new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 29

The Dragon Hatchling: The Missing Link between the Transformer and Models of the Brain

The relationship between computing systems and the brain has served as motivation for pioneering theoreticians since John von Neumann and Alan Turing. Uniform, scale-free biological networks, such as the brain, have powerful properties, including generalizing over time, which is the main barrier for Machine Learning on the path to Universal Reasoning Models. We introduce `Dragon Hatchling' (BDH), a new Large Language Model architecture based on a scale-free biologically inspired network of \n locally-interacting neuron particles. BDH couples strong theoretical foundations and inherent interpretability without sacrificing Transformer-like performance. BDH is a practical, performant state-of-the-art attention-based state space sequence learning architecture. In addition to being a graph model, BDH admits a GPU-friendly formulation. It exhibits Transformer-like scaling laws: empirically BDH rivals GPT2 performance on language and translation tasks, at the same number of parameters (10M to 1B), for the same training data. BDH can be represented as a brain model. The working memory of BDH during inference entirely relies on synaptic plasticity with Hebbian learning using spiking neurons. We confirm empirically that specific, individual synapses strengthen connection whenever BDH hears or reasons about a specific concept while processing language inputs. The neuron interaction network of BDH is a graph of high modularity with heavy-tailed degree distribution. The BDH model is biologically plausible, explaining one possible mechanism which human neurons could use to achieve speech. BDH is designed for interpretability. Activation vectors of BDH are sparse and positive. We demonstrate monosemanticity in BDH on language tasks. Interpretability of state, which goes beyond interpretability of neurons and model parameters, is an inherent feature of the BDH architecture.

pathwaycom Pathway
·
Sep 30 28

Evaluating Sparse Autoencoders for Monosemantic Representation

A key barrier to interpreting large language models is polysemanticity, where neurons activate for multiple unrelated concepts. Sparse autoencoders (SAEs) have been proposed to mitigate this issue by transforming dense activations into sparse, more interpretable features. While prior work suggests that SAEs promote monosemanticity, no quantitative comparison has examined how concept activation distributions differ between SAEs and their base models. This paper provides the first systematic evaluation of SAEs against base models through activation distribution lens. We introduce a fine-grained concept separability score based on the Jensen-Shannon distance, which captures how distinctly a neuron's activation distributions vary across concepts. Using two large language models (Gemma-2-2B and DeepSeek-R1) and multiple SAE variants across five datasets (including word-level and sentence-level), we show that SAEs reduce polysemanticity and achieve higher concept separability. To assess practical utility, we evaluate concept-level interventions using two strategies: full neuron masking and partial suppression. We find that, compared to base models, SAEs enable more precise concept-level control when using partial suppression. Building on this, we propose Attenuation via Posterior Probabilities (APP), a new intervention method that uses concept-conditioned activation distributions for targeted suppression. APP achieves the smallest perplexity increase while remaining highly effective at concept removal.

  • 4 authors
·
Aug 20