new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 6

Efficient MPC-Based Energy Management System for Secure and Cost-Effective Microgrid Operations

Model predictive control (MPC)-based energy management systems (EMS) are essential for ensuring optimal, secure, and stable operation in microgrids with high penetrations of distributed energy resources. However, due to the high computational cost for the decision-making, the conventional MPC-based EMS typically adopts a simplified integrated-bus power balance model. While this simplification is effective for small networks, large-scale systems require a more detailed branch flow model to account for the increased impact of grid power losses and security constraints. This work proposes an efficient and reliable MPC-based EMS that incorporates power-loss effects and grid-security constraints. %, while adaptively shaping the battery power profile in response to online renewable inputs, achieving reduced operational costs. It enhances system reliability, reduces operational costs, and shows strong potential for online implementation due to its reduced computational effort. Specifically, a second-order cone program (SOCP) branch flow relaxation is integrated into the constraint set, yielding a convex formulation that guarantees globally optimal solutions with high computational efficiency. Owing to the radial topology of the microgrid, this relaxation is practically tight, ensuring equivalence to the original problem. Building on this foundation, an online demand response (DR) module is designed to further reduce the operation cost through peak shaving. To the best of our knowledge, no prior MPC-EMS framework has simultaneously modeled losses and security constraints while coordinating flexible loads within a unified architecture. The developed framework enables secure operation with effective peak shaving and reduced total cost. The effectiveness of the proposed method is validated on 10-bus, 18-bus, and 33-bus systems.

  • 4 authors
·
Sep 23, 2025

KubeIntellect: A Modular LLM-Orchestrated Agent Framework for End-to-End Kubernetes Management

Kubernetes has become the foundation of modern cloud-native infrastructure, yet its management remains complex and fragmented. Administrators must navigate a vast API surface, manage heterogeneous workloads, and coordinate tasks across disconnected tools - often requiring precise commands, YAML configuration, and contextual expertise. This paper presents KubeIntellect, a Large Language Model (LLM)-powered system for intelligent, end-to-end Kubernetes control. Unlike existing tools that focus on observability or static automation, KubeIntellect supports natural language interaction across the full spectrum of Kubernetes API operations, including read, write, delete, exec, access control, lifecycle, and advanced verbs. The system uses modular agents aligned with functional domains (e.g., logs, metrics, RBAC), orchestrated by a supervisor that interprets user queries, maintains workflow memory, invokes reusable tools, or synthesizes new ones via a secure Code Generator Agent. KubeIntellect integrates memory checkpoints, human-in-the-loop clarification, and dynamic task sequencing into a structured orchestration framework. Evaluation results show a 93% tool synthesis success rate and 100% reliability across 200 natural language queries, demonstrating the system's ability to operate efficiently under diverse workloads. An automated demo environment is provided on Azure, with additional support for local testing via kind. This work introduces a new class of interpretable, extensible, and LLM-driven systems for managing complex infrastructure.

  • 2 authors
·
Sep 2, 2025

From Commands to Prompts: LLM-based Semantic File System for AIOS

Large language models (LLMs) have demonstrated significant potential in the development of intelligent applications and systems such as LLM-based agents and agent operating systems (AIOS). However, when these applications and systems interact with the underlying file system, the file system still remains the traditional paradigm: reliant on manual navigation through precise commands. This paradigm poses a bottleneck to the usability of these systems as users are required to navigate complex folder hierarchies and remember cryptic file names. To address this limitation, we propose an LLM-based semantic file system ( LSFS ) for prompt-driven file management. Unlike conventional approaches, LSFS incorporates LLMs to enable users or agents to interact with files through natural language prompts, facilitating semantic file management. At the macro-level, we develop a comprehensive API set to achieve semantic file management functionalities, such as semantic file retrieval, file update monitoring and summarization, and semantic file rollback). At the micro-level, we store files by constructing semantic indexes for them, design and implement syscalls of different semantic operations (e.g., CRUD, group by, join) powered by vector database. Our experiments show that LSFS offers significant improvements over traditional file systems in terms of user convenience, the diversity of supported functions, and the accuracy and efficiency of file operations. Additionally, with the integration of LLM, our system enables more intelligent file management tasks, such as content summarization and version comparison, further enhancing its capabilities.

