Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCobra: Efficient Line Art COlorization with BRoAder References
The comic production industry requires reference-based line art colorization with high accuracy, efficiency, contextual consistency, and flexible control. A comic page often involves diverse characters, objects, and backgrounds, which complicates the coloring process. Despite advancements in diffusion models for image generation, their application in line art colorization remains limited, facing challenges related to handling extensive reference images, time-consuming inference, and flexible control. We investigate the necessity of extensive contextual image guidance on the quality of line art colorization. To address these challenges, we introduce Cobra, an efficient and versatile method that supports color hints and utilizes over 200 reference images while maintaining low latency. Central to Cobra is a Causal Sparse DiT architecture, which leverages specially designed positional encodings, causal sparse attention, and Key-Value Cache to effectively manage long-context references and ensure color identity consistency. Results demonstrate that Cobra achieves accurate line art colorization through extensive contextual reference, significantly enhancing inference speed and interactivity, thereby meeting critical industrial demands. We release our codes and models on our project page: https://zhuang2002.github.io/Cobra/.
Paint Bucket Colorization Using Anime Character Color Design Sheets
Line art colorization plays a crucial role in hand-drawn animation production, where digital artists manually colorize segments using a paint bucket tool, guided by RGB values from character color design sheets. This process, often called paint bucket colorization, involves two main tasks: keyframe colorization, where colors are applied according to the character's color design sheet, and consecutive frame colorization, where these colors are replicated across adjacent frames. Current automated colorization methods primarily focus on reference-based and segment-matching approaches. However, reference-based methods often fail to accurately assign specific colors to each region, while matching-based methods are limited to consecutive frame colorization and struggle with issues like significant deformation and occlusion. In this work, we introduce inclusion matching, which allows the network to understand the inclusion relationships between segments, rather than relying solely on direct visual correspondences. By integrating this approach with segment parsing and color warping modules, our inclusion matching pipeline significantly improves performance in both keyframe colorization and consecutive frame colorization. To support our network's training, we have developed a unique dataset named PaintBucket-Character, which includes rendered line arts alongside their colorized versions and shading annotations for various 3D characters. To replicate industry animation data formats, we also created color design sheets for each character, with semantic information for each color and standard pose reference images. Experiments highlight the superiority of our method, demonstrating accurate and consistent colorization across both our proposed benchmarks and hand-drawn animations.
MagicColor: Multi-Instance Sketch Colorization
We present MagicColor, a diffusion-based framework for multi-instance sketch colorization. The production of multi-instance 2D line art colorization adheres to an industry-standard workflow, which consists of three crucial stages: the design of line art characters, the coloring of individual objects, and the refinement process. The artists are required to repeat the process of coloring each instance one by one, which is inaccurate and inefficient. Meanwhile, current generative methods fail to solve this task due to the challenge of multi-instance pair data collection. To tackle these challenges, we incorporate three technical designs to ensure precise character detail transcription and achieve multi-instance sketch colorization in a single forward. Specifically, we first propose the self-play training strategy to solve the lack of training data. Then we introduce an instance guider to feed the color of the instance. To achieve accurate color matching, we present fine-grained color matching with edge loss to enhance visual quality. Equipped with the proposed modules, MagicColor enables automatically transforming sketches into vividly-colored images with accurate consistency and multi-instance control. Experiments on our collected datasets show that our model outperforms existing methods regarding chromatic precision. Specifically, our model critically automates the colorization process with zero manual adjustments, so novice users can produce stylistically consistent artwork by providing reference instances and the original line art. Our code and additional details are available at https://yinhan-zhang.github.io/color
AniDoc: Animation Creation Made Easier
The production of 2D animation follows an industry-standard workflow, encompassing four essential stages: character design, keyframe animation, in-betweening, and coloring. Our research focuses on reducing the labor costs in the above process by harnessing the potential of increasingly powerful generative AI. Using video diffusion models as the foundation, AniDoc emerges as a video line art colorization tool, which automatically converts sketch sequences into colored animations following the reference character specification. Our model exploits correspondence matching as an explicit guidance, yielding strong robustness to the variations (e.g., posture) between the reference character and each line art frame. In addition, our model could even automate the in-betweening process, such that users can easily create a temporally consistent animation by simply providing a character image as well as the start and end sketches. Our code is available at: https://yihao-meng.github.io/AniDoc_demo.
Deep Line Art Video Colorization with a Few References
Coloring line art images based on the colors of reference images is an important stage in animation production, which is time-consuming and tedious. In this paper, we propose a deep architecture to automatically color line art videos with the same color style as the given reference images. Our framework consists of a color transform network and a temporal constraint network. The color transform network takes the target line art images as well as the line art and color images of one or more reference images as input, and generates corresponding target color images. To cope with larger differences between the target line art image and reference color images, our architecture utilizes non-local similarity matching to determine the region correspondences between the target image and the reference images, which are used to transform the local color information from the references to the target. To ensure global color style consistency, we further incorporate Adaptive Instance Normalization (AdaIN) with the transformation parameters obtained from a style embedding vector that describes the global color style of the references, extracted by an embedder. The temporal constraint network takes the reference images and the target image together in chronological order, and learns the spatiotemporal features through 3D convolution to ensure the temporal consistency of the target image and the reference image. Our model can achieve even better coloring results by fine-tuning the parameters with only a small amount of samples when dealing with an animation of a new style. To evaluate our method, we build a line art coloring dataset. Experiments show that our method achieves the best performance on line art video coloring compared to the state-of-the-art methods and other baselines.
Learning Inclusion Matching for Animation Paint Bucket Colorization
Colorizing line art is a pivotal task in the production of hand-drawn cel animation. This typically involves digital painters using a paint bucket tool to manually color each segment enclosed by lines, based on RGB values predetermined by a color designer. This frame-by-frame process is both arduous and time-intensive. Current automated methods mainly focus on segment matching. This technique migrates colors from a reference to the target frame by aligning features within line-enclosed segments across frames. However, issues like occlusion and wrinkles in animations often disrupt these direct correspondences, leading to mismatches. In this work, we introduce a new learning-based inclusion matching pipeline, which directs the network to comprehend the inclusion relationships between segments rather than relying solely on direct visual correspondences. Our method features a two-stage pipeline that integrates a coarse color warping module with an inclusion matching module, enabling more nuanced and accurate colorization. To facilitate the training of our network, we also develope a unique dataset, referred to as PaintBucket-Character. This dataset includes rendered line arts alongside their colorized counterparts, featuring various 3D characters. Extensive experiments demonstrate the effectiveness and superiority of our method over existing techniques.
inkn'hue: Enhancing Manga Colorization from Multiple Priors with Alignment Multi-Encoder VAE
Manga, a form of Japanese comics and distinct visual storytelling, has captivated readers worldwide. Traditionally presented in black and white, manga's appeal lies in its ability to convey complex narratives and emotions through intricate line art and shading. Yet, the desire to experience manga in vibrant colors has sparked the pursuit of manga colorization, a task of paramount significance for artists. However, existing methods, originally designed for line art and sketches, face challenges when applied to manga. These methods often fall short in achieving the desired results, leading to the need for specialized manga-specific solutions. Existing approaches frequently rely on a single training step or extensive manual artist intervention, which can yield less satisfactory outcomes. To address these challenges, we propose a specialized framework for manga colorization. Leveraging established models for shading and vibrant coloring, our approach aligns both using a multi-encoder VAE. This structured workflow ensures clear and colorful results, with the option to incorporate reference images and manual hints.
LVCD: Reference-based Lineart Video Colorization with Diffusion Models
We propose the first video diffusion framework for reference-based lineart video colorization. Unlike previous works that rely solely on image generative models to colorize lineart frame by frame, our approach leverages a large-scale pretrained video diffusion model to generate colorized animation videos. This approach leads to more temporally consistent results and is better equipped to handle large motions. Firstly, we introduce Sketch-guided ControlNet which provides additional control to finetune an image-to-video diffusion model for controllable video synthesis, enabling the generation of animation videos conditioned on lineart. We then propose Reference Attention to facilitate the transfer of colors from the reference frame to other frames containing fast and expansive motions. Finally, we present a novel scheme for sequential sampling, incorporating the Overlapped Blending Module and Prev-Reference Attention, to extend the video diffusion model beyond its original fixed-length limitation for long video colorization. Both qualitative and quantitative results demonstrate that our method significantly outperforms state-of-the-art techniques in terms of frame and video quality, as well as temporal consistency. Moreover, our method is capable of generating high-quality, long temporal-consistent animation videos with large motions, which is not achievable in previous works. Our code and model are available at https://luckyhzt.github.io/lvcd.
Image Referenced Sketch Colorization Based on Animation Creation Workflow
Sketch colorization plays an important role in animation and digital illustration production tasks. However, existing methods still meet problems in that text-guided methods fail to provide accurate color and style reference, hint-guided methods still involve manual operation, and image-referenced methods are prone to cause artifacts. To address these limitations, we propose a diffusion-based framework inspired by real-world animation production workflows. Our approach leverages the sketch as the spatial guidance and an RGB image as the color reference, and separately extracts foreground and background from the reference image with spatial masks. Particularly, we introduce a split cross-attention mechanism with LoRA (Low-Rank Adaptation) modules. They are trained separately with foreground and background regions to control the corresponding embeddings for keys and values in cross-attention. This design allows the diffusion model to integrate information from foreground and background independently, preventing interference and eliminating the spatial artifacts. During inference, we design switchable inference modes for diverse use scenarios by changing modules activated in the framework. Extensive qualitative and quantitative experiments, along with user studies, demonstrate our advantages over existing methods in generating high-qualigy artifact-free results with geometric mismatched references. Ablation studies further confirm the effectiveness of each component. Codes are available at https://github.com/ tellurion-kanata/colorizeDiffusion.
ColorizeDiffusion v2: Enhancing Reference-based Sketch Colorization Through Separating Utilities
Reference-based sketch colorization methods have garnered significant attention due to their potential applications in the animation production industry. However, most existing methods are trained with image triplets of sketch, reference, and ground truth that are semantically and spatially well-aligned, while real-world references and sketches often exhibit substantial misalignment. This mismatch in data distribution between training and inference leads to overfitting, consequently resulting in spatial artifacts and significant degradation in overall colorization quality, limiting potential applications of current methods for general purposes. To address this limitation, we conduct an in-depth analysis of the carrier, defined as the latent representation facilitating information transfer from reference to sketch. Based on this analysis, we propose a novel workflow that dynamically adapts the carrier to optimize distinct aspects of colorization. Specifically, for spatially misaligned artifacts, we introduce a split cross-attention mechanism with spatial masks, enabling region-specific reference injection within the diffusion process. To mitigate semantic neglect of sketches, we employ dedicated background and style encoders to transfer detailed reference information in the latent feature space, achieving enhanced spatial control and richer detail synthesis. Furthermore, we propose character-mask merging and background bleaching as preprocessing steps to improve foreground-background integration and background generation. Extensive qualitative and quantitative evaluations, including a user study, demonstrate the superior performance of our proposed method compared to existing approaches. An ablation study further validates the efficacy of each proposed component.
Painting Style-Aware Manga Colorization Based on Generative Adversarial Networks
Japanese comics (called manga) are traditionally created in monochrome format. In recent years, in addition to monochrome comics, full color comics, a more attractive medium, have appeared. Unfortunately, color comics require manual colorization, which incurs high labor costs. Although automatic colorization methods have been recently proposed, most of them are designed for illustrations, not for comics. Unlike illustrations, since comics are composed of many consecutive images, the painting style must be consistent. To realize consistent colorization, we propose here a semi-automatic colorization method based on generative adversarial networks (GAN); the method learns the painting style of a specific comic from small amount of training data. The proposed method takes a pair of a screen tone image and a flat colored image as input, and outputs a colorized image. Experiments show that the proposed method achieves better performance than the existing alternatives.
ColorFlow: Retrieval-Augmented Image Sequence Colorization
Automatic black-and-white image sequence colorization while preserving character and object identity (ID) is a complex task with significant market demand, such as in cartoon or comic series colorization. Despite advancements in visual colorization using large-scale generative models like diffusion models, challenges with controllability and identity consistency persist, making current solutions unsuitable for industrial application.To address this, we propose ColorFlow, a three-stage diffusion-based framework tailored for image sequence colorization in industrial applications. Unlike existing methods that require per-ID finetuning or explicit ID embedding extraction, we propose a novel robust and generalizable Retrieval Augmented Colorization pipeline for colorizing images with relevant color references. Our pipeline also features a dual-branch design: one branch for color identity extraction and the other for colorization, leveraging the strengths of diffusion models. We utilize the self-attention mechanism in diffusion models for strong in-context learning and color identity matching. To evaluate our model, we introduce ColorFlow-Bench, a comprehensive benchmark for reference-based colorization. Results show that ColorFlow outperforms existing models across multiple metrics, setting a new standard in sequential image colorization and potentially benefiting the art industry. We release our codes and models on our project page: https://zhuang2002.github.io/ColorFlow/.
ColorizeDiffusion: Adjustable Sketch Colorization with Reference Image and Text
Diffusion models have recently demonstrated their effectiveness in generating extremely high-quality images and are now utilized in a wide range of applications, including automatic sketch colorization. Although many methods have been developed for guided sketch colorization, there has been limited exploration of the potential conflicts between image prompts and sketch inputs, which can lead to severe deterioration in the results. Therefore, this paper exhaustively investigates reference-based sketch colorization models that aim to colorize sketch images using reference color images. We specifically investigate two critical aspects of reference-based diffusion models: the "distribution problem", which is a major shortcoming compared to text-based counterparts, and the capability in zero-shot sequential text-based manipulation. We introduce two variations of an image-guided latent diffusion model utilizing different image tokens from the pre-trained CLIP image encoder and propose corresponding manipulation methods to adjust their results sequentially using weighted text inputs. We conduct comprehensive evaluations of our models through qualitative and quantitative experiments as well as a user study.
Enabling Region-Specific Control via Lassos in Point-Based Colorization
Point-based interactive colorization techniques allow users to effortlessly colorize grayscale images using user-provided color hints. However, point-based methods often face challenges when different colors are given to semantically similar areas, leading to color intermingling and unsatisfactory results-an issue we refer to as color collapse. The fundamental cause of color collapse is the inadequacy of points for defining the boundaries for each color. To mitigate color collapse, we introduce a lasso tool that can control the scope of each color hint. Additionally, we design a framework that leverages the user-provided lassos to localize the attention masks. The experimental results show that using a single lasso is as effective as applying 4.18 individual color hints and can achieve the desired outcomes in 30% less time than using points alone.
