning's recent history has been one of achievement: from triumphing over humans in the game of Go to world-leading performance in image classification, voice recognition, translation, and other tasks. But this progress has come with a voracious appetite for computing power. This article catalogs the extent of this dependency, showing that progress across a wide variety of applications is strongly reliant on increases in computing power. Extrapolating forward this reliance reveals that progress along current lines is rapidly becoming economically, technically, and environmentally unsustainable. Thus, continued progress in these applications will require dramatically more computationally-efficient methods, which will either have to come from changes to deep learning or from moving to other machine learning methods. 4 authors · Jul 10, 2020