  • 12 authors
·
Sep 23, 2024 1

Refining Graphical Neural Network Predictions Using Flow Matching for Optimal Power Flow with Constraint-Satisfaction Guarantee

The DC Optimal Power Flow (DC-OPF) problem is fundamental to power system operations, requiring rapid solutions for real-time grid management. While traditional optimization solvers provide optimal solutions, their computational cost becomes prohibitive for large-scale systems requiring frequent recalculations. Machine learning approaches offer promise for acceleration but often struggle with constraint satisfaction and cost optimality. We present a novel two-stage learning framework that combines physics-informed Graph Neural Networks (GNNs) with Continuous Flow Matching (CFM) for solving DC-OPF problems. Our approach embeds fundamental physical principles--including economic dispatch optimality conditions, Kirchhoff's laws, and Karush-Kuhn-Tucker (KKT) complementarity conditions--directly into the training objectives. The first stage trains a GNN to produce feasible initial solutions by learning from physics-informed losses that encode power system constraints. The second stage employs CFM, a simulation-free continuous normalizing flow technique, to refine these solutions toward optimality through learned vector field regression. Evaluated on the IEEE 30-bus system across five load scenarios ranging from 70\% to 130\% nominal load, our method achieves near-optimal solutions with cost gaps below 0.1\% for nominal loads and below 3\% for extreme conditions, while maintaining 100\% feasibility. Our framework bridges the gap between fast but approximate neural network predictions and optimal but slow numerical solvers, offering a practical solution for modern power systems with high renewable penetration requiring frequent dispatch updates.

  • 1 authors
·
Dec 11, 2025

NeuPIMs: NPU-PIM Heterogeneous Acceleration for Batched LLM Inferencing

Modern transformer-based Large Language Models (LLMs) are constructed with a series of decoder blocks. Each block comprises three key components: (1) QKV generation, (2) multi-head attention, and (3) feed-forward networks. In batched processing, QKV generation and feed-forward networks involve compute-intensive matrix-matrix multiplications (GEMM), while multi-head attention requires bandwidth-heavy matrix-vector multiplications (GEMV). Machine learning accelerators like TPUs or NPUs are proficient in handling GEMM but are less efficient for GEMV computations. Conversely, Processing-in-Memory (PIM) technology is tailored for efficient GEMV computation, while it lacks the computational power to handle GEMM effectively. Inspired by this insight, we propose NeuPIMs, a heterogeneous acceleration system that jointly exploits a conventional GEMM-focused NPU and GEMV-optimized PIM devices. The main challenge in efficiently integrating NPU and PIM lies in enabling concurrent operations on both platforms, each addressing a specific kernel type. First, existing PIMs typically operate in a "blocked" mode, allowing only either NPU or PIM to be active at any given time. Second, the inherent dependencies between GEMM and GEMV in LLMs restrict their parallel processing. To tackle these challenges, NeuPIMs is equipped with dual row buffers in each bank, facilitating the simultaneous management of memory read/write operations and PIM commands. Further, NeuPIMs employs a runtime sub-batch interleaving technique to maximize concurrent execution, leveraging batch parallelism to allow two independent sub-batches to be pipelined within a single NeuPIMs device. Our evaluation demonstrates that compared to GPU-only, NPU-only, and a na\"ive NPU+PIM integrated acceleration approaches, NeuPIMs achieves 3times, 2.4times and 1.6times throughput improvement, respectively.

  • 9 authors
·
Mar 1, 2024

TeLLMe v2: An Efficient End-to-End Ternary LLM Prefill and Decode Accelerator with Table-Lookup Matmul on Edge FPGAs