Real-Time User-Guided Image Colorization with Learned Deep Priors
We propose a deep learning approach for user-guided image colorization. The system directly maps a grayscale image, along with sparse, local user "hints" to an output colorization with a Convolutional Neural Network (CNN). Rather than using hand-defined rules, the network propagates user edits by fusing low-level cues along with high-level semantic information, learned from large-scale data. We train on a million images, with simulated user inputs. To guide the user towards efficient input selection, the system recommends likely colors based on the input image and current user inputs. The colorization is performed in a single feed-forward pass, enabling real-time use. Even with randomly simulated user inputs, we show that the proposed system helps novice users quickly create realistic colorizations, and offers large improvements in colorization quality with just a minute of use. In addition, we demonstrate that the framework can incorporate other user "hints" to the desired colorization, showing an application to color histogram transfer. Our code and models are available at https://richzhang.github.io/ideepcolor.
iColoriT: Towards Propagating Local Hint to the Right Region in Interactive Colorization by Leveraging Vision Transformer
Point-interactive image colorization aims to colorize grayscale images when a user provides the colors for specific locations. It is essential for point-interactive colorization methods to appropriately propagate user-provided colors (i.e., user hints) in the entire image to obtain a reasonably colorized image with minimal user effort. However, existing approaches often produce partially colorized results due to the inefficient design of stacking convolutional layers to propagate hints to distant relevant regions. To address this problem, we present iColoriT, a novel point-interactive colorization Vision Transformer capable of propagating user hints to relevant regions, leveraging the global receptive field of Transformers. The self-attention mechanism of Transformers enables iColoriT to selectively colorize relevant regions with only a few local hints. Our approach colorizes images in real-time by utilizing pixel shuffling, an efficient upsampling technique that replaces the decoder architecture. Also, in order to mitigate the artifacts caused by pixel shuffling with large upsampling ratios, we present the local stabilizing layer. Extensive quantitative and qualitative results demonstrate that our approach highly outperforms existing methods for point-interactive colorization, producing accurately colorized images with a user's minimal effort. Official codes are available at https://pmh9960.github.io/research/iColoriT
Colorful Image Colorization
Given a grayscale photograph as input, this paper attacks the problem of hallucinating a plausible color version of the photograph. This problem is clearly underconstrained, so previous approaches have either relied on significant user interaction or resulted in desaturated colorizations. We propose a fully automatic approach that produces vibrant and realistic colorizations. We embrace the underlying uncertainty of the problem by posing it as a classification task and use class-rebalancing at training time to increase the diversity of colors in the result. The system is implemented as a feed-forward pass in a CNN at test time and is trained on over a million color images. We evaluate our algorithm using a "colorization Turing test," asking human participants to choose between a generated and ground truth color image. Our method successfully fools humans on 32% of the trials, significantly higher than previous methods. Moreover, we show that colorization can be a powerful pretext task for self-supervised feature learning, acting as a cross-channel encoder. This approach results in state-of-the-art performance on several feature learning benchmarks.
Improved Diffusion-based Image Colorization via Piggybacked Models
Image colorization has been attracting the research interests of the community for decades. However, existing methods still struggle to provide satisfactory colorized results given grayscale images due to a lack of human-like global understanding of colors. Recently, large-scale Text-to-Image (T2I) models have been exploited to transfer the semantic information from the text prompts to the image domain, where text provides a global control for semantic objects in the image. In this work, we introduce a colorization model piggybacking on the existing powerful T2I diffusion model. Our key idea is to exploit the color prior knowledge in the pre-trained T2I diffusion model for realistic and diverse colorization. A diffusion guider is designed to incorporate the pre-trained weights of the latent diffusion model to output a latent color prior that conforms to the visual semantics of the grayscale input. A lightness-aware VQVAE will then generate the colorized result with pixel-perfect alignment to the given grayscale image. Our model can also achieve conditional colorization with additional inputs (e.g. user hints and texts). Extensive experiments show that our method achieves state-of-the-art performance in terms of perceptual quality.
Stable Diffusion Reference Only: Image Prompt and Blueprint Jointly Guided Multi-Condition Diffusion Model for Secondary Painting
Stable Diffusion and ControlNet have achieved excellent results in the field of image generation and synthesis. However, due to the granularity and method of its control, the efficiency improvement is limited for professional artistic creations such as comics and animation production whose main work is secondary painting. In the current workflow, fixing characters and image styles often need lengthy text prompts, and even requires further training through TextualInversion, DreamBooth or other methods, which is very complicated and expensive for painters. Therefore, we present a new method in this paper, Stable Diffusion Reference Only, a images-to-image self-supervised model that uses only two types of conditional images for precise control generation to accelerate secondary painting. The first type of conditional image serves as an image prompt, supplying the necessary conceptual and color information for generation. The second type is blueprint image, which controls the visual structure of the generated image. It is natively embedded into the original UNet, eliminating the need for ControlNet. We released all the code for the module and pipeline, and trained a controllable character line art coloring model at https://github.com/aihao2000/stable-diffusion-reference-only, that achieved state-of-the-art results in this field. This verifies the effectiveness of the structure and greatly improves the production efficiency of animations, comics, and fanworks.
VectorPainter: Advanced Stylized Vector Graphics Synthesis Using Stroke-Style Priors
We introduce VectorPainter, a novel framework designed for reference-guided text-to-vector-graphics synthesis. Based on our observation that the style of strokes can be an important aspect to distinguish different artists, our method reforms the task into synthesize a desired vector graphics by rearranging stylized strokes, which are vectorized from the reference images. Specifically, our method first converts the pixels of the reference image into a series of vector strokes, and then generates a vector graphic based on the input text description by optimizing the positions and colors of these vector strokes. To precisely capture the style of the reference image in the vectorized strokes, we propose an innovative vectorization method that employs an imitation learning strategy. To preserve the style of the strokes throughout the generation process, we introduce a style-preserving loss function. Extensive experiments have been conducted to demonstrate the superiority of our approach over existing works in stylized vector graphics synthesis, as well as the effectiveness of the various components of our method.
Deep Geometrized Cartoon Line Inbetweening
We aim to address a significant but understudied problem in the anime industry, namely the inbetweening of cartoon line drawings. Inbetweening involves generating intermediate frames between two black-and-white line drawings and is a time-consuming and expensive process that can benefit from automation. However, existing frame interpolation methods that rely on matching and warping whole raster images are unsuitable for line inbetweening and often produce blurring artifacts that damage the intricate line structures. To preserve the precision and detail of the line drawings, we propose a new approach, AnimeInbet, which geometrizes raster line drawings into graphs of endpoints and reframes the inbetweening task as a graph fusion problem with vertex repositioning. Our method can effectively capture the sparsity and unique structure of line drawings while preserving the details during inbetweening. This is made possible via our novel modules, i.e., vertex geometric embedding, a vertex correspondence Transformer, an effective mechanism for vertex repositioning and a visibility predictor. To train our method, we introduce MixamoLine240, a new dataset of line drawings with ground truth vectorization and matching labels. Our experiments demonstrate that AnimeInbet synthesizes high-quality, clean, and complete intermediate line drawings, outperforming existing methods quantitatively and qualitatively, especially in cases with large motions. Data and code are available at https://github.com/lisiyao21/AnimeInbet.
LongAnimation: Long Animation Generation with Dynamic Global-Local Memory
Animation colorization is a crucial part of real animation industry production. Long animation colorization has high labor costs. Therefore, automated long animation colorization based on the video generation model has significant research value. Existing studies are limited to short-term colorization. These studies adopt a local paradigm, fusing overlapping features to achieve smooth transitions between local segments. However, the local paradigm neglects global information, failing to maintain long-term color consistency. In this study, we argue that ideal long-term color consistency can be achieved through a dynamic global-local paradigm, i.e., dynamically extracting global color-consistent features relevant to the current generation. Specifically, we propose LongAnimation, a novel framework, which mainly includes a SketchDiT, a Dynamic Global-Local Memory (DGLM), and a Color Consistency Reward. The SketchDiT captures hybrid reference features to support the DGLM module. The DGLM module employs a long video understanding model to dynamically compress global historical features and adaptively fuse them with the current generation features. To refine the color consistency, we introduce a Color Consistency Reward. During inference, we propose a color consistency fusion to smooth the video segment transition. Extensive experiments on both short-term (14 frames) and long-term (average 500 frames) animations show the effectiveness of LongAnimation in maintaining short-term and long-term color consistency for open-domain animation colorization task. The code can be found at https://cn-makers.github.io/long_animation_web/.
Birth of a Painting: Differentiable Brushstroke Reconstruction
Painting embodies a unique form of visual storytelling, where the creation process is as significant as the final artwork. Although recent advances in generative models have enabled visually compelling painting synthesis, most existing methods focus solely on final image generation or patch-based process simulation, lacking explicit stroke structure and failing to produce smooth, realistic shading. In this work, we present a differentiable stroke reconstruction framework that unifies painting, stylized texturing, and smudging to faithfully reproduce the human painting-smudging loop. Given an input image, our framework first optimizes single- and dual-color Bezier strokes through a parallel differentiable paint renderer, followed by a style generation module that synthesizes geometry-conditioned textures across diverse painting styles. We further introduce a differentiable smudge operator to enable natural color blending and shading. Coupled with a coarse-to-fine optimization strategy, our method jointly optimizes stroke geometry, color, and texture under geometric and semantic guidance. Extensive experiments on oil, watercolor, ink, and digital paintings demonstrate that our approach produces realistic and expressive stroke reconstructions, smooth tonal transitions, and richly stylized appearances, offering a unified model for expressive digital painting creation. See our project page for more demos: https://yingjiang96.github.io/DiffPaintWebsite/.
Image Colorization with Generative Adversarial Networks
Over the last decade, the process of automatic image colorization has been of significant interest for several application areas including restoration of aged or degraded images. This problem is highly ill-posed due to the large degrees of freedom during the assignment of color information. Many of the recent developments in automatic colorization involve images that contain a common theme or require highly processed data such as semantic maps as input. In our approach, we attempt to fully generalize the colorization procedure using a conditional Deep Convolutional Generative Adversarial Network (DCGAN), extend current methods to high-resolution images and suggest training strategies that speed up the process and greatly stabilize it. The network is trained over datasets that are publicly available such as CIFAR-10 and Places365. The results of the generative model and traditional deep neural networks are compared.
Learning to generate line drawings that convey geometry and semantics
This paper presents an unpaired method for creating line drawings from photographs. Current methods often rely on high quality paired datasets to generate line drawings. However, these datasets often have limitations due to the subjects of the drawings belonging to a specific domain, or in the amount of data collected. Although recent work in unsupervised image-to-image translation has shown much progress, the latest methods still struggle to generate compelling line drawings. We observe that line drawings are encodings of scene information and seek to convey 3D shape and semantic meaning. We build these observations into a set of objectives and train an image translation to map photographs into line drawings. We introduce a geometry loss which predicts depth information from the image features of a line drawing, and a semantic loss which matches the CLIP features of a line drawing with its corresponding photograph. Our approach outperforms state-of-the-art unpaired image translation and line drawing generation methods on creating line drawings from arbitrary photographs. For code and demo visit our webpage carolineec.github.io/informative_drawings
Applying a Color Palette with Local Control using Diffusion Models
We demonstrate two novel editing procedures in the context of fantasy card art. Palette transfer applies a specified reference palette to a given card. For fantasy art, the desired change in palette can be very large, leading to huge changes in the "look" of the art. We demonstrate that a pipeline of vector quantization; matching; and "vector dequantization" (using a diffusion model) produces successful extreme palette transfers. Segment control allows an artist to move one or more image segments, and to optionally specify the desired color of the result. The combination of these two types of edit yields valuable workflows, including: move a segment, then recolor; recolor, then force some segments to take a prescribed color. We demonstrate our methods on the challenging Yu-Gi-Oh card art dataset.
DrawingSpinUp: 3D Animation from Single Character Drawings
Animating various character drawings is an engaging visual content creation task. Given a single character drawing, existing animation methods are limited to flat 2D motions and thus lack 3D effects. An alternative solution is to reconstruct a 3D model from a character drawing as a proxy and then retarget 3D motion data onto it. However, the existing image-to-3D methods could not work well for amateur character drawings in terms of appearance and geometry. We observe the contour lines, commonly existing in character drawings, would introduce significant ambiguity in texture synthesis due to their view-dependence. Additionally, thin regions represented by single-line contours are difficult to reconstruct (e.g., slim limbs of a stick figure) due to their delicate structures. To address these issues, we propose a novel system, DrawingSpinUp, to produce plausible 3D animations and breathe life into character drawings, allowing them to freely spin up, leap, and even perform a hip-hop dance. For appearance improvement, we adopt a removal-then-restoration strategy to first remove the view-dependent contour lines and then render them back after retargeting the reconstructed character. For geometry refinement, we develop a skeleton-based thinning deformation algorithm to refine the slim structures represented by the single-line contours. The experimental evaluations and a perceptual user study show that our proposed method outperforms the existing 2D and 3D animation methods and generates high-quality 3D animations from a single character drawing. Please refer to our project page (https://lordliang.github.io/DrawingSpinUp) for the code and generated animations.
GalleryGPT: Analyzing Paintings with Large Multimodal Models
Artwork analysis is important and fundamental skill for art appreciation, which could enrich personal aesthetic sensibility and facilitate the critical thinking ability. Understanding artworks is challenging due to its subjective nature, diverse interpretations, and complex visual elements, requiring expertise in art history, cultural background, and aesthetic theory. However, limited by the data collection and model ability, previous works for automatically analyzing artworks mainly focus on classification, retrieval, and other simple tasks, which is far from the goal of AI. To facilitate the research progress, in this paper, we step further to compose comprehensive analysis inspired by the remarkable perception and generation ability of large multimodal models. Specifically, we first propose a task of composing paragraph analysis for artworks, i.e., painting in this paper, only focusing on visual characteristics to formulate more comprehensive understanding of artworks. To support the research on formal analysis, we collect a large dataset PaintingForm, with about 19k painting images and 50k analysis paragraphs. We further introduce a superior large multimodal model for painting analysis composing, dubbed GalleryGPT, which is slightly modified and fine-tuned based on LLaVA architecture leveraging our collected data. We conduct formal analysis generation and zero-shot experiments across several datasets to assess the capacity of our model. The results show remarkable performance improvements comparing with powerful baseline LMMs, demonstrating its superb ability of art analysis and generalization. blue{The codes and model are available at: https://github.com/steven640pixel/GalleryGPT.
Deep Exemplar-based Colorization
We propose the first deep learning approach for exemplar-based local colorization. Given a reference color image, our convolutional neural network directly maps a grayscale image to an output colorized image. Rather than using hand-crafted rules as in traditional exemplar-based methods, our end-to-end colorization network learns how to select, propagate, and predict colors from the large-scale data. The approach performs robustly and generalizes well even when using reference images that are unrelated to the input grayscale image. More importantly, as opposed to other learning-based colorization methods, our network allows the user to achieve customizable results by simply feeding different references. In order to further reduce manual effort in selecting the references, the system automatically recommends references with our proposed image retrieval algorithm, which considers both semantic and luminance information. The colorization can be performed fully automatically by simply picking the top reference suggestion. Our approach is validated through a user study and favorable quantitative comparisons to the-state-of-the-art methods. Furthermore, our approach can be naturally extended to video colorization. Our code and models will be freely available for public use.
