new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 6

Monitoring Reasoning Models for Misbehavior and the Risks of Promoting Obfuscation

Mitigating reward hacking--where AI systems misbehave due to flaws or misspecifications in their learning objectives--remains a key challenge in constructing capable and aligned models. We show that we can monitor a frontier reasoning model, such as OpenAI o3-mini, for reward hacking in agentic coding environments by using another LLM that observes the model's chain-of-thought (CoT) reasoning. CoT monitoring can be far more effective than monitoring agent actions and outputs alone, and we further found that a LLM weaker than o3-mini, namely GPT-4o, can effectively monitor a stronger model. Because CoT monitors can be effective at detecting exploits, it is natural to ask whether those exploits can be suppressed by incorporating a CoT monitor directly into the agent's training objective. While we show that integrating CoT monitors into the reinforcement learning reward can indeed produce more capable and more aligned agents in the low optimization regime, we find that with too much optimization, agents learn obfuscated reward hacking, hiding their intent within the CoT while still exhibiting a significant rate of reward hacking. Because it is difficult to tell when CoTs have become obfuscated, it may be necessary to pay a monitorability tax by not applying strong optimization pressures directly to the chain-of-thought, ensuring that CoTs remain monitorable and useful for detecting misaligned behavior.

  • 9 authors
·
Mar 14, 2025

Monitoring Monitorability

Observability into the decision making of modern AI systems may be required to safely deploy increasingly capable agents. Monitoring the chain-of-thought (CoT) of today's reasoning models has proven effective for detecting misbehavior. However, this "monitorability" may be fragile under different training procedures, data sources, or even continued system scaling. To measure and track monitorability, we propose three evaluation archetypes (intervention, process, and outcome-property) and a new monitorability metric, and introduce a broad evaluation suite. We demonstrate that these evaluations can catch simple model organisms trained to have obfuscated CoTs, and that CoT monitoring is more effective than action-only monitoring in practical settings. We compare the monitorability of various frontier models and find that most models are fairly, but not perfectly, monitorable. We also evaluate how monitorability scales with inference-time compute, reinforcement learning optimization, and pre-training model size. We find that longer CoTs are generally more monitorable and that RL optimization does not materially decrease monitorability even at the current frontier scale. Notably, we find that for a model at a low reasoning effort, we could instead deploy a smaller model at a higher reasoning effort (thereby matching capabilities) and obtain a higher monitorability, albeit at a higher overall inference compute cost. We further investigate agent-monitor scaling trends and find that scaling a weak monitor's test-time compute when monitoring a strong agent increases monitorability. Giving the weak monitor access to CoT not only improves monitorability, but it steepens the monitor's test-time compute to monitorability scaling trend. Finally, we show we can improve monitorability by asking models follow-up questions and giving their follow-up CoT to the monitor.

  • 12 authors
·
Dec 20, 2025

PrimeGuard: Safe and Helpful LLMs through Tuning-Free Routing

Deploying language models (LMs) necessitates outputs to be both high-quality and compliant with safety guidelines. Although Inference-Time Guardrails (ITG) offer solutions that shift model output distributions towards compliance, we find that current methods struggle in balancing safety with helpfulness. ITG Methods that safely address non-compliant queries exhibit lower helpfulness while those that prioritize helpfulness compromise on safety. We refer to this trade-off as the guardrail tax, analogous to the alignment tax. To address this, we propose PrimeGuard, a novel ITG method that utilizes structured control flow. PrimeGuard routes requests to different self-instantiations of the LM with varying instructions, leveraging its inherent instruction-following capabilities and in-context learning. Our tuning-free approach dynamically compiles system-designer guidelines for each query. We construct and release safe-eval, a diverse red-team safety benchmark. Extensive evaluations demonstrate that PrimeGuard, without fine-tuning, overcomes the guardrail tax by (1) significantly increasing resistance to iterative jailbreak attacks and (2) achieving state-of-the-art results in safety guardrailing while (3) matching helpfulness scores of alignment-tuned models. Extensive evaluations demonstrate that PrimeGuard, without fine-tuning, outperforms all competing baselines and overcomes the guardrail tax by improving the fraction of safe responses from 61% to 97% and increasing average helpfulness scores from 4.17 to 4.29 on the largest models, while reducing attack success rate from 100% to 8%. PrimeGuard implementation is available at https://github.com/dynamofl/PrimeGuard and safe-eval dataset is available at https://huggingface.co/datasets/dynamoai/safe_eval.

  • 4 authors
·
Jul 23, 2024 3