With the emergence of wearable devices and other embedded systems, deploying large language models (LLMs) on edge platforms has become an urgent need. However, this is challenging because of their high computational and memory demands. Although recent low-bit quantization methods (e.g., BitNet, DeepSeek) compress weights to as low as 1.58~bits with minimal accuracy loss, edge deployment is still constrained by limited on-chip resources, power budgets, and the often-neglected long latency of the prefill stage. We present TeLLMe, the first table-lookup-based ternary LLM accelerator for low-power edge FPGAs that fully supports both prefill and autoregressive decoding using 1.58-bit weights and 8-bit activations. TeLLMe incorporates several novel techniques, including (1) a table-lookup-based ternary matrix multiplication (TLMM) engine utilizing grouped activations and online precomputation for low resource utilization and high throughput; (2) a fine-grained analytic URAM-based weight buffer management scheme for efficient loading and compute engine access; (3) a streaming dataflow architecture that fuses floating-point element-wise operations with linear computations to hide latency; (4) a reversed-reordered prefill stage attention with fused attention operations for high memory efficiency; and (5) a resource-efficient specialized decoding stage attention. Under a 5~W power budget, TeLLMe delivers up to 25~tokens/s decoding throughput and 0.45--0.96~s time-to-first-token (TTFT) for 64--128 token prompts, marking a significant energy-efficiency advancement in LLM inference on edge FPGAs.

  • 5 authors
·
Oct 3, 2025

OpsEval: A Comprehensive IT Operations Benchmark Suite for Large Language Models

Information Technology (IT) Operations (Ops), particularly Artificial Intelligence for IT Operations (AIOps), is the guarantee for maintaining the orderly and stable operation of existing information systems. According to Gartner's prediction, the use of AI technology for automated IT operations has become a new trend. Large language models (LLMs) that have exhibited remarkable capabilities in NLP-related tasks, are showing great potential in the field of AIOps, such as in aspects of root cause analysis of failures, generation of operations and maintenance scripts, and summarizing of alert information. Nevertheless, the performance of current LLMs in Ops tasks is yet to be determined. In this paper, we present OpsEval, a comprehensive task-oriented Ops benchmark designed for LLMs. For the first time, OpsEval assesses LLMs' proficiency in various crucial scenarios at different ability levels. The benchmark includes 7184 multi-choice questions and 1736 question-answering (QA) formats in English and Chinese. By conducting a comprehensive performance evaluation of the current leading large language models, we show how various LLM techniques can affect the performance of Ops, and discussed findings related to various topics, including model quantification, QA evaluation, and hallucination issues. To ensure the credibility of our evaluation, we invite dozens of domain experts to manually review our questions. At the same time, we have open-sourced 20% of the test QA to assist current researchers in preliminary evaluations of their OpsLLM models. The remaining 80% of the data, which is not disclosed, is used to eliminate the issue of the test set leakage. Additionally, we have constructed an online leaderboard that is updated in real-time and will continue to be updated, ensuring that any newly emerging LLMs will be evaluated promptly. Both our dataset and leaderboard have been made public.

  • 16 authors
·
Oct 11, 2023

From Classification to Optimization: Slicing and Resource Management with TRACTOR

5G and beyond networks promise advancements in bandwidth, latency, and connectivity. The Open Radio Access Network (O-RAN) framework enhances flexibility through network slicing and closed-loop RAN control. Central to this evolution is integrating machine learning (ML) for dynamic network control. This paper presents a framework to optimize O-RAN operation. First, we build and share a robust O-RAN dataset from real-world traffic captured across diverse locations and mobility scenarios, replicated within a full-stack srsRAN-based O-RAN system using the Colosseum RF emulator. This dataset supports ML training and deployment. We then introduce a traffic classification approach leveraging various ML models, demonstrating rapid training, testing, and refinement to improve accuracy. With up to 99% offline accuracy and 92% online accuracy for specific slices, our framework adapts efficiently to different models and network conditions. Finally, we present a physical resource block (PRB) assignment optimization strategy using reinforcement learning to refine resource allocation. Our learned policy achieves a mean performance score (0.631), surpassing a manually configured expert policy (0.609) and a random baseline (0.588), demonstrating improved PRB utilization. More importantly, our approach exhibits lower variability, with the Coefficient of Variation (CV) reduced by up to an order of magnitude in three out of four cases, ensuring more consistent performance. Our contributions, including open-source tools and datasets, accelerate O-RAN and ML-driven network control research.