ToonComposer: Streamlining Cartoon Production with Generative Post-Keyframing
Traditional cartoon and anime production involves keyframing, inbetweening, and colorization stages, which require intensive manual effort. Despite recent advances in AI, existing methods often handle these stages separately, leading to error accumulation and artifacts. For instance, inbetweening approaches struggle with large motions, while colorization methods require dense per-frame sketches. To address this, we introduce ToonComposer, a generative model that unifies inbetweening and colorization into a single post-keyframing stage. ToonComposer employs a sparse sketch injection mechanism to provide precise control using keyframe sketches. Additionally, it uses a cartoon adaptation method with the spatial low-rank adapter to tailor a modern video foundation model to the cartoon domain while keeping its temporal prior intact. Requiring as few as a single sketch and a colored reference frame, ToonComposer excels with sparse inputs, while also supporting multiple sketches at any temporal location for more precise motion control. This dual capability reduces manual workload and improves flexibility, empowering artists in real-world scenarios. To evaluate our model, we further created PKBench, a benchmark featuring human-drawn sketches that simulate real-world use cases. Our evaluation demonstrates that ToonComposer outperforms existing methods in visual quality, motion consistency, and production efficiency, offering a superior and more flexible solution for AI-assisted cartoon production.
Photorealistic Material Editing Through Direct Image Manipulation
Creating photorealistic materials for light transport algorithms requires carefully fine-tuning a set of material properties to achieve a desired artistic effect. This is typically a lengthy process that involves a trained artist with specialized knowledge. In this work, we present a technique that aims to empower novice and intermediate-level users to synthesize high-quality photorealistic materials by only requiring basic image processing knowledge. In the proposed workflow, the user starts with an input image and applies a few intuitive transforms (e.g., colorization, image inpainting) within a 2D image editor of their choice, and in the next step, our technique produces a photorealistic result that approximates this target image. Our method combines the advantages of a neural network-augmented optimizer and an encoder neural network to produce high-quality output results within 30 seconds. We also demonstrate that it is resilient against poorly-edited target images and propose a simple extension to predict image sequences with a strict time budget of 1-2 seconds per image.
POSTA: A Go-to Framework for Customized Artistic Poster Generation
Poster design is a critical medium for visual communication. Prior work has explored automatic poster design using deep learning techniques, but these approaches lack text accuracy, user customization, and aesthetic appeal, limiting their applicability in artistic domains such as movies and exhibitions, where both clear content delivery and visual impact are essential. To address these limitations, we present POSTA: a modular framework powered by diffusion models and multimodal large language models (MLLMs) for customized artistic poster generation. The framework consists of three modules. Background Diffusion creates a themed background based on user input. Design MLLM then generates layout and typography elements that align with and complement the background style. Finally, to enhance the poster's aesthetic appeal, ArtText Diffusion applies additional stylization to key text elements. The final result is a visually cohesive and appealing poster, with a fully modular process that allows for complete customization. To train our models, we develop the PosterArt dataset, comprising high-quality artistic posters annotated with layout, typography, and pixel-level stylized text segmentation. Our comprehensive experimental analysis demonstrates POSTA's exceptional controllability and design diversity, outperforming existing models in both text accuracy and aesthetic quality.
DDColor: Towards Photo-Realistic Image Colorization via Dual Decoders
Image colorization is a challenging problem due to multi-modal uncertainty and high ill-posedness. Directly training a deep neural network usually leads to incorrect semantic colors and low color richness. While transformer-based methods can deliver better results, they often rely on manually designed priors, suffer from poor generalization ability, and introduce color bleeding effects. To address these issues, we propose DDColor, an end-to-end method with dual decoders for image colorization. Our approach includes a pixel decoder and a query-based color decoder. The former restores the spatial resolution of the image, while the latter utilizes rich visual features to refine color queries, thus avoiding hand-crafted priors. Our two decoders work together to establish correlations between color and multi-scale semantic representations via cross-attention, significantly alleviating the color bleeding effect. Additionally, a simple yet effective colorfulness loss is introduced to enhance the color richness. Extensive experiments demonstrate that DDColor achieves superior performance to existing state-of-the-art works both quantitatively and qualitatively. The codes and models are publicly available at https://github.com/piddnad/DDColor.
Arbitrary Style Guidance for Enhanced Diffusion-Based Text-to-Image Generation
Diffusion-based text-to-image generation models like GLIDE and DALLE-2 have gained wide success recently for their superior performance in turning complex text inputs into images of high quality and wide diversity. In particular, they are proven to be very powerful in creating graphic arts of various formats and styles. Although current models supported specifying style formats like oil painting or pencil drawing, fine-grained style features like color distributions and brush strokes are hard to specify as they are randomly picked from a conditional distribution based on the given text input. Here we propose a novel style guidance method to support generating images using arbitrary style guided by a reference image. The generation method does not require a separate style transfer model to generate desired styles while maintaining image quality in generated content as controlled by the text input. Additionally, the guidance method can be applied without a style reference, denoted as self style guidance, to generate images of more diverse styles. Comprehensive experiments prove that the proposed method remains robust and effective in a wide range of conditions, including diverse graphic art forms, image content types and diffusion models.
AniClipart: Clipart Animation with Text-to-Video Priors
Clipart, a pre-made graphic art form, offers a convenient and efficient way of illustrating visual content. Traditional workflows to convert static clipart images into motion sequences are laborious and time-consuming, involving numerous intricate steps like rigging, key animation and in-betweening. Recent advancements in text-to-video generation hold great potential in resolving this problem. Nevertheless, direct application of text-to-video generation models often struggles to retain the visual identity of clipart images or generate cartoon-style motions, resulting in unsatisfactory animation outcomes. In this paper, we introduce AniClipart, a system that transforms static clipart images into high-quality motion sequences guided by text-to-video priors. To generate cartoon-style and smooth motion, we first define B\'{e}zier curves over keypoints of the clipart image as a form of motion regularization. We then align the motion trajectories of the keypoints with the provided text prompt by optimizing the Video Score Distillation Sampling (VSDS) loss, which encodes adequate knowledge of natural motion within a pretrained text-to-video diffusion model. With a differentiable As-Rigid-As-Possible shape deformation algorithm, our method can be end-to-end optimized while maintaining deformation rigidity. Experimental results show that the proposed AniClipart consistently outperforms existing image-to-video generation models, in terms of text-video alignment, visual identity preservation, and motion consistency. Furthermore, we showcase the versatility of AniClipart by adapting it to generate a broader array of animation formats, such as layered animation, which allows topological changes.
WISE: Whitebox Image Stylization by Example-based Learning
Image-based artistic rendering can synthesize a variety of expressive styles using algorithmic image filtering. In contrast to deep learning-based methods, these heuristics-based filtering techniques can operate on high-resolution images, are interpretable, and can be parameterized according to various design aspects. However, adapting or extending these techniques to produce new styles is often a tedious and error-prone task that requires expert knowledge. We propose a new paradigm to alleviate this problem: implementing algorithmic image filtering techniques as differentiable operations that can learn parametrizations aligned to certain reference styles. To this end, we present WISE, an example-based image-processing system that can handle a multitude of stylization techniques, such as watercolor, oil or cartoon stylization, within a common framework. By training parameter prediction networks for global and local filter parameterizations, we can simultaneously adapt effects to reference styles and image content, e.g., to enhance facial features. Our method can be optimized in a style-transfer framework or learned in a generative-adversarial setting for image-to-image translation. We demonstrate that jointly training an XDoG filter and a CNN for postprocessing can achieve comparable results to a state-of-the-art GAN-based method.
Alfie: Democratising RGBA Image Generation With No $$$
Designs and artworks are ubiquitous across various creative fields, requiring graphic design skills and dedicated software to create compositions that include many graphical elements, such as logos, icons, symbols, and art scenes, which are integral to visual storytelling. Automating the generation of such visual elements improves graphic designers' productivity, democratizes and innovates the creative industry, and helps generate more realistic synthetic data for related tasks. These illustration elements are mostly RGBA images with irregular shapes and cutouts, facilitating blending and scene composition. However, most image generation models are incapable of generating such images and achieving this capability requires expensive computational resources, specific training recipes, or post-processing solutions. In this work, we propose a fully-automated approach for obtaining RGBA illustrations by modifying the inference-time behavior of a pre-trained Diffusion Transformer model, exploiting the prompt-guided controllability and visual quality offered by such models with no additional computational cost. We force the generation of entire subjects without sharp croppings, whose background is easily removed for seamless integration into design projects or artistic scenes. We show with a user study that, in most cases, users prefer our solution over generating and then matting an image, and we show that our generated illustrations yield good results when used as inputs for composite scene generation pipelines. We release the code at https://github.com/aimagelab/Alfie.
Video Colorization with Pre-trained Text-to-Image Diffusion Models
Video colorization is a challenging task that involves inferring plausible and temporally consistent colors for grayscale frames. In this paper, we present ColorDiffuser, an adaptation of a pre-trained text-to-image latent diffusion model for video colorization. With the proposed adapter-based approach, we repropose the pre-trained text-to-image model to accept input grayscale video frames, with the optional text description, for video colorization. To enhance the temporal coherence and maintain the vividness of colorization across frames, we propose two novel techniques: the Color Propagation Attention and Alternated Sampling Strategy. Color Propagation Attention enables the model to refine its colorization decision based on a reference latent frame, while Alternated Sampling Strategy captures spatiotemporal dependencies by using the next and previous adjacent latent frames alternatively as reference during the generative diffusion sampling steps. This encourages bidirectional color information propagation between adjacent video frames, leading to improved color consistency across frames. We conduct extensive experiments on benchmark datasets, and the results demonstrate the effectiveness of our proposed framework. The evaluations show that ColorDiffuser achieves state-of-the-art performance in video colorization, surpassing existing methods in terms of color fidelity, temporal consistency, and visual quality.
ShadowDraw: From Any Object to Shadow-Drawing Compositional Art
We introduce ShadowDraw, a framework that transforms ordinary 3D objects into shadow-drawing compositional art. Given a 3D object, our system predicts scene parameters, including object pose and lighting, together with a partial line drawing, such that the cast shadow completes the drawing into a recognizable image. To this end, we optimize scene configurations to reveal meaningful shadows, employ shadow strokes to guide line drawing generation, and adopt automatic evaluation to enforce shadow-drawing coherence and visual quality. Experiments show that ShadowDraw produces compelling results across diverse inputs, from real-world scans and curated datasets to generative assets, and naturally extends to multi-object scenes, animations, and physical deployments. Our work provides a practical pipeline for creating shadow-drawing art and broadens the design space of computational visual art, bridging the gap between algorithmic design and artistic storytelling. Check out our project page https://red-fairy.github.io/ShadowDraw/ for more results and an end-to-end real-world demonstration of our pipeline!
Deep Painterly Harmonization
Copying an element from a photo and pasting it into a painting is a challenging task. Applying photo compositing techniques in this context yields subpar results that look like a collage --- and existing painterly stylization algorithms, which are global, perform poorly when applied locally. We address these issues with a dedicated algorithm that carefully determines the local statistics to be transferred. We ensure both spatial and inter-scale statistical consistency and demonstrate that both aspects are key to generating quality results. To cope with the diversity of abstraction levels and types of paintings, we introduce a technique to adjust the parameters of the transfer depending on the painting. We show that our algorithm produces significantly better results than photo compositing or global stylization techniques and that it enables creative painterly edits that would be otherwise difficult to achieve.
Free-Lunch Color-Texture Disentanglement for Stylized Image Generation
Recent advances in Text-to-Image (T2I) diffusion models have transformed image generation, enabling significant progress in stylized generation using only a few style reference images. However, current diffusion-based methods struggle with fine-grained style customization due to challenges in controlling multiple style attributes, such as color and texture. This paper introduces the first tuning-free approach to achieve free-lunch color-texture disentanglement in stylized T2I generation, addressing the need for independently controlled style elements for the Disentangled Stylized Image Generation (DisIG) problem. Our approach leverages the Image-Prompt Additivity property in the CLIP image embedding space to develop techniques for separating and extracting Color-Texture Embeddings (CTE) from individual color and texture reference images. To ensure that the color palette of the generated image aligns closely with the color reference, we apply a whitening and coloring transformation to enhance color consistency. Additionally, to prevent texture loss due to the signal-leak bias inherent in diffusion training, we introduce a noise term that preserves textural fidelity during the Regularized Whitening and Coloring Transformation (RegWCT). Through these methods, our Style Attributes Disentanglement approach (SADis) delivers a more precise and customizable solution for stylized image generation. Experiments on images from the WikiArt and StyleDrop datasets demonstrate that, both qualitatively and quantitatively, SADis surpasses state-of-the-art stylization methods in the DisIG task.Code will be released at https://deepffff.github.io/sadis.github.io/.
Color Me Correctly: Bridging Perceptual Color Spaces and Text Embeddings for Improved Diffusion Generation
Accurate color alignment in text-to-image (T2I) generation is critical for applications such as fashion, product visualization, and interior design, yet current diffusion models struggle with nuanced and compound color terms (e.g., Tiffany blue, lime green, hot pink), often producing images that are misaligned with human intent. Existing approaches rely on cross-attention manipulation, reference images, or fine-tuning but fail to systematically resolve ambiguous color descriptions. To precisely render colors under prompt ambiguity, we propose a training-free framework that enhances color fidelity by leveraging a large language model (LLM) to disambiguate color-related prompts and guiding color blending operations directly in the text embedding space. Our method first employs a large language model (LLM) to resolve ambiguous color terms in the text prompt, and then refines the text embeddings based on the spatial relationships of the resulting color terms in the CIELAB color space. Unlike prior methods, our approach improves color accuracy without requiring additional training or external reference images. Experimental results demonstrate that our framework improves color alignment without compromising image quality, bridging the gap between text semantics and visual generation.
Fine-Tuning InstructPix2Pix for Advanced Image Colorization
This paper presents a novel approach to human image colorization by fine-tuning the InstructPix2Pix model, which integrates a language model (GPT-3) with a text-to-image model (Stable Diffusion). Despite the original InstructPix2Pix model's proficiency in editing images based on textual instructions, it exhibits limitations in the focused domain of colorization. To address this, we fine-tuned the model using the IMDB-WIKI dataset, pairing black-and-white images with a diverse set of colorization prompts generated by ChatGPT. This paper contributes by (1) applying fine-tuning techniques to stable diffusion models specifically for colorization tasks, and (2) employing generative models to create varied conditioning prompts. After finetuning, our model outperforms the original InstructPix2Pix model on multiple metrics quantitatively, and we produce more realistically colored images qualitatively. The code for this project is provided on the GitHub Repository https://github.com/AllenAnZifeng/DeepLearning282.