  • 6 authors
·
Dec 12, 2023

Automatic Detection and Classification of Waste Consumer Medications for Proper Management and Disposal

Every year, millions of pounds of medicines remain unused in the U.S. and are subject to an in-home disposal, i.e., kept in medicine cabinets, flushed in toilet or thrown in regular trash. In-home disposal, however, can negatively impact the environment and public health. The drug take-back programs (drug take-backs) sponsored by the Drug Enforcement Administration (DEA) and its state and industry partners collect unused consumer medications and provide the best alternative to in-home disposal of medicines. However, the drug take-backs are expensive to operate and not widely available. In this paper, we show that artificial intelligence (AI) can be applied to drug take-backs to render them operationally more efficient. Since identification of any waste is crucial to a proper disposal, we showed that it is possible to accurately identify loose consumer medications solely based on the physical features and visual appearance. We have developed an automatic technique that uses deep neural networks and computer vision to identify and segregate solid medicines. We applied the technique to images of about one thousand loose pills and succeeded in correctly identifying the pills with an accuracy of 0.912 and top-5 accuracy of 0.984. We also showed that hazardous pills could be distinguished from non-hazardous pills within the dataset with an accuracy of 0.984. We believe that the power of artificial intelligence could be harnessed in products that would facilitate the operation of the drug take-backs more efficiently and help them become widely available throughout the country.

  • 2 authors
·
Jul 27, 2020

A Decentralized Retrieval Augmented Generation System with Source Reliabilities Secured on Blockchain

Existing retrieval-augmented generation (RAG) systems typically use a centralized architecture, causing a high cost of data collection, integration, and management, as well as privacy concerns. There is a great need for a decentralized RAG system that enables foundation models to utilize information directly from data owners who maintain full control over their sources. However, decentralization brings a challenge: the numerous independent data sources vary significantly in reliability, which can diminish retrieval accuracy and response quality. To address this, our decentralized RAG system has a novel reliability scoring mechanism that dynamically evaluates each source based on the quality of responses it contributes to generate and prioritizes high-quality sources during retrieval. To ensure transparency and trust, the scoring process is securely managed through blockchain-based smart contracts, creating verifiable and tamper-proof reliability records without relying on a central authority. We evaluate our decentralized system with two Llama models (3B and 8B) in two simulated environments where six data sources have different levels of reliability. Our system achieves a +10.7\% performance improvement over its centralized counterpart in the real world-like unreliable data environments. Notably, it approaches the upper-bound performance of centralized systems under ideally reliable data environments. The decentralized infrastructure enables secure and trustworthy scoring management, achieving approximately 56\% marginal cost savings through batched update operations. Our code and system are open-sourced at github.com/yining610/Reliable-dRAG.

  • 5 authors
·
Nov 10, 2025 2

CXMArena: Unified Dataset to benchmark performance in realistic CXM Scenarios

Large Language Models (LLMs) hold immense potential for revolutionizing Customer Experience Management (CXM), particularly in contact center operations. However, evaluating their practical utility in complex operational environments is hindered by data scarcity (due to privacy concerns) and the limitations of current benchmarks. Existing benchmarks often lack realism, failing to incorporate deep knowledge base (KB) integration, real-world noise, or critical operational tasks beyond conversational fluency. To bridge this gap, we introduce CXMArena, a novel, large-scale synthetic benchmark dataset specifically designed for evaluating AI in operational CXM contexts. Given the diversity in possible contact center features, we have developed a scalable LLM-powered pipeline that simulates the brand's CXM entities that form the foundation of our datasets-such as knowledge articles including product specifications, issue taxonomies, and contact center conversations. The entities closely represent real-world distribution because of controlled noise injection (informed by domain experts) and rigorous automated validation. Building on this, we release CXMArena, which provides dedicated benchmarks targeting five important operational tasks: Knowledge Base Refinement, Intent Prediction, Agent Quality Adherence, Article Search, and Multi-turn RAG with Integrated Tools. Our baseline experiments underscore the benchmark's difficulty: even state of the art embedding and generation models achieve only 68% accuracy on article search, while standard embedding methods yield a low F1 score of 0.3 for knowledge base refinement, highlighting significant challenges for current models necessitating complex pipelines and solutions over conventional techniques.

  • 3 authors
·
May 14, 2025

Cross-variable Linear Integrated ENhanced Transformer for Photovoltaic power forecasting

Photovoltaic (PV) power forecasting plays a crucial role in optimizing the operation and planning of PV systems, thereby enabling efficient energy management and grid integration. However, un certainties caused by fluctuating weather conditions and complex interactions between different variables pose significant challenges to accurate PV power forecasting. In this study, we propose PV-Client (Cross-variable Linear Integrated ENhanced Transformer for Photovoltaic power forecasting) to address these challenges and enhance PV power forecasting accuracy. PV-Client employs an ENhanced Transformer module to capture complex interactions of various features in PV systems, and utilizes a linear module to learn trend information in PV power. Diverging from conventional time series-based Transformer models that use cross-time Attention to learn dependencies between different time steps, the Enhanced Transformer module integrates cross-variable Attention to capture dependencies between PV power and weather factors. Furthermore, PV-Client streamlines the embedding and position encoding layers by replacing the Decoder module with a projection layer. Experimental results on three real-world PV power datasets affirm PV-Client's state-of-the-art (SOTA) performance in PV power forecasting. Specifically, PV-Client surpasses the second-best model GRU by 5.3% in MSE metrics and 0.9% in accuracy metrics at the Jingang Station. Similarly, PV-Client outperforms the second-best model SVR by 10.1% in MSE metrics and 0.2% in accuracy metrics at the Xinqingnian Station, and PV-Client exhibits superior performance compared to the second-best model SVR with enhancements of 3.4% in MSE metrics and 0.9% in accuracy metrics at the Hongxing Station.

  • 4 authors
·
Jun 6, 2024

Advancing Multi-Agent Systems Through Model Context Protocol: Architecture, Implementation, and Applications

Multi-agent systems represent a significant advancement in artificial intelligence, enabling complex problem-solving through coordinated specialized agents. However, these systems face fundamental challenges in context management, coordination efficiency, and scalable operation. This paper introduces a comprehensive framework for advancing multi-agent systems through Model Context Protocol (MCP), addressing these challenges through standardized context sharing and coordination mechanisms. We extend previous work on AI agent architectures by developing a unified theoretical foundation, advanced context management techniques, and scalable coordination patterns. Through detailed implementation case studies across enterprise knowledge management, collaborative research, and distributed problem-solving domains, we demonstrate significant performance improvements compared to traditional approaches. Our evaluation methodology provides a systematic assessment framework with benchmark tasks and datasets specifically designed for multi-agent systems. We identify current limitations, emerging research opportunities, and potential transformative applications across industries. This work contributes to the evolution of more capable, collaborative, and context-aware artificial intelligence systems that can effectively address complex real-world challenges.

  • 1 authors
·
Apr 25, 2025

Anka: A Domain-Specific Language for Reliable LLM Code Generation

Large Language Models (LLMs) have demonstrated remarkable capabilities in code generation, yet they exhibit systematic errors on complex, multi-step programming tasks. We hypothesize that these errors stem from the flexibility of general-purpose languages, which permits multiple valid approaches and requires implicit state management. To test this hypothesis, we introduce Anka, a domain-specific language (DSL) for data transformation pipelines designed with explicit, constrained syntax that reduces ambiguity in code generation. Despite having zero prior training exposure to Anka, Claude 3.5 Haiku achieves 99.9% parse success and 95.8% overall task accuracy across 100 benchmark problems. Critically, Anka demonstrates a 40 percentage point accuracy advantage over Python on multi-step pipeline tasks (100% vs. 60%), where Python's flexible syntax leads to frequent errors in operation sequencing and variable management. Cross-model validation with GPT-4o-mini confirms this advantage (+26.7 percentage points on multi-step tasks). Our results demonstrate that: (1) LLMs can learn novel DSLs entirely from in-context prompts, achieving near-native accuracy; (2) constrained syntax significantly reduces errors on complex tasks; and (3) domain-specific languages purposefully designed for LLM generation can outperform general-purpose languages on which the LLM has extensive training. We release the complete language implementation, benchmark suite, and evaluation framework to facilitate further research.