Text-to-Vector Generation with Neural Path Representation
Vector graphics are widely used in digital art and highly favored by designers due to their scalability and layer-wise properties. However, the process of creating and editing vector graphics requires creativity and design expertise, making it a time-consuming task. Recent advancements in text-to-vector (T2V) generation have aimed to make this process more accessible. However, existing T2V methods directly optimize control points of vector graphics paths, often resulting in intersecting or jagged paths due to the lack of geometry constraints. To overcome these limitations, we propose a novel neural path representation by designing a dual-branch Variational Autoencoder (VAE) that learns the path latent space from both sequence and image modalities. By optimizing the combination of neural paths, we can incorporate geometric constraints while preserving expressivity in generated SVGs. Furthermore, we introduce a two-stage path optimization method to improve the visual and topological quality of generated SVGs. In the first stage, a pre-trained text-to-image diffusion model guides the initial generation of complex vector graphics through the Variational Score Distillation (VSD) process. In the second stage, we refine the graphics using a layer-wise image vectorization strategy to achieve clearer elements and structure. We demonstrate the effectiveness of our method through extensive experiments and showcase various applications. The project page is https://intchous.github.io/T2V-NPR.
StyleCLIPDraw: Coupling Content and Style in Text-to-Drawing Translation
Generating images that fit a given text description using machine learning has improved greatly with the release of technologies such as the CLIP image-text encoder model; however, current methods lack artistic control of the style of image to be generated. We present an approach for generating styled drawings for a given text description where a user can specify a desired drawing style using a sample image. Inspired by a theory in art that style and content are generally inseparable during the creative process, we propose a coupled approach, known here as StyleCLIPDraw, whereby the drawing is generated by optimizing for style and content simultaneously throughout the process as opposed to applying style transfer after creating content in a sequence. Based on human evaluation, the styles of images generated by StyleCLIPDraw are strongly preferred to those by the sequential approach. Although the quality of content generation degrades for certain styles, overall considering both content and style, StyleCLIPDraw is found far more preferred, indicating the importance of style, look, and feel of machine generated images to people as well as indicating that style is coupled in the drawing process itself. Our code (https://github.com/pschaldenbrand/StyleCLIPDraw), a demonstration (https://replicate.com/pschaldenbrand/style-clip-draw), and style evaluation data (https://www.kaggle.com/pittsburghskeet/drawings-with-style-evaluation-styleclipdraw) are publicly available.
Color2Embed: Fast Exemplar-Based Image Colorization using Color Embeddings
In this paper, we present a fast exemplar-based image colorization approach using color embeddings named Color2Embed. Generally, due to the difficulty of obtaining input and ground truth image pairs, it is hard to train a exemplar-based colorization model with unsupervised and unpaired training manner. Current algorithms usually strive to achieve two procedures: i) retrieving a large number of reference images with high similarity for preparing training dataset, which is inevitably time-consuming and tedious; ii) designing complicated modules to transfer the colors of the reference image to the target image, by calculating and leveraging the deep semantic correspondence between them (e.g., non-local operation), which is computationally expensive during testing. Contrary to the previous methods, we adopt a self-augmented self-reference learning scheme, where the reference image is generated by graphical transformations from the original colorful one whereby the training can be formulated in a paired manner. Second, in order to reduce the process time, our method explicitly extracts the color embeddings and exploits a progressive style feature Transformation network, which injects the color embeddings into the reconstruction of the final image. Such design is much more lightweight and intelligible, achieving appealing performance with fast processing speed.
Synthesizing Artistic Cinemagraphs from Text
We introduce Artistic Cinemagraph, a fully automated method for creating cinemagraphs from text descriptions - an especially challenging task when prompts feature imaginary elements and artistic styles, given the complexity of interpreting the semantics and motions of these images. Existing single-image animation methods fall short on artistic inputs, and recent text-based video methods frequently introduce temporal inconsistencies, struggling to keep certain regions static. To address these challenges, we propose an idea of synthesizing image twins from a single text prompt - a pair of an artistic image and its pixel-aligned corresponding natural-looking twin. While the artistic image depicts the style and appearance detailed in our text prompt, the realistic counterpart greatly simplifies layout and motion analysis. Leveraging existing natural image and video datasets, we can accurately segment the realistic image and predict plausible motion given the semantic information. The predicted motion can then be transferred to the artistic image to create the final cinemagraph. Our method outperforms existing approaches in creating cinemagraphs for natural landscapes as well as artistic and other-worldly scenes, as validated by automated metrics and user studies. Finally, we demonstrate two extensions: animating existing paintings and controlling motion directions using text.
Image-to-Image Translation via Group-wise Deep Whitening-and-Coloring Transformation
Recently, unsupervised exemplar-based image-to-image translation, conditioned on a given exemplar without the paired data, has accomplished substantial advancements. In order to transfer the information from an exemplar to an input image, existing methods often use a normalization technique, e.g., adaptive instance normalization, that controls the channel-wise statistics of an input activation map at a particular layer, such as the mean and the variance. Meanwhile, style transfer approaches similar task to image translation by nature, demonstrated superior performance by using the higher-order statistics such as covariance among channels in representing a style. In detail, it works via whitening (given a zero-mean input feature, transforming its covariance matrix into the identity). followed by coloring (changing the covariance matrix of the whitened feature to those of the style feature). However, applying this approach in image translation is computationally intensive and error-prone due to the expensive time complexity and its non-trivial backpropagation. In response, this paper proposes an end-to-end approach tailored for image translation that efficiently approximates this transformation with our novel regularization methods. We further extend our approach to a group-wise form for memory and time efficiency as well as image quality. Extensive qualitative and quantitative experiments demonstrate that our proposed method is fast, both in training and inference, and highly effective in reflecting the style of an exemplar. Finally, our code is available at https://github.com/WonwoongCho/GDWCT.
ColorPeel: Color Prompt Learning with Diffusion Models via Color and Shape Disentanglement
Text-to-Image (T2I) generation has made significant advancements with the advent of diffusion models. These models exhibit remarkable abilities to produce images based on textual prompts. Current T2I models allow users to specify object colors using linguistic color names. However, these labels encompass broad color ranges, making it difficult to achieve precise color matching. To tackle this challenging task, named color prompt learning, we propose to learn specific color prompts tailored to user-selected colors. Existing T2I personalization methods tend to result in color-shape entanglement. To overcome this, we generate several basic geometric objects in the target color, allowing for color and shape disentanglement during the color prompt learning. Our method, denoted as ColorPeel, successfully assists the T2I models to peel off the novel color prompts from these colored shapes. In the experiments, we demonstrate the efficacy of ColorPeel in achieving precise color generation with T2I models. Furthermore, we generalize ColorPeel to effectively learn abstract attribute concepts, including textures, materials, etc. Our findings represent a significant step towards improving precision and versatility of T2I models, offering new opportunities for creative applications and design tasks. Our project is available at https://moatifbutt.github.io/colorpeel/.
SVGDreamer++: Advancing Editability and Diversity in Text-Guided SVG Generation
Recently, text-guided scalable vector graphics (SVG) synthesis has demonstrated significant potential in domains such as iconography and sketching. However, SVGs generated from existing Text-to-SVG methods often lack editability and exhibit deficiencies in visual quality and diversity. In this paper, we propose a novel text-guided vector graphics synthesis method to address these limitations. To enhance the editability of output SVGs, we introduce a Hierarchical Image VEctorization (HIVE) framework that operates at the semantic object level and supervises the optimization of components within the vector object. This approach facilitates the decoupling of vector graphics into distinct objects and component levels. Our proposed HIVE algorithm, informed by image segmentation priors, not only ensures a more precise representation of vector graphics but also enables fine-grained editing capabilities within vector objects. To improve the diversity of output SVGs, we present a Vectorized Particle-based Score Distillation (VPSD) approach. VPSD addresses over-saturation issues in existing methods and enhances sample diversity. A pre-trained reward model is incorporated to re-weight vector particles, improving aesthetic appeal and enabling faster convergence. Additionally, we design a novel adaptive vector primitives control strategy, which allows for the dynamic adjustment of the number of primitives, thereby enhancing the presentation of graphic details. Extensive experiments validate the effectiveness of the proposed method, demonstrating its superiority over baseline methods in terms of editability, visual quality, and diversity. We also show that our new method supports up to six distinct vector styles, capable of generating high-quality vector assets suitable for stylized vector design and poster design. Code and demo will be released at: http://ximinng.github.io/SVGDreamerV2Project/
Composite Diffusion | whole >= Σparts
For an artist or a graphic designer, the spatial layout of a scene is a critical design choice. However, existing text-to-image diffusion models provide limited support for incorporating spatial information. This paper introduces Composite Diffusion as a means for artists to generate high-quality images by composing from the sub-scenes. The artists can specify the arrangement of these sub-scenes through a flexible free-form segment layout. They can describe the content of each sub-scene primarily using natural text and additionally by utilizing reference images or control inputs such as line art, scribbles, human pose, canny edges, and more. We provide a comprehensive and modular method for Composite Diffusion that enables alternative ways of generating, composing, and harmonizing sub-scenes. Further, we wish to evaluate the composite image for effectiveness in both image quality and achieving the artist's intent. We argue that existing image quality metrics lack a holistic evaluation of image composites. To address this, we propose novel quality criteria especially relevant to composite generation. We believe that our approach provides an intuitive method of art creation. Through extensive user surveys, quantitative and qualitative analysis, we show how it achieves greater spatial, semantic, and creative control over image generation. In addition, our methods do not need to retrain or modify the architecture of the base diffusion models and can work in a plug-and-play manner with the fine-tuned models.
DreamStyler: Paint by Style Inversion with Text-to-Image Diffusion Models
Recent progresses in large-scale text-to-image models have yielded remarkable accomplishments, finding various applications in art domain. However, expressing unique characteristics of an artwork (e.g. brushwork, colortone, or composition) with text prompts alone may encounter limitations due to the inherent constraints of verbal description. To this end, we introduce DreamStyler, a novel framework designed for artistic image synthesis, proficient in both text-to-image synthesis and style transfer. DreamStyler optimizes a multi-stage textual embedding with a context-aware text prompt, resulting in prominent image quality. In addition, with content and style guidance, DreamStyler exhibits flexibility to accommodate a range of style references. Experimental results demonstrate its superior performance across multiple scenarios, suggesting its promising potential in artistic product creation.
Controllable-Continuous Color Editing in Diffusion Model via Color Mapping
In recent years, text-driven image editing has made significant progress. However, due to the inherent ambiguity and discreteness of natural language, color editing still faces challenges such as insufficient precision and difficulty in achieving continuous control. Although linearly interpolating the embedding vectors of different textual descriptions can guide the model to generate a sequence of images with varying colors, this approach lacks precise control over the range of color changes in the output images. Moreover, the relationship between the interpolation coefficient and the resulting image color is unknown and uncontrollable. To address these issues, we introduce a color mapping module that explicitly models the correspondence between the text embedding space and image RGB values. This module predicts the corresponding embedding vector based on a given RGB value, enabling precise color control of the generated images while maintaining semantic consistency. Users can specify a target RGB range to generate images with continuous color variations within the desired range, thereby achieving finer-grained, continuous, and controllable color editing. Experimental results demonstrate that our method performs well in terms of color continuity and controllability.
AutoStory: Generating Diverse Storytelling Images with Minimal Human Effort
Story visualization aims to generate a series of images that match the story described in texts, and it requires the generated images to satisfy high quality, alignment with the text description, and consistency in character identities. Given the complexity of story visualization, existing methods drastically simplify the problem by considering only a few specific characters and scenarios, or requiring the users to provide per-image control conditions such as sketches. However, these simplifications render these methods incompetent for real applications. To this end, we propose an automated story visualization system that can effectively generate diverse, high-quality, and consistent sets of story images, with minimal human interactions. Specifically, we utilize the comprehension and planning capabilities of large language models for layout planning, and then leverage large-scale text-to-image models to generate sophisticated story images based on the layout. We empirically find that sparse control conditions, such as bounding boxes, are suitable for layout planning, while dense control conditions, e.g., sketches and keypoints, are suitable for generating high-quality image content. To obtain the best of both worlds, we devise a dense condition generation module to transform simple bounding box layouts into sketch or keypoint control conditions for final image generation, which not only improves the image quality but also allows easy and intuitive user interactions. In addition, we propose a simple yet effective method to generate multi-view consistent character images, eliminating the reliance on human labor to collect or draw character images.
APISR: Anime Production Inspired Real-World Anime Super-Resolution
While real-world anime super-resolution (SR) has gained increasing attention in the SR community, existing methods still adopt techniques from the photorealistic domain. In this paper, we analyze the anime production workflow and rethink how to use characteristics of it for the sake of the real-world anime SR. First, we argue that video networks and datasets are not necessary for anime SR due to the repetition use of hand-drawing frames. Instead, we propose an anime image collection pipeline by choosing the least compressed and the most informative frames from the video sources. Based on this pipeline, we introduce the Anime Production-oriented Image (API) dataset. In addition, we identify two anime-specific challenges of distorted and faint hand-drawn lines and unwanted color artifacts. We address the first issue by introducing a prediction-oriented compression module in the image degradation model and a pseudo-ground truth preparation with enhanced hand-drawn lines. In addition, we introduce the balanced twin perceptual loss combining both anime and photorealistic high-level features to mitigate unwanted color artifacts and increase visual clarity. We evaluate our method through extensive experiments on the public benchmark, showing our method outperforms state-of-the-art approaches by a large margin.
Instance-guided Cartoon Editing with a Large-scale Dataset
Cartoon editing, appreciated by both professional illustrators and hobbyists, allows extensive creative freedom and the development of original narratives within the cartoon domain. However, the existing literature on cartoon editing is complex and leans heavily on manual operations, owing to the challenge of automatic identification of individual character instances. Therefore, an automated segmentation of these elements becomes imperative to facilitate a variety of cartoon editing applications such as visual style editing, motion decomposition and transfer, and the computation of stereoscopic depths for an enriched visual experience. Unfortunately, most current segmentation methods are designed for natural photographs, failing to recognize from the intricate aesthetics of cartoon subjects, thus lowering segmentation quality. The major challenge stems from two key shortcomings: the rarity of high-quality cartoon dedicated datasets and the absence of competent models for high-resolution instance extraction on cartoons. To address this, we introduce a high-quality dataset of over 100k paired high-resolution cartoon images and their instance labeling masks. We also present an instance-aware image segmentation model that can generate accurate, high-resolution segmentation masks for characters in cartoon images. We present that the proposed approach enables a range of segmentation-dependent cartoon editing applications like 3D Ken Burns parallax effects, text-guided cartoon style editing, and puppet animation from illustrations and manga.