  • 1 authors
·
Dec 29, 2025

Telecom Foundation Models: Applications, Challenges, and Future Trends

Telecom networks are becoming increasingly complex, with diversified deployment scenarios, multi-standards, and multi-vendor support. The intricate nature of the telecom network ecosystem presents challenges to effectively manage, operate, and optimize networks. To address these hurdles, Artificial Intelligence (AI) has been widely adopted to solve different tasks in telecom networks. However, these conventional AI models are often designed for specific tasks, rely on extensive and costly-to-collect labeled data that require specialized telecom expertise for development and maintenance. The AI models usually fail to generalize and support diverse deployment scenarios and applications. In contrast, Foundation Models (FMs) show effective generalization capabilities in various domains in language, vision, and decision-making tasks. FMs can be trained on multiple data modalities generated from the telecom ecosystem and leverage specialized domain knowledge. Moreover, FMs can be fine-tuned to solve numerous specialized tasks with minimal task-specific labeled data and, in some instances, are able to leverage context to solve previously unseen problems. At the dawn of 6G, this paper investigates the potential opportunities of using FMs to shape the future of telecom technologies and standards. In particular, the paper outlines a conceptual process for developing Telecom FMs (TFMs) and discusses emerging opportunities for orchestrating specialized TFMs for network configuration, operation, and maintenance. Finally, the paper discusses the limitations and challenges of developing and deploying TFMs.

  • 4 authors
·
Aug 2, 2024

Towards CPU Performance Prediction: New Challenge Benchmark Dataset and Novel Approach

CPU performance prediction, which involves forecasting the performance scores of a CPU based on its hardware characteristics during its operation, is a critical technology for computational system design and resource management in the big data era. However, this research field currently faces two significant challenges. First, collecting real-world data is challenging due to the wide variety of CPU products on the market and the highly specialized nature of relevant hardware characteristics. In the research process, this field lacks a standard dataset with unified hardware characteristics, wide data coverage, and comprehensive benchmarks. Second, existing methods based on hardware simulation models or machine learning exhibit notable shortcomings, such as lengthy simulation test cycles and low prediction accuracy. To bridge these gaps, we first collect, preprocess, and standardize historical data from the 4th Generation Intel Xeon Scalable Processors across multiple benchmark suites to create a new dataset, named PerfCastDB. Subsequently, we design a deep learning based model called Nova CPU Performance Predictor (NCPP) as the baseline for this new dataset. The NCPP network is designed based on group attention mechanism. It effectively quantifies the implicit relationships between hardware characteristics within and across groups and comprehensively models the impact of various hardware characteristics on CPU performance prediction. We conduct comparative experiments using the proposed PerfCastDB dataset. Compared to existing approaches, NCPP achieves superior evaluation results, demonstrating its effectiveness. Furthermore, we have open-sourced part of the dataset and the NCPP network code to facilitate subsequent research. The resources can be accessed at https://github.com/xiaoman-liu/NCPP.

  • 1 authors
·
Jul 2, 2024

DeepJoin: Joinable Table Discovery with Pre-trained Language Models

Due to the usefulness in data enrichment for data analysis tasks, joinable table discovery has become an important operation in data lake management. Existing approaches target equi-joins, the most common way of combining tables for creating a unified view, or semantic joins, which tolerate misspellings and different formats to deliver more join results. They are either exact solutions whose running time is linear in the sizes of query column and target table repository or approximate solutions lacking precision. In this paper, we propose Deepjoin, a deep learning model for accurate and efficient joinable table discovery. Our solution is an embedding-based retrieval, which employs a pre-trained language model (PLM) and is designed as one framework serving both equi- and semantic joins. We propose a set of contextualization options to transform column contents to a text sequence. The PLM reads the sequence and is fine-tuned to embed columns to vectors such that columns are expected to be joinable if they are close to each other in the vector space. Since the output of the PLM is fixed in length, the subsequent search procedure becomes independent of the column size. With a state-of-the-art approximate nearest neighbor search algorithm, the search time is logarithmic in the repository size. To train the model, we devise the techniques for preparing training data as well as data augmentation. The experiments on real datasets demonstrate that by training on a small subset of a corpus, Deepjoin generalizes to large datasets and its precision consistently outperforms other approximate solutions'. Deepjoin is even more accurate than an exact solution to semantic joins when evaluated with labels from experts. Moreover, when equipped with a GPU, Deepjoin is up to two orders of magnitude faster than existing solutions.