RSFNet: A White-Box Image Retouching Approach using Region-Specific Color Filters
Retouching images is an essential aspect of enhancing the visual appeal of photos. Although users often share common aesthetic preferences, their retouching methods may vary based on their individual preferences. Therefore, there is a need for white-box approaches that produce satisfying results and enable users to conveniently edit their images simultaneously. Recent white-box retouching methods rely on cascaded global filters that provide image-level filter arguments but cannot perform fine-grained retouching. In contrast, colorists typically employ a divide-and-conquer approach, performing a series of region-specific fine-grained enhancements when using traditional tools like Davinci Resolve. We draw on this insight to develop a white-box framework for photo retouching using parallel region-specific filters, called RSFNet. Our model generates filter arguments (e.g., saturation, contrast, hue) and attention maps of regions for each filter simultaneously. Instead of cascading filters, RSFNet employs linear summations of filters, allowing for a more diverse range of filter classes that can be trained more easily. Our experiments demonstrate that RSFNet achieves state-of-the-art results, offering satisfying aesthetic appeal and increased user convenience for editable white-box retouching.
Text-to-Image Synthesis for Any Artistic Styles: Advancements in Personalized Artistic Image Generation via Subdivision and Dual Binding
Recent advancements in text-to-image models, such as Stable Diffusion, have demonstrated their ability to synthesize visual images through natural language prompts. One approach of personalizing text-to-image models, exemplified by DreamBooth, fine-tunes the pre-trained model by binding unique text identifiers with a few images of a specific subject. Although existing fine-tuning methods have demonstrated competence in rendering images according to the styles of famous painters, it is still challenging to learn to produce images encapsulating distinct art styles due to abstract and broad visual perceptions of stylistic attributes such as lines, shapes, textures, and colors. In this paper, we introduce a new method, Single-StyleForge, for personalization. It fine-tunes pre-trained text-to-image diffusion models to generate diverse images in specified styles from text prompts. By using around 15-20 images of the target style, the approach establishes a foundational binding of a unique token identifier with a broad range of the target style. It also utilizes auxiliary images to strengthen this binding, resulting in offering specific guidance on representing elements such as persons in a target style-consistent manner. In addition, we present ways to improve the quality of style and text-image alignment through a method called Multi-StyleForge, which inherits the strategy used in StyleForge and learns tokens in multiple. Experimental evaluation conducted on six distinct artistic styles demonstrates substantial improvements in both the quality of generated images and the perceptual fidelity metrics, such as FID, KID, and CLIP scores.
Illustrious: an Open Advanced Illustration Model
In this work, we share the insights for achieving state-of-the-art quality in our text-to-image anime image generative model, called Illustrious. To achieve high resolution, dynamic color range images, and high restoration ability, we focus on three critical approaches for model improvement. First, we delve into the significance of the batch size and dropout control, which enables faster learning of controllable token based concept activations. Second, we increase the training resolution of images, affecting the accurate depiction of character anatomy in much higher resolution, extending its generation capability over 20MP with proper methods. Finally, we propose the refined multi-level captions, covering all tags and various natural language captions as a critical factor for model development. Through extensive analysis and experiments, Illustrious demonstrates state-of-the-art performance in terms of animation style, outperforming widely-used models in illustration domains, propelling easier customization and personalization with nature of open source. We plan to publicly release updated Illustrious model series sequentially as well as sustainable plans for improvements.
StylerDALLE: Language-Guided Style Transfer Using a Vector-Quantized Tokenizer of a Large-Scale Generative Model
Despite the progress made in the style transfer task, most previous work focus on transferring only relatively simple features like color or texture, while missing more abstract concepts such as overall art expression or painter-specific traits. However, these abstract semantics can be captured by models like DALL-E or CLIP, which have been trained using huge datasets of images and textual documents. In this paper, we propose StylerDALLE, a style transfer method that exploits both of these models and uses natural language to describe abstract art styles. Specifically, we formulate the language-guided style transfer task as a non-autoregressive token sequence translation, i.e., from input content image to output stylized image, in the discrete latent space of a large-scale pretrained vector-quantized tokenizer. To incorporate style information, we propose a Reinforcement Learning strategy with CLIP-based language supervision that ensures stylization and content preservation simultaneously. Experimental results demonstrate the superiority of our method, which can effectively transfer art styles using language instructions at different granularities. Code is available at https://github.com/zipengxuc/StylerDALLE.
Block and Detail: Scaffolding Sketch-to-Image Generation
We introduce a novel sketch-to-image tool that aligns with the iterative refinement process of artists. Our tool lets users sketch blocking strokes to coarsely represent the placement and form of objects and detail strokes to refine their shape and silhouettes. We develop a two-pass algorithm for generating high-fidelity images from such sketches at any point in the iterative process. In the first pass we use a ControlNet to generate an image that strictly follows all the strokes (blocking and detail) and in the second pass we add variation by renoising regions surrounding blocking strokes. We also present a dataset generation scheme that, when used to train a ControlNet architecture, allows regions that do not contain strokes to be interpreted as not-yet-specified regions rather than empty space. We show that this partial-sketch-aware ControlNet can generate coherent elements from partial sketches that only contain a small number of strokes. The high-fidelity images produced by our approach serve as scaffolds that can help the user adjust the shape and proportions of objects or add additional elements to the composition. We demonstrate the effectiveness of our approach with a variety of examples and evaluative comparisons. Quantitatively, evaluative user feedback indicates that novice viewers prefer the quality of images from our algorithm over a baseline Scribble ControlNet for 84% of the pairs and found our images had less distortion in 81% of the pairs.
Inversion-Based Style Transfer with Diffusion Models
The artistic style within a painting is the means of expression, which includes not only the painting material, colors, and brushstrokes, but also the high-level attributes including semantic elements, object shapes, etc. Previous arbitrary example-guided artistic image generation methods often fail to control shape changes or convey elements. The pre-trained text-to-image synthesis diffusion probabilistic models have achieved remarkable quality, but it often requires extensive textual descriptions to accurately portray attributes of a particular painting. We believe that the uniqueness of an artwork lies precisely in the fact that it cannot be adequately explained with normal language. Our key idea is to learn artistic style directly from a single painting and then guide the synthesis without providing complex textual descriptions. Specifically, we assume style as a learnable textual description of a painting. We propose an inversion-based style transfer method (InST), which can efficiently and accurately learn the key information of an image, thus capturing and transferring the artistic style of a painting. We demonstrate the quality and efficiency of our method on numerous paintings of various artists and styles. Code and models are available at https://github.com/zyxElsa/InST.
PosterCopilot: Toward Layout Reasoning and Controllable Editing for Professional Graphic Design
Graphic design forms the cornerstone of modern visual communication, serving as a vital medium for promoting cultural and commercial events. Recent advances have explored automating this process using Large Multimodal Models (LMMs), yet existing methods often produce geometrically inaccurate layouts and lack the iterative, layer-specific editing required in professional workflows. To address these limitations, we present PosterCopilot, a framework that advances layout reasoning and controllable editing for professional graphic design. Specifically, we introduce a progressive three-stage training strategy that equips LMMs with geometric understanding and aesthetic reasoning for layout design, consisting of Perturbed Supervised Fine-Tuning, Reinforcement Learning for Visual-Reality Alignment, and Reinforcement Learning from Aesthetic Feedback. Furthermore, we develop a complete workflow that couples the trained LMM-based design model with generative models, enabling layer-controllable, iterative editing for precise element refinement while maintaining global visual consistency. Extensive experiments demonstrate that PosterCopilot achieves geometrically accurate and aesthetically superior layouts, offering unprecedented controllability for professional iterative design.
PhotoDoodle: Learning Artistic Image Editing from Few-Shot Pairwise Data
We introduce PhotoDoodle, a novel image editing framework designed to facilitate photo doodling by enabling artists to overlay decorative elements onto photographs. Photo doodling is challenging because the inserted elements must appear seamlessly integrated with the background, requiring realistic blending, perspective alignment, and contextual coherence. Additionally, the background must be preserved without distortion, and the artist's unique style must be captured efficiently from limited training data. These requirements are not addressed by previous methods that primarily focus on global style transfer or regional inpainting. The proposed method, PhotoDoodle, employs a two-stage training strategy. Initially, we train a general-purpose image editing model, OmniEditor, using large-scale data. Subsequently, we fine-tune this model with EditLoRA using a small, artist-curated dataset of before-and-after image pairs to capture distinct editing styles and techniques. To enhance consistency in the generated results, we introduce a positional encoding reuse mechanism. Additionally, we release a PhotoDoodle dataset featuring six high-quality styles. Extensive experiments demonstrate the advanced performance and robustness of our method in customized image editing, opening new possibilities for artistic creation.
A Framework and Dataset for Abstract Art Generation via CalligraphyGAN
With the advancement of deep learning, artificial intelligence (AI) has made many breakthroughs in recent years and achieved superhuman performance in various tasks such as object detection, reading comprehension, and video games. Generative Modeling, such as various Generative Adversarial Networks (GAN) models, has been applied to generate paintings and music. Research in Natural Language Processing (NLP) also had a leap forward in 2018 since the release of the pre-trained contextual neural language models such as BERT and recently released GPT3. Despite the exciting AI applications aforementioned, AI is still significantly lagging behind humans in creativity, which is often considered the ultimate moonshot for AI. Our work is inspired by Chinese calligraphy, which is a unique form of visual art where the character itself is an aesthetic painting. We also draw inspirations from paintings of the Abstract Expressionist movement in the 1940s and 1950s, such as the work by American painter Franz Kline. In this paper, we present a creative framework based on Conditional Generative Adversarial Networks and Contextual Neural Language Model to generate abstract artworks that have intrinsic meaning and aesthetic value, which is different from the existing work, such as image captioning and text-to-image generation, where the texts are the descriptions of the images. In addition, we have publicly released a Chinese calligraphy image dataset and demonstrate our framework using a prototype system and a user study.
Improving Masked Style Transfer using Blended Partial Convolution
Artistic style transfer has long been possible with the advancements of convolution- and transformer-based neural networks. Most algorithms apply the artistic style transfer to the whole image, but individual users may only need to apply a style transfer to a specific region in the image. The standard practice is to simply mask the image after the stylization. This work shows that this approach tends to improperly capture the style features in the region of interest. We propose a partial-convolution-based style transfer network that accurately applies the style features exclusively to the region of interest. Additionally, we present network-internal blending techniques that account for imperfections in the region selection. We show that this visually and quantitatively improves stylization using examples from the SA-1B dataset. Code is publicly available at https://github.com/davidmhart/StyleTransferMasked.
Voxify3D: Pixel Art Meets Volumetric Rendering
Voxel art is a distinctive stylization widely used in games and digital media, yet automated generation from 3D meshes remains challenging due to conflicting requirements of geometric abstraction, semantic preservation, and discrete color coherence. Existing methods either over-simplify geometry or fail to achieve the pixel-precise, palette-constrained aesthetics of voxel art. We introduce Voxify3D, a differentiable two-stage framework bridging 3D mesh optimization with 2D pixel art supervision. Our core innovation lies in the synergistic integration of three components: (1) orthographic pixel art supervision that eliminates perspective distortion for precise voxel-pixel alignment; (2) patch-based CLIP alignment that preserves semantics across discretization levels; (3) palette-constrained Gumbel-Softmax quantization enabling differentiable optimization over discrete color spaces with controllable palette strategies. This integration addresses fundamental challenges: semantic preservation under extreme discretization, pixel-art aesthetics through volumetric rendering, and end-to-end discrete optimization. Experiments show superior performance (37.12 CLIP-IQA, 77.90\% user preference) across diverse characters and controllable abstraction (2-8 colors, 20x-50x resolutions). Project page: https://yichuanh.github.io/Voxify-3D/
Generative Photomontage
Text-to-image models are powerful tools for image creation. However, the generation process is akin to a dice roll and makes it difficult to achieve a single image that captures everything a user wants. In this paper, we propose a framework for creating the desired image by compositing it from various parts of generated images, in essence forming a Generative Photomontage. Given a stack of images generated by ControlNet using the same input condition and different seeds, we let users select desired parts from the generated results using a brush stroke interface. We introduce a novel technique that takes in the user's brush strokes, segments the generated images using a graph-based optimization in diffusion feature space, and then composites the segmented regions via a new feature-space blending method. Our method faithfully preserves the user-selected regions while compositing them harmoniously. We demonstrate that our flexible framework can be used for many applications, including generating new appearance combinations, fixing incorrect shapes and artifacts, and improving prompt alignment. We show compelling results for each application and demonstrate that our method outperforms existing image blending methods and various baselines.
Break-for-Make: Modular Low-Rank Adaptations for Composable Content-Style Customization
Personalized generation paradigms empower designers to customize visual intellectual properties with the help of textual descriptions by tuning or adapting pre-trained text-to-image models on a few images. Recent works explore approaches for concurrently customizing both content and detailed visual style appearance. However, these existing approaches often generate images where the content and style are entangled. In this study, we reconsider the customization of content and style concepts from the perspective of parameter space construction. Unlike existing methods that utilize a shared parameter space for content and style, we propose a learning framework that separates the parameter space to facilitate individual learning of content and style, thereby enabling disentangled content and style. To achieve this goal, we introduce "partly learnable projection" (PLP) matrices to separate the original adapters into divided sub-parameter spaces. We propose "break-for-make" customization learning pipeline based on PLP, which is simple yet effective. We break the original adapters into "up projection" and "down projection", train content and style PLPs individually with the guidance of corresponding textual prompts in the separate adapters, and maintain generalization by employing a multi-correspondence projection learning strategy. Based on the adapters broken apart for separate training content and style, we then make the entity parameter space by reconstructing the content and style PLPs matrices, followed by fine-tuning the combined adapter to generate the target object with the desired appearance. Experiments on various styles, including textures, materials, and artistic style, show that our method outperforms state-of-the-art single/multiple concept learning pipelines in terms of content-style-prompt alignment.
MOSAIC: Multi-Object Segmented Arbitrary Stylization Using CLIP
Style transfer driven by text prompts paved a new path for creatively stylizing the images without collecting an actual style image. Despite having promising results, with text-driven stylization, the user has no control over the stylization. If a user wants to create an artistic image, the user requires fine control over the stylization of various entities individually in the content image, which is not addressed by the current state-of-the-art approaches. On the other hand, diffusion style transfer methods also suffer from the same issue because the regional stylization control over the stylized output is ineffective. To address this problem, We propose a new method Multi-Object Segmented Arbitrary Stylization Using CLIP (MOSAIC), that can apply styles to different objects in the image based on the context extracted from the input prompt. Text-based segmentation and stylization modules which are based on vision transformer architecture, were used to segment and stylize the objects. Our method can extend to any arbitrary objects, styles and produce high-quality images compared to the current state of art methods. To our knowledge, this is the first attempt to perform text-guided arbitrary object-wise stylization. We demonstrate the effectiveness of our approach through qualitative and quantitative analysis, showing that it can generate visually appealing stylized images with enhanced control over stylization and the ability to generalize to unseen object classes.
FaceShop: Deep Sketch-based Face Image Editing
We present a novel system for sketch-based face image editing, enabling users to edit images intuitively by sketching a few strokes on a region of interest. Our interface features tools to express a desired image manipulation by providing both geometry and color constraints as user-drawn strokes. As an alternative to the direct user input, our proposed system naturally supports a copy-paste mode, which allows users to edit a given image region by using parts of another exemplar image without the need of hand-drawn sketching at all. The proposed interface runs in real-time and facilitates an interactive and iterative workflow to quickly express the intended edits. Our system is based on a novel sketch domain and a convolutional neural network trained end-to-end to automatically learn to render image regions corresponding to the input strokes. To achieve high quality and semantically consistent results we train our neural network on two simultaneous tasks, namely image completion and image translation. To the best of our knowledge, we are the first to combine these two tasks in a unified framework for interactive image editing. Our results show that the proposed sketch domain, network architecture, and training procedure generalize well to real user input and enable high quality synthesis results without additional post-processing.
Text-Guided Vector Graphics Customization
Vector graphics are widely used in digital art and valued by designers for their scalability and layer-wise topological properties. However, the creation and editing of vector graphics necessitate creativity and design expertise, leading to a time-consuming process. In this paper, we propose a novel pipeline that generates high-quality customized vector graphics based on textual prompts while preserving the properties and layer-wise information of a given exemplar SVG. Our method harnesses the capabilities of large pre-trained text-to-image models. By fine-tuning the cross-attention layers of the model, we generate customized raster images guided by textual prompts. To initialize the SVG, we introduce a semantic-based path alignment method that preserves and transforms crucial paths from the exemplar SVG. Additionally, we optimize path parameters using both image-level and vector-level losses, ensuring smooth shape deformation while aligning with the customized raster image. We extensively evaluate our method using multiple metrics from vector-level, image-level, and text-level perspectives. The evaluation results demonstrate the effectiveness of our pipeline in generating diverse customizations of vector graphics with exceptional quality. The project page is https://intchous.github.io/SVGCustomization.
Loomis Painter: Reconstructing the Painting Process
Step-by-step painting tutorials are vital for learning artistic techniques, but existing video resources (e.g., YouTube) lack interactivity and personalization. While recent generative models have advanced artistic image synthesis, they struggle to generalize across media and often show temporal or structural inconsistencies, hindering faithful reproduction of human creative workflows. To address this, we propose a unified framework for multi-media painting process generation with a semantics-driven style control mechanism that embeds multiple media into a diffusion models conditional space and uses cross-medium style augmentation. This enables consistent texture evolution and process transfer across styles. A reverse-painting training strategy further ensures smooth, human-aligned generation. We also build a large-scale dataset of real painting processes and evaluate cross-media consistency, temporal coherence, and final-image fidelity, achieving strong results on LPIPS, DINO, and CLIP metrics. Finally, our Perceptual Distance Profile (PDP) curve quantitatively models the creative sequence, i.e., composition, color blocking, and detail refinement, mirroring human artistic progression.
ScaleLSD: Scalable Deep Line Segment Detection Streamlined
This paper studies the problem of Line Segment Detection (LSD) for the characterization of line geometry in images, with the aim of learning a domain-agnostic robust LSD model that works well for any natural images. With the focus of scalable self-supervised learning of LSD, we revisit and streamline the fundamental designs of (deep and non-deep) LSD approaches to have a high-performing and efficient LSD learner, dubbed as ScaleLSD, for the curation of line geometry at scale from over 10M unlabeled real-world images. Our ScaleLSD works very well to detect much more number of line segments from any natural images even than the pioneered non-deep LSD approach, having a more complete and accurate geometric characterization of images using line segments. Experimentally, our proposed ScaleLSD is comprehensively testified under zero-shot protocols in detection performance, single-view 3D geometry estimation, two-view line segment matching, and multiview 3D line mapping, all with excellent performance obtained. Based on the thorough evaluation, our ScaleLSD is observed to be the first deep approach that outperforms the pioneered non-deep LSD in all aspects we have tested, significantly expanding and reinforcing the versatility of the line geometry of images. Code and Models are available at https://github.com/ant-research/scalelsd
UniGlyph: Unified Segmentation-Conditioned Diffusion for Precise Visual Text Synthesis
Text-to-image generation has greatly advanced content creation, yet accurately rendering visual text remains a key challenge due to blurred glyphs, semantic drift, and limited style control. Existing methods often rely on pre-rendered glyph images as conditions, but these struggle to retain original font styles and color cues, necessitating complex multi-branch designs that increase model overhead and reduce flexibility. To address these issues, we propose a segmentation-guided framework that uses pixel-level visual text masks -- rich in glyph shape, color, and spatial detail -- as unified conditional inputs. Our method introduces two core components: (1) a fine-tuned bilingual segmentation model for precise text mask extraction, and (2) a streamlined diffusion model augmented with adaptive glyph conditioning and a region-specific loss to preserve textual fidelity in both content and style. Our approach achieves state-of-the-art performance on the AnyText benchmark, significantly surpassing prior methods in both Chinese and English settings. To enable more rigorous evaluation, we also introduce two new benchmarks: GlyphMM-benchmark for testing layout and glyph consistency in complex typesetting, and MiniText-benchmark for assessing generation quality in small-scale text regions. Experimental results show that our model outperforms existing methods by a large margin in both scenarios, particularly excelling at small text rendering and complex layout preservation, validating its strong generalization and deployment readiness.
StyleAdapter: A Single-Pass LoRA-Free Model for Stylized Image Generation
This paper presents a LoRA-free method for stylized image generation that takes a text prompt and style reference images as inputs and produces an output image in a single pass. Unlike existing methods that rely on training a separate LoRA for each style, our method can adapt to various styles with a unified model. However, this poses two challenges: 1) the prompt loses controllability over the generated content, and 2) the output image inherits both the semantic and style features of the style reference image, compromising its content fidelity. To address these challenges, we introduce StyleAdapter, a model that comprises two components: a two-path cross-attention module (TPCA) and three decoupling strategies. These components enable our model to process the prompt and style reference features separately and reduce the strong coupling between the semantic and style information in the style references. StyleAdapter can generate high-quality images that match the content of the prompts and adopt the style of the references (even for unseen styles) in a single pass, which is more flexible and efficient than previous methods. Experiments have been conducted to demonstrate the superiority of our method over previous works.
ChildlikeSHAPES: Semantic Hierarchical Region Parsing for Animating Figure Drawings
Childlike human figure drawings represent one of humanity's most accessible forms of character expression, yet automatically analyzing their contents remains a significant challenge. While semantic segmentation of realistic humans has recently advanced considerably, existing models often fail when confronted with the abstract, representational nature of childlike drawings. This semantic understanding is a crucial prerequisite for animation tools that seek to modify figures while preserving their unique style. To help achieve this, we propose a novel hierarchical segmentation model, built upon the architecture and pre-trained SAM, to quickly and accurately obtain these semantic labels. Our model achieves higher accuracy than state-of-the-art segmentation models focused on realistic humans and cartoon figures, even after fine-tuning. We demonstrate the value of our model for semantic segmentation through multiple applications: a fully automatic facial animation pipeline, a figure relighting pipeline, improvements to an existing childlike human figure drawing animation method, and generalization to out-of-domain figures. Finally, to support future work in this area, we introduce a dataset of 16,000 childlike drawings with pixel-level annotations across 25 semantic categories. Our work can enable entirely new, easily accessible tools for hand-drawn character animation, and our dataset can enable new lines of inquiry in a variety of graphics and human-centric research fields.
VGBench: Evaluating Large Language Models on Vector Graphics Understanding and Generation
In the realm of vision models, the primary mode of representation is using pixels to rasterize the visual world. Yet this is not always the best or unique way to represent visual content, especially for designers and artists who depict the world using geometry primitives such as polygons. Vector graphics (VG), on the other hand, offer a textual representation of visual content, which can be more concise and powerful for content like cartoons or sketches. Recent studies have shown promising results on processing vector graphics with capable Large Language Models (LLMs). However, such works focus solely on qualitative results, understanding, or a specific type of vector graphics. We propose VGBench, a comprehensive benchmark for LLMs on handling vector graphics through diverse aspects, including (a) both visual understanding and generation, (b) evaluation of various vector graphics formats, (c) diverse question types, (d) wide range of prompting techniques, (e) under multiple LLMs. Evaluating on our collected 4279 understanding and 5845 generation samples, we find that LLMs show strong capability on both aspects while exhibiting less desirable performance on low-level formats (SVG). Both data and evaluation pipeline will be open-sourced at https://vgbench.github.io.
MTADiffusion: Mask Text Alignment Diffusion Model for Object Inpainting
Advancements in generative models have enabled image inpainting models to generate content within specific regions of an image based on provided prompts and masks. However, existing inpainting methods often suffer from problems such as semantic misalignment, structural distortion, and style inconsistency. In this work, we present MTADiffusion, a Mask-Text Alignment diffusion model designed for object inpainting. To enhance the semantic capabilities of the inpainting model, we introduce MTAPipeline, an automatic solution for annotating masks with detailed descriptions. Based on the MTAPipeline, we construct a new MTADataset comprising 5 million images and 25 million mask-text pairs. Furthermore, we propose a multi-task training strategy that integrates both inpainting and edge prediction tasks to improve structural stability. To promote style consistency, we present a novel inpainting style-consistency loss using a pre-trained VGG network and the Gram matrix. Comprehensive evaluations on BrushBench and EditBench demonstrate that MTADiffusion achieves state-of-the-art performance compared to other methods.
VQ-SGen: A Vector Quantized Stroke Representation for Creative Sketch Generation
This paper presents VQ-SGen, a novel algorithm for high-quality creative sketch generation. Recent approaches have framed the task as pixel-based generation either as a whole or part-by-part, neglecting the intrinsic and contextual relationships among individual strokes, such as the shape and spatial positioning of both proximal and distant strokes. To overcome these limitations, we propose treating each stroke within a sketch as an entity and introducing a vector-quantized (VQ) stroke representation for fine-grained sketch generation. Our method follows a two-stage framework - in stage one, we decouple each stroke's shape and location information to ensure the VQ representation prioritizes stroke shape learning. In stage two, we feed the precise and compact representation into an auto-decoding Transformer to incorporate stroke semantics, positions, and shapes into the generation process. By utilizing tokenized stroke representation, our approach generates strokes with high fidelity and facilitates novel applications, such as text or class label conditioned generation and sketch completion. Comprehensive experiments demonstrate our method surpasses existing state-of-the-art techniques on the CreativeSketch dataset, underscoring its effectiveness.
Text-Guided Scene Sketch-to-Photo Synthesis
We propose a method for scene-level sketch-to-photo synthesis with text guidance. Although object-level sketch-to-photo synthesis has been widely studied, whole-scene synthesis is still challenging without reference photos that adequately reflect the target style. To this end, we leverage knowledge from recent large-scale pre-trained generative models, resulting in text-guided sketch-to-photo synthesis without the need for reference images. To train our model, we use self-supervised learning from a set of photographs. Specifically, we use a pre-trained edge detector that maps both color and sketch images into a standardized edge domain, which reduces the gap between photograph-based edge images (during training) and hand-drawn sketch images (during inference). We implement our method by fine-tuning a latent diffusion model (i.e., Stable Diffusion) with sketch and text conditions. Experiments show that the proposed method translates original sketch images that are not extracted from color images into photos with compelling visual quality.
MARVEL: Raster Manga Vectorization via Primitive-wise Deep Reinforcement Learning
Manga is a fashionable Japanese-style comic form that is composed of black-and-white strokes and is generally displayed as raster images on digital devices. Typical mangas have simple textures, wide lines, and few color gradients, which are vectorizable natures to enjoy the merits of vector graphics, e.g., adaptive resolutions and small file sizes. In this paper, we propose MARVEL (MAnga's Raster to VEctor Learning), a primitive-wise approach for vectorizing raster mangas by Deep Reinforcement Learning (DRL). Unlike previous learning-based methods which predict vector parameters for an entire image, MARVEL introduces a new perspective that regards an entire manga as a collection of basic primitives\textemdash stroke lines, and designs a DRL model to decompose the target image into a primitive sequence for achieving accurate vectorization. To improve vectorization accuracies and decrease file sizes, we further propose a stroke accuracy reward to predict accurate stroke lines, and a pruning mechanism to avoid generating erroneous and repeated strokes. Extensive subjective and objective experiments show that our MARVEL can generate impressive results and reaches the state-of-the-art level. Our code is open-source at: https://github.com/SwordHolderSH/Mang2Vec.
CreativeSynth: Creative Blending and Synthesis of Visual Arts based on Multimodal Diffusion
Large-scale text-to-image generative models have made impressive strides, showcasing their ability to synthesize a vast array of high-quality images. However, adapting these models for artistic image editing presents two significant challenges. Firstly, users struggle to craft textual prompts that meticulously detail visual elements of the input image. Secondly, prevalent models, when effecting modifications in specific zones, frequently disrupt the overall artistic style, complicating the attainment of cohesive and aesthetically unified artworks. To surmount these obstacles, we build the innovative unified framework CreativeSynth, which is based on a diffusion model with the ability to coordinate multimodal inputs and multitask in the field of artistic image generation. By integrating multimodal features with customized attention mechanisms, CreativeSynth facilitates the importation of real-world semantic content into the domain of art through inversion and real-time style transfer. This allows for the precise manipulation of image style and content while maintaining the integrity of the original model parameters. Rigorous qualitative and quantitative evaluations underscore that CreativeSynth excels in enhancing artistic images' fidelity and preserves their innate aesthetic essence. By bridging the gap between generative models and artistic finesse, CreativeSynth becomes a custom digital palette.
TwinTex: Geometry-aware Texture Generation for Abstracted 3D Architectural Models
Coarse architectural models are often generated at scales ranging from individual buildings to scenes for downstream applications such as Digital Twin City, Metaverse, LODs, etc. Such piece-wise planar models can be abstracted as twins from 3D dense reconstructions. However, these models typically lack realistic texture relative to the real building or scene, making them unsuitable for vivid display or direct reference. In this paper, we present TwinTex, the first automatic texture mapping framework to generate a photo-realistic texture for a piece-wise planar proxy. Our method addresses most challenges occurring in such twin texture generation. Specifically, for each primitive plane, we first select a small set of photos with greedy heuristics considering photometric quality, perspective quality and facade texture completeness. Then, different levels of line features (LoLs) are extracted from the set of selected photos to generate guidance for later steps. With LoLs, we employ optimization algorithms to align texture with geometry from local to global. Finally, we fine-tune a diffusion model with a multi-mask initialization component and a new dataset to inpaint the missing region. Experimental results on many buildings, indoor scenes and man-made objects of varying complexity demonstrate the generalization ability of our algorithm. Our approach surpasses state-of-the-art texture mapping methods in terms of high-fidelity quality and reaches a human-expert production level with much less effort. Project page: https://vcc.tech/research/2023/TwinTex.