  • 5 authors
·
Dec 14, 2022

Digital Twin AI: Opportunities and Challenges from Large Language Models to World Models

Digital twins, as precise digital representations of physical systems, have evolved from passive simulation tools into intelligent and autonomous entities through the integration of artificial intelligence technologies. This paper presents a unified four-stage framework that systematically characterizes AI integration across the digital twin lifecycle, spanning modeling, mirroring, intervention, and autonomous management. By synthesizing existing technologies and practices, we distill a unified four-stage framework that systematically characterizes how AI methodologies are embedded across the digital twin lifecycle: (1) modeling the physical twin through physics-based and physics-informed AI approaches, (2) mirroring the physical system into a digital twin with real-time synchronization, (3) intervening in the physical twin through predictive modeling, anomaly detection, and optimization strategies, and (4) achieving autonomous management through large language models, foundation models, and intelligent agents. We analyze the synergy between physics-based modeling and data-driven learning, highlighting the shift from traditional numerical solvers to physics-informed and foundation models for physical systems. Furthermore, we examine how generative AI technologies, including large language models and generative world models, transform digital twins into proactive and self-improving cognitive systems capable of reasoning, communication, and creative scenario generation. Through a cross-domain review spanning eleven application domains, including healthcare, aerospace, smart manufacturing, robotics, and smart cities, we identify common challenges related to scalability, explainability, and trustworthiness, and outline directions for responsible AI-driven digital twin systems.

  • 27 authors
·
Jan 3

Synthesizing mixed-integer linear programming models from natural language descriptions

Numerous real-world decision-making problems can be formulated and solved using Mixed-Integer Linear Programming (MILP) models. However, the transformation of these problems into MILP models heavily relies on expertise in operations research and mathematical optimization, which restricts non-experts' accessibility to MILP. To address this challenge, we propose a framework for automatically formulating MILP models from unstructured natural language descriptions of decision problems, which integrates Large Language Models (LLMs) and mathematical modeling techniques. This framework consists of three phases: i) identification of decision variables, ii) classification of objective and constraints, and iii) finally, generation of MILP models. In this study, we present a constraint classification scheme and a set of constraint templates that can guide the LLMs in synthesizing a complete MILP model. After fine-tuning LLMs, our approach can identify and synthesize logic constraints in addition to classic demand and resource constraints. The logic constraints have not been studied in existing work. To evaluate the performance of the proposed framework, we extend the NL4Opt dataset with more problem descriptions and constraint types, and with the new dataset, we compare our framework with one-step model generation methods offered by LLMs. The experimental results reveal that with respect to the accuracies of generating the correct model, objective, and constraints, our method which integrates constraint classification and templates with LLMs significantly outperforms the others. The prototype system that we developed has a great potential to capture more constraints for more complex MILPs. It opens up opportunities for developing training tools for operations research practitioners and has the potential to be a powerful tool for automatic decision problem modeling and solving in practice.

  • 3 authors
·
Nov 26, 2023

Automated Optimization Modeling through Expert-Guided Large Language Model Reasoning

Optimization Modeling (OM) is essential for solving complex decision-making problems. However, the process remains time-consuming and error-prone, heavily relying on domain experts. While Large Language Models (LLMs) show promise in addressing these challenges through their natural language understanding and reasoning capabilities, current approaches face three critical limitations: high benchmark labeling error rates reaching up to 42%, narrow evaluation scope that only considers optimal values, and computational inefficiency due to heavy reliance on multi-agent systems or model fine-tuning. In this work, we first enhance existing datasets through systematic error correction and more comprehensive annotation. Additionally, we introduce LogiOR, a new optimization modeling benchmark from the logistics domain, containing more complex problems with standardized annotations. Furthermore, we present ORThought, a novel framework that leverages expert-level optimization modeling principles through chain-of-thought reasoning to automate the OM process. Through extensive empirical evaluation, we demonstrate that ORThought outperforms existing approaches, including multi-agent frameworks, with particularly significant advantages on complex optimization problems. Finally, we provide a systematic analysis of our method, identifying critical success factors and failure modes, providing valuable insights for future research on LLM-based optimization modeling.

  • 5 authors
·
Aug 20, 2025