Sketch2Manga: Shaded Manga Screening from Sketch with Diffusion Models
While manga is a popular entertainment form, creating manga is tedious, especially adding screentones to the created sketch, namely manga screening. Unfortunately, there is no existing method that tailors for automatic manga screening, probably due to the difficulty of generating high-quality shaded high-frequency screentones. The classic manga screening approaches generally require user input to provide screentone exemplars or a reference manga image. The recent deep learning models enables the automatic generation by learning from a large-scale dataset. However, the state-of-the-art models still fail to generate high-quality shaded screentones due to the lack of a tailored model and high-quality manga training data. In this paper, we propose a novel sketch-to-manga framework that first generates a color illustration from the sketch and then generates a screentoned manga based on the intensity guidance. Our method significantly outperforms existing methods in generating high-quality manga with shaded high-frequency screentones.
Textured Word-As-Image illustration
In this paper, we propose a novel fully automatic pipeline to generate text images that are legible and strongly aligned to the desired semantic concept taken from the users' inputs. In our method, users are able to put three inputs into the system, including a semantic concept, a word, and a letter. The semantic concept will be used to change the shape of the input letter and generate the texture based on the pre-defined prompt using stable diffusion models. Our pipeline maps the texture on a text image in a way that preserves the readability of the whole output while preserving legibility. The system also provides real-time adjustments for the user to change the scale of the texture and apply it to the text image. User evaluations demonstrate that our method effectively represents semantic meaning without compromising legibility, making it a robust and innovative tool for graphic design, logo creation, and artistic typography.
Paint Transformer: Feed Forward Neural Painting with Stroke Prediction
Neural painting refers to the procedure of producing a series of strokes for a given image and non-photo-realistically recreating it using neural networks. While reinforcement learning (RL) based agents can generate a stroke sequence step by step for this task, it is not easy to train a stable RL agent. On the other hand, stroke optimization methods search for a set of stroke parameters iteratively in a large search space; such low efficiency significantly limits their prevalence and practicality. Different from previous methods, in this paper, we formulate the task as a set prediction problem and propose a novel Transformer-based framework, dubbed Paint Transformer, to predict the parameters of a stroke set with a feed forward network. This way, our model can generate a set of strokes in parallel and obtain the final painting of size 512 * 512 in near real time. More importantly, since there is no dataset available for training the Paint Transformer, we devise a self-training pipeline such that it can be trained without any off-the-shelf dataset while still achieving excellent generalization capability. Experiments demonstrate that our method achieves better painting performance than previous ones with cheaper training and inference costs. Codes and models are available.
DiffuMural: Restoring Dunhuang Murals with Multi-scale Diffusion
Large-scale pre-trained diffusion models have produced excellent results in the field of conditional image generation. However, restoration of ancient murals, as an important downstream task in this field, poses significant challenges to diffusion model-based restoration methods due to its large defective area and scarce training samples. Conditional restoration tasks are more concerned with whether the restored part meets the aesthetic standards of mural restoration in terms of overall style and seam detail, and such metrics for evaluating heuristic image complements are lacking in current research. We therefore propose DiffuMural, a combined Multi-scale convergence and Collaborative Diffusion mechanism with ControlNet and cyclic consistency loss to optimise the matching between the generated images and the conditional control. DiffuMural demonstrates outstanding capabilities in mural restoration, leveraging training data from 23 large-scale Dunhuang murals that exhibit consistent visual aesthetics. The model excels in restoring intricate details, achieving a coherent overall appearance, and addressing the unique challenges posed by incomplete murals lacking factual grounding. Our evaluation framework incorporates four key metrics to quantitatively assess incomplete murals: factual accuracy, textural detail, contextual semantics, and holistic visual coherence. Furthermore, we integrate humanistic value assessments to ensure the restored murals retain their cultural and artistic significance. Extensive experiments validate that our method outperforms state-of-the-art (SOTA) approaches in both qualitative and quantitative metrics.
IlluSign: Illustrating Sign Language Videos by Leveraging the Attention Mechanism
Sign languages are dynamic visual languages that involve hand gestures, in combination with non manual elements such as facial expressions. While video recordings of sign language are commonly used for education and documentation, the dynamic nature of signs can make it challenging to study them in detail, especially for new learners and educators. This work aims to convert sign language video footage into static illustrations, which serve as an additional educational resource to complement video content. This process is usually done by an artist, and is therefore quite costly. We propose a method that illustrates sign language videos by leveraging generative models' ability to understand both the semantic and geometric aspects of images. Our approach focuses on transferring a sketch like illustration style to video footage of sign language, combining the start and end frames of a sign into a single illustration, and using arrows to highlight the hand's direction and motion. While many style transfer methods address domain adaptation at varying levels of abstraction, applying a sketch like style to sign languages, especially for hand gestures and facial expressions, poses a significant challenge. To tackle this, we intervene in the denoising process of a diffusion model, injecting style as keys and values into high resolution attention layers, and fusing geometric information from the image and edges as queries. For the final illustration, we use the attention mechanism to combine the attention weights from both the start and end illustrations, resulting in a soft combination. Our method offers a cost effective solution for generating sign language illustrations at inference time, addressing the lack of such resources in educational materials.
Neural Face Identification in a 2D Wireframe Projection of a Manifold Object
In computer-aided design (CAD) systems, 2D line drawings are commonly used to illustrate 3D object designs. To reconstruct the 3D models depicted by a single 2D line drawing, an important key is finding the edge loops in the line drawing which correspond to the actual faces of the 3D object. In this paper, we approach the classical problem of face identification from a novel data-driven point of view. We cast it as a sequence generation problem: starting from an arbitrary edge, we adopt a variant of the popular Transformer model to predict the edges associated with the same face in a natural order. This allows us to avoid searching the space of all possible edge loops with various hand-crafted rules and heuristics as most existing methods do, deal with challenging cases such as curved surfaces and nested edge loops, and leverage additional cues such as face types. We further discuss how possibly imperfect predictions can be used for 3D object reconstruction.
PosterLLaVa: Constructing a Unified Multi-modal Layout Generator with LLM
Layout generation is the keystone in achieving automated graphic design, requiring arranging the position and size of various multi-modal design elements in a visually pleasing and constraint-following manner. Previous approaches are either inefficient for large-scale applications or lack flexibility for varying design requirements. Our research introduces a unified framework for automated graphic layout generation, leveraging the multi-modal large language model (MLLM) to accommodate diverse design tasks. In contrast, our data-driven method employs structured text (JSON format) and visual instruction tuning to generate layouts under specific visual and textual constraints, including user-defined natural language specifications. We conducted extensive experiments and achieved state-of-the-art (SOTA) performance on public multi-modal layout generation benchmarks, demonstrating the effectiveness of our method. Moreover, recognizing existing datasets' limitations in capturing the complexity of real-world graphic designs, we propose two new datasets for much more challenging tasks (user-constrained generation and complicated poster), further validating our model's utility in real-life settings. Marking by its superior accessibility and adaptability, this approach further automates large-scale graphic design tasks. The code and datasets will be publicly available on https://github.com/posterllava/PosterLLaVA.
Inverse Painting: Reconstructing The Painting Process
Given an input painting, we reconstruct a time-lapse video of how it may have been painted. We formulate this as an autoregressive image generation problem, in which an initially blank "canvas" is iteratively updated. The model learns from real artists by training on many painting videos. Our approach incorporates text and region understanding to define a set of painting "instructions" and updates the canvas with a novel diffusion-based renderer. The method extrapolates beyond the limited, acrylic style paintings on which it has been trained, showing plausible results for a wide range of artistic styles and genres.
Deep Hough Transform for Semantic Line Detection
We focus on a fundamental task of detecting meaningful line structures, a.k.a. semantic line, in natural scenes. Many previous methods regard this problem as a special case of object detection and adjust existing object detectors for semantic line detection. However, these methods neglect the inherent characteristics of lines, leading to sub-optimal performance. Lines enjoy much simpler geometric property than complex objects and thus can be compactly parameterized by a few arguments. To better exploit the property of lines, in this paper, we incorporate the classical Hough transform technique into deeply learned representations and propose a one-shot end-to-end learning framework for line detection. By parameterizing lines with slopes and biases, we perform Hough transform to translate deep representations into the parametric domain, in which we perform line detection. Specifically, we aggregate features along candidate lines on the feature map plane and then assign the aggregated features to corresponding locations in the parametric domain. Consequently, the problem of detecting semantic lines in the spatial domain is transformed into spotting individual points in the parametric domain, making the post-processing steps, i.e. non-maximal suppression, more efficient. Furthermore, our method makes it easy to extract contextual line features eg features along lines close to a specific line, that are critical for accurate line detection. In addition to the proposed method, we design an evaluation metric to assess the quality of line detection and construct a large scale dataset for the line detection task. Experimental results on our proposed dataset and another public dataset demonstrate the advantages of our method over previous state-of-the-art alternatives.
Paper2Poster: Towards Multimodal Poster Automation from Scientific Papers
Academic poster generation is a crucial yet challenging task in scientific communication, requiring the compression of long-context interleaved documents into a single, visually coherent page. To address this challenge, we introduce the first benchmark and metric suite for poster generation, which pairs recent conference papers with author-designed posters and evaluates outputs on (i)Visual Quality-semantic alignment with human posters, (ii)Textual Coherence-language fluency, (iii)Holistic Assessment-six fine-grained aesthetic and informational criteria scored by a VLM-as-judge, and notably (iv)PaperQuiz-the poster's ability to convey core paper content as measured by VLMs answering generated quizzes. Building on this benchmark, we propose PosterAgent, a top-down, visual-in-the-loop multi-agent pipeline: the (a)Parser distills the paper into a structured asset library; the (b)Planner aligns text-visual pairs into a binary-tree layout that preserves reading order and spatial balance; and the (c)Painter-Commenter loop refines each panel by executing rendering code and using VLM feedback to eliminate overflow and ensure alignment. In our comprehensive evaluation, we find that GPT-4o outputs-though visually appealing at first glance-often exhibit noisy text and poor PaperQuiz scores, and we find that reader engagement is the primary aesthetic bottleneck, as human-designed posters rely largely on visual semantics to convey meaning. Our fully open-source variants (e.g. based on the Qwen-2.5 series) outperform existing 4o-driven multi-agent systems across nearly all metrics, while using 87% fewer tokens. It transforms a 22-page paper into a finalized yet editable .pptx poster - all for just $0.005. These findings chart clear directions for the next generation of fully automated poster-generation models. The code and datasets are available at https://github.com/Paper2Poster/Paper2Poster.
DS-Fusion: Artistic Typography via Discriminated and Stylized Diffusion
We introduce a novel method to automatically generate an artistic typography by stylizing one or more letter fonts to visually convey the semantics of an input word, while ensuring that the output remains readable. To address an assortment of challenges with our task at hand including conflicting goals (artistic stylization vs. legibility), lack of ground truth, and immense search space, our approach utilizes large language models to bridge texts and visual images for stylization and build an unsupervised generative model with a diffusion model backbone. Specifically, we employ the denoising generator in Latent Diffusion Model (LDM), with the key addition of a CNN-based discriminator to adapt the input style onto the input text. The discriminator uses rasterized images of a given letter/word font as real samples and output of the denoising generator as fake samples. Our model is coined DS-Fusion for discriminated and stylized diffusion. We showcase the quality and versatility of our method through numerous examples, qualitative and quantitative evaluation, as well as ablation studies. User studies comparing to strong baselines including CLIPDraw and DALL-E 2, as well as artist-crafted typographies, demonstrate strong performance of DS-Fusion.
Expressive Text-to-Image Generation with Rich Text
Plain text has become a prevalent interface for text-to-image synthesis. However, its limited customization options hinder users from accurately describing desired outputs. For example, plain text makes it hard to specify continuous quantities, such as the precise RGB color value or importance of each word. Furthermore, creating detailed text prompts for complex scenes is tedious for humans to write and challenging for text encoders to interpret. To address these challenges, we propose using a rich-text editor supporting formats such as font style, size, color, and footnote. We extract each word's attributes from rich text to enable local style control, explicit token reweighting, precise color rendering, and detailed region synthesis. We achieve these capabilities through a region-based diffusion process. We first obtain each word's region based on attention maps of a diffusion process using plain text. For each region, we enforce its text attributes by creating region-specific detailed prompts and applying region-specific guidance, and maintain its fidelity against plain-text generation through region-based injections. We present various examples of image generation from rich text and demonstrate that our method outperforms strong baselines with quantitative evaluations.
Screentone-Aware Manga Super-Resolution Using DeepLearning
Manga, as a widely beloved form of entertainment around the world, have shifted from paper to electronic screens with the proliferation of handheld devices. However, as the demand for image quality increases with screen development, high-quality images can hinder transmission and affect the viewing experience. Traditional vectorization methods require a significant amount of manual parameter adjustment to process screentone. Using deep learning, lines and screentone can be automatically extracted and image resolution can be enhanced. Super-resolution can convert low-resolution images to high-resolution images while maintaining low transmission rates and providing high-quality results. However, traditional Super Resolution methods for improving manga resolution do not consider the meaning of screentone density, resulting in changes to screentone density and loss of meaning. In this paper, we aims to address this issue by first classifying the regions and lines of different screentone in the manga using deep learning algorithm, then using corresponding super-resolution models for quality enhancement based on the different classifications of each block, and finally combining them to obtain images that maintain the meaning of screentone and lines in the manga while improving image resolution.
MatAtlas: Text-driven Consistent Geometry Texturing and Material Assignment
We present MatAtlas, a method for consistent text-guided 3D model texturing. Following recent progress we leverage a large scale text-to-image generation model (e.g., Stable Diffusion) as a prior to texture a 3D model. We carefully design an RGB texturing pipeline that leverages a grid pattern diffusion, driven by depth and edges. By proposing a multi-step texture refinement process, we significantly improve the quality and 3D consistency of the texturing output. To further address the problem of baked-in lighting, we move beyond RGB colors and pursue assigning parametric materials to the assets. Given the high-quality initial RGB texture, we propose a novel material retrieval method capitalized on Large Language Models (LLM), enabling editabiliy and relightability. We evaluate our method on a wide variety of geometries and show that our method significantly outperform prior arts. We also analyze the role of each component through a detailed ablation study.
I Dream My Painting: Connecting MLLMs and Diffusion Models via Prompt Generation for Text-Guided Multi-Mask Inpainting
Inpainting focuses on filling missing or corrupted regions of an image to blend seamlessly with its surrounding content and style. While conditional diffusion models have proven effective for text-guided inpainting, we introduce the novel task of multi-mask inpainting, where multiple regions are simultaneously inpainted using distinct prompts. Furthermore, we design a fine-tuning procedure for multimodal LLMs, such as LLaVA, to generate multi-mask prompts automatically using corrupted images as inputs. These models can generate helpful and detailed prompt suggestions for filling the masked regions. The generated prompts are then fed to Stable Diffusion, which is fine-tuned for the multi-mask inpainting problem using rectified cross-attention, enforcing prompts onto their designated regions for filling. Experiments on digitized paintings from WikiArt and the Densely Captioned Images dataset demonstrate that our pipeline delivers creative and accurate inpainting results. Our code, data, and trained models are available at https://cilabuniba.github.io/i-dream-my-painting.
AniFaceDrawing: Anime Portrait Exploration during Your Sketching
In this paper, we focus on how artificial intelligence (AI) can be used to assist users in the creation of anime portraits, that is, converting rough sketches into anime portraits during their sketching process. The input is a sequence of incomplete freehand sketches that are gradually refined stroke by stroke, while the output is a sequence of high-quality anime portraits that correspond to the input sketches as guidance. Although recent GANs can generate high quality images, it is a challenging problem to maintain the high quality of generated images from sketches with a low degree of completion due to ill-posed problems in conditional image generation. Even with the latest sketch-to-image (S2I) technology, it is still difficult to create high-quality images from incomplete rough sketches for anime portraits since anime style tend to be more abstract than in realistic style. To address this issue, we adopt a latent space exploration of StyleGAN with a two-stage training strategy. We consider the input strokes of a freehand sketch to correspond to edge information-related attributes in the latent structural code of StyleGAN, and term the matching between strokes and these attributes stroke-level disentanglement. In the first stage, we trained an image encoder with the pre-trained StyleGAN model as a teacher encoder. In the second stage, we simulated the drawing process of the generated images without any additional data (labels) and trained the sketch encoder for incomplete progressive sketches to generate high-quality portrait images with feature alignment to the disentangled representations in the teacher encoder. We verified the proposed progressive S2I system with both qualitative and quantitative evaluations and achieved high-quality anime portraits from incomplete progressive sketches. Our user study proved its effectiveness in art creation assistance for the anime style.
PosterMaker: Towards High-Quality Product Poster Generation with Accurate Text Rendering
Product posters, which integrate subject, scene, and text, are crucial promotional tools for attracting customers. Creating such posters using modern image generation methods is valuable, while the main challenge lies in accurately rendering text, especially for complex writing systems like Chinese, which contains over 10,000 individual characters. In this work, we identify the key to precise text rendering as constructing a character-discriminative visual feature as a control signal. Based on this insight, we propose a robust character-wise representation as control and we develop TextRenderNet, which achieves a high text rendering accuracy of over 90%. Another challenge in poster generation is maintaining the fidelity of user-specific products. We address this by introducing SceneGenNet, an inpainting-based model, and propose subject fidelity feedback learning to further enhance fidelity. Based on TextRenderNet and SceneGenNet, we present PosterMaker, an end-to-end generation framework. To optimize PosterMaker efficiently, we implement a two-stage training strategy that decouples text rendering and background generation learning. Experimental results show that PosterMaker outperforms existing baselines by a remarkable margin, which demonstrates its effectiveness.
ColoristaNet for Photorealistic Video Style Transfer
Photorealistic style transfer aims to transfer the artistic style of an image onto an input image or video while keeping photorealism. In this paper, we think it's the summary statistics matching scheme in existing algorithms that leads to unrealistic stylization. To avoid employing the popular Gram loss, we propose a self-supervised style transfer framework, which contains a style removal part and a style restoration part. The style removal network removes the original image styles, and the style restoration network recovers image styles in a supervised manner. Meanwhile, to address the problems in current feature transformation methods, we propose decoupled instance normalization to decompose feature transformation into style whitening and restylization. It works quite well in ColoristaNet and can transfer image styles efficiently while keeping photorealism. To ensure temporal coherency, we also incorporate optical flow methods and ConvLSTM to embed contextual information. Experiments demonstrates that ColoristaNet can achieve better stylization effects when compared with state-of-the-art algorithms.
LLMGA: Multimodal Large Language Model based Generation Assistant
In this paper, we introduce a Multimodal Large Language Model-based Generation Assistant (LLMGA), leveraging the vast reservoir of knowledge and proficiency in reasoning, comprehension, and response inherent in Large Language Models (LLMs) to assist users in image generation and editing. Diverging from existing approaches where Multimodal Large Language Models (MLLMs) generate fixed-size embeddings to control Stable Diffusion (SD), our LLMGA provides a detailed language generation prompt for precise control over SD. This not only augments LLM context understanding but also reduces noise in generation prompts, yields images with more intricate and precise content, and elevates the interpretability of the network. To this end, we curate a comprehensive dataset comprising prompt refinement, similar image generation, inpainting \& outpainting, and instruction-based editing. Moreover, we propose a two-stage training scheme. In the first stage, we train the MLLM to grasp the properties of image generation and editing, enabling it to generate detailed prompts. In the second stage, we optimize SD to align with the MLLM's generation prompts. Additionally, we propose a reference-based restoration network to alleviate texture, brightness, and contrast disparities between generated and preserved regions during inpainting and outpainting. Extensive results show that LLMGA has promising generation and editing capabilities and can enable more flexible and expansive applications in an interactive manner.
RepText: Rendering Visual Text via Replicating
Although contemporary text-to-image generation models have achieved remarkable breakthroughs in producing visually appealing images, their capacity to generate precise and flexible typographic elements, especially non-Latin alphabets, remains constrained. To address these limitations, we start from an naive assumption that text understanding is only a sufficient condition for text rendering, but not a necessary condition. Based on this, we present RepText, which aims to empower pre-trained monolingual text-to-image generation models with the ability to accurately render, or more precisely, replicate, multilingual visual text in user-specified fonts, without the need to really understand them. Specifically, we adopt the setting from ControlNet and additionally integrate language agnostic glyph and position of rendered text to enable generating harmonized visual text, allowing users to customize text content, font and position on their needs. To improve accuracy, a text perceptual loss is employed along with the diffusion loss. Furthermore, to stabilize rendering process, at the inference phase, we directly initialize with noisy glyph latent instead of random initialization, and adopt region masks to restrict the feature injection to only the text region to avoid distortion of the background. We conducted extensive experiments to verify the effectiveness of our RepText relative to existing works, our approach outperforms existing open-source methods and achieves comparable results to native multi-language closed-source models. To be more fair, we also exhaustively discuss its limitations in the end.
The Chosen One: Consistent Characters in Text-to-Image Diffusion Models
Recent advances in text-to-image generation models have unlocked vast potential for visual creativity. However, these models struggle with generation of consistent characters, a crucial aspect for numerous real-world applications such as story visualization, game development asset design, advertising, and more. Current methods typically rely on multiple pre-existing images of the target character or involve labor-intensive manual processes. In this work, we propose a fully automated solution for consistent character generation, with the sole input being a text prompt. We introduce an iterative procedure that, at each stage, identifies a coherent set of images sharing a similar identity and extracts a more consistent identity from this set. Our quantitative analysis demonstrates that our method strikes a better balance between prompt alignment and identity consistency compared to the baseline methods, and these findings are reinforced by a user study. To conclude, we showcase several practical applications of our approach. Project page is available at https://omriavrahami.com/the-chosen-one
BlendFields: Few-Shot Example-Driven Facial Modeling
Generating faithful visualizations of human faces requires capturing both coarse and fine-level details of the face geometry and appearance. Existing methods are either data-driven, requiring an extensive corpus of data not publicly accessible to the research community, or fail to capture fine details because they rely on geometric face models that cannot represent fine-grained details in texture with a mesh discretization and linear deformation designed to model only a coarse face geometry. We introduce a method that bridges this gap by drawing inspiration from traditional computer graphics techniques. Unseen expressions are modeled by blending appearance from a sparse set of extreme poses. This blending is performed by measuring local volumetric changes in those expressions and locally reproducing their appearance whenever a similar expression is performed at test time. We show that our method generalizes to unseen expressions, adding fine-grained effects on top of smooth volumetric deformations of a face, and demonstrate how it generalizes beyond faces.
Exploring the structure of a real-time, arbitrary neural artistic stylization network
In this paper, we present a method which combines the flexibility of the neural algorithm of artistic style with the speed of fast style transfer networks to allow real-time stylization using any content/style image pair. We build upon recent work leveraging conditional instance normalization for multi-style transfer networks by learning to predict the conditional instance normalization parameters directly from a style image. The model is successfully trained on a corpus of roughly 80,000 paintings and is able to generalize to paintings previously unobserved. We demonstrate that the learned embedding space is smooth and contains a rich structure and organizes semantic information associated with paintings in an entirely unsupervised manner.
CAMS: Color-Aware Multi-Style Transfer
Image style transfer aims to manipulate the appearance of a source image, or "content" image, to share similar texture and colors of a target "style" image. Ideally, the style transfer manipulation should also preserve the semantic content of the source image. A commonly used approach to assist in transferring styles is based on Gram matrix optimization. One problem of Gram matrix-based optimization is that it does not consider the correlation between colors and their styles. Specifically, certain textures or structures should be associated with specific colors. This is particularly challenging when the target style image exhibits multiple style types. In this work, we propose a color-aware multi-style transfer method that generates aesthetically pleasing results while preserving the style-color correlation between style and generated images. We achieve this desired outcome by introducing a simple but efficient modification to classic Gram matrix-based style transfer optimization. A nice feature of our method is that it enables the users to manually select the color associations between the target style and content image for more transfer flexibility. We validated our method with several qualitative comparisons, including a user study conducted with 30 participants. In comparison with prior work, our method is simple, easy to implement, and achieves visually appealing results when targeting images that have multiple styles. Source code is available at https://github.com/mahmoudnafifi/color-aware-style-transfer.
PAID: A Framework of Product-Centric Advertising Image Design
Creating visually appealing advertising images is often a labor-intensive and time-consuming process. Is it possible to automatically generate such images using only basic product information--specifically, a product foreground image, taglines, and a target size? Existing methods mainly focus on parts of the problem and fail to provide a comprehensive solution. To address this gap, we propose a novel multistage framework called Product-Centric Advertising Image Design (PAID). It consists of four sequential stages to highlight product foregrounds and taglines while achieving overall image aesthetics: prompt generation, layout generation, background image generation, and graphics rendering. Different expert models are designed and trained for the first three stages: First, we use a visual language model (VLM) to generate background prompts that match the products. Next, a VLM-based layout generation model arranges the placement of product foregrounds, graphic elements (taglines and decorative underlays), and various nongraphic elements (objects from the background prompt). Following this, we train an SDXL-based image generation model that can simultaneously accept prompts, layouts, and foreground controls. To support the PAID framework, we create corresponding datasets with over 50,000 labeled images. Extensive experimental results and online A/B tests demonstrate that PAID can produce more visually appealing advertising images.
Towards Light-weight and Real-time Line Segment Detection
Previous deep learning-based line segment detection (LSD) suffers from the immense model size and high computational cost for line prediction. This constrains them from real-time inference on computationally restricted environments. In this paper, we propose a real-time and light-weight line segment detector for resource-constrained environments named Mobile LSD (M-LSD). We design an extremely efficient LSD architecture by minimizing the backbone network and removing the typical multi-module process for line prediction found in previous methods. To maintain competitive performance with a light-weight network, we present novel training schemes: Segments of Line segment (SoL) augmentation, matching and geometric loss. SoL augmentation splits a line segment into multiple subparts, which are used to provide auxiliary line data during the training process. Moreover, the matching and geometric loss allow a model to capture additional geometric cues. Compared with TP-LSD-Lite, previously the best real-time LSD method, our model (M-LSD-tiny) achieves competitive performance with 2.5% of model size and an increase of 130.5% in inference speed on GPU. Furthermore, our model runs at 56.8 FPS and 48.6 FPS on the latest Android and iPhone mobile devices, respectively. To the best of our knowledge, this is the first real-time deep LSD available on mobile devices. Our code is available.
DiffStyler: Diffusion-based Localized Image Style Transfer
Image style transfer aims to imbue digital imagery with the distinctive attributes of style targets, such as colors, brushstrokes, shapes, whilst concurrently preserving the semantic integrity of the content. Despite the advancements in arbitrary style transfer methods, a prevalent challenge remains the delicate equilibrium between content semantics and style attributes. Recent developments in large-scale text-to-image diffusion models have heralded unprecedented synthesis capabilities, albeit at the expense of relying on extensive and often imprecise textual descriptions to delineate artistic styles. Addressing these limitations, this paper introduces DiffStyler, a novel approach that facilitates efficient and precise arbitrary image style transfer. DiffStyler lies the utilization of a text-to-image Stable Diffusion model-based LoRA to encapsulate the essence of style targets. This approach, coupled with strategic cross-LoRA feature and attention injection, guides the style transfer process. The foundation of our methodology is rooted in the observation that LoRA maintains the spatial feature consistency of UNet, a discovery that further inspired the development of a mask-wise style transfer technique. This technique employs masks extracted through a pre-trained FastSAM model, utilizing mask prompts to facilitate feature fusion during the denoising process, thereby enabling localized style transfer that preserves the original image's unaffected regions. Moreover, our approach accommodates multiple style targets through the use of corresponding masks. Through extensive experimentation, we demonstrate that DiffStyler surpasses previous methods in achieving a more harmonious balance between content preservation and style integration.
Measuring Style Similarity in Diffusion Models
Generative models are now widely used by graphic designers and artists. Prior works have shown that these models remember and often replicate content from their training data during generation. Hence as their proliferation increases, it has become important to perform a database search to determine whether the properties of the image are attributable to specific training data, every time before a generated image is used for professional purposes. Existing tools for this purpose focus on retrieving images of similar semantic content. Meanwhile, many artists are concerned with style replication in text-to-image models. We present a framework for understanding and extracting style descriptors from images. Our framework comprises a new dataset curated using the insight that style is a subjective property of an image that captures complex yet meaningful interactions of factors including but not limited to colors, textures, shapes, etc. We also propose a method to extract style descriptors that can be used to attribute style of a generated image to the images used in the training dataset of a text-to-image model. We showcase promising results in various style retrieval tasks. We also quantitatively and qualitatively analyze style attribution and matching in the Stable Diffusion model. Code and artifacts are available at https://github.com/learn2phoenix/CSD.
A Closed-form Solution to Photorealistic Image Stylization
Photorealistic image stylization concerns transferring style of a reference photo to a content photo with the constraint that the stylized photo should remain photorealistic. While several photorealistic image stylization methods exist, they tend to generate spatially inconsistent stylizations with noticeable artifacts. In this paper, we propose a method to address these issues. The proposed method consists of a stylization step and a smoothing step. While the stylization step transfers the style of the reference photo to the content photo, the smoothing step ensures spatially consistent stylizations. Each of the steps has a closed-form solution and can be computed efficiently. We conduct extensive experimental validations. The results show that the proposed method generates photorealistic stylization outputs that are more preferred by human subjects as compared to those by the competing methods while running much faster. Source code and additional results are available at https://github.com/NVIDIA/FastPhotoStyle .
