Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeInvestigating Continual Pretraining in Large Language Models: Insights and Implications
This paper studies the evolving domain of Continual Learning (CL) in large language models (LLMs), with a focus on developing strategies for efficient and sustainable training. Our primary emphasis is on continual domain-adaptive pretraining, a process designed to equip LLMs with the ability to integrate new information from various domains while retaining previously learned knowledge and enhancing cross-domain knowledge transfer without relying on domain-specific identification. Unlike previous studies, which mostly concentrate on a limited selection of tasks or domains and primarily aim to address the issue of forgetting, our research evaluates the adaptability and capabilities of LLMs to changing data landscapes in practical scenarios. To this end, we introduce a new benchmark designed to measure the adaptability of LLMs to these evolving data environments, offering a comprehensive framework for evaluation. We examine the impact of model size on learning efficacy and forgetting, as well as how the progression and similarity of emerging domains affect the knowledge transfer within these models. Our findings uncover several key insights: (i) when the sequence of domains shows semantic similarity, continual pretraining enables LLMs to better specialize in the current domain compared to stand-alone fine-tuning, (ii) training across a diverse range of domains enhances both backward and forward knowledge transfer, and (iii) smaller models are particularly sensitive to continual pretraining, showing the most significant rates of both forgetting and learning. We posit that our research marks a shift towards establishing a more realistic benchmark for investigating CL in LLMs, and has the potential to play a key role in guiding the direction of future research in the field.
Building Domain-Specific Small Language Models via Guided Data Generation
Large Language Models (LLMs) have shown remarkable success in supporting a wide range of knowledge-intensive tasks. In specialized domains, there is growing interest in leveraging LLMs to assist subject matter experts with domain-specific challenges. However, deploying LLMs as SaaS solutions raises data privacy concerns, while many open-source models demand significant computational resources for effective domain adaptation and deployment. A promising alternative is to develop smaller, domain-specialized LLMs, though this approach is often constrained by the lack of high-quality domain-specific training data. In this work, we address these limitations by presenting a cost-efficient and scalable training pipeline that combines guided synthetic data generation from a small seed corpus with bottom-up domain data curation. Our pipeline integrates Domain-Adaptive Pretraining (DAPT), Domain-specific Supervised Fine-tuning (DSFT), and Direct Preference Optimization (DPO) to train effective small-scale models for specialized use cases. We demonstrate this approach through DiagnosticSLM, a 3B-parameter domain-specific model tailored for fault diagnosis, root cause analysis, and repair recommendation in industrial settings. To evaluate model performance, we introduce four domain-specific benchmarks: multiple-choice questions (DiagnosticMCQ), question answering (DiagnosticQA), sentence completion (DiagnosticComp), and summarization (DiagnosticSum). DiagnosticSLM achieves up to 25% accuracy improvement over open-source models of comparable or larger size (2B-9B) on the MCQ task, while also outperforming or matching them in other tasks, demonstrating effective domain-specific reasoning and generalization capabilities.
Don't Stop Pretraining: Adapt Language Models to Domains and Tasks
Language models pretrained on text from a wide variety of sources form the foundation of today's NLP. In light of the success of these broad-coverage models, we investigate whether it is still helpful to tailor a pretrained model to the domain of a target task. We present a study across four domains (biomedical and computer science publications, news, and reviews) and eight classification tasks, showing that a second phase of pretraining in-domain (domain-adaptive pretraining) leads to performance gains, under both high- and low-resource settings. Moreover, adapting to the task's unlabeled data (task-adaptive pretraining) improves performance even after domain-adaptive pretraining. Finally, we show that adapting to a task corpus augmented using simple data selection strategies is an effective alternative, especially when resources for domain-adaptive pretraining might be unavailable. Overall, we consistently find that multi-phase adaptive pretraining offers large gains in task performance.
Evolving Domain Adaptation of Pretrained Language Models for Text Classification
Adapting pre-trained language models (PLMs) for time-series text classification amidst evolving domain shifts (EDS) is critical for maintaining accuracy in applications like stance detection. This study benchmarks the effectiveness of evolving domain adaptation (EDA) strategies, notably self-training, domain-adversarial training, and domain-adaptive pretraining, with a focus on an incremental self-training method. Our analysis across various datasets reveals that this incremental method excels at adapting PLMs to EDS, outperforming traditional domain adaptation techniques. These findings highlight the importance of continually updating PLMs to ensure their effectiveness in real-world applications, paving the way for future research into PLM robustness against the natural temporal evolution of language.
The Limited Impact of Medical Adaptation of Large Language and Vision-Language Models
Several recent works seek to develop foundation models specifically for medical applications, adapting general-purpose large language models (LLMs) and vision-language models (VLMs) via continued pretraining on publicly available biomedical corpora. These works typically claim that such domain-adaptive pretraining (DAPT) improves performance on downstream medical tasks, such as answering medical licensing exam questions. In this paper, we compare ten public "medical" LLMs and two VLMs against their corresponding base models, arriving at a different conclusion: all medical VLMs and nearly all medical LLMs fail to consistently improve over their base models in the zero-/few-shot prompting and supervised fine-tuning regimes for medical question-answering (QA). For instance, across all tasks and model pairs we consider in the 3-shot setting, medical LLMs only outperform their base models in 22.7% of cases, reach a (statistical) tie in 36.8% of cases, and are significantly worse than their base models in the remaining 40.5% of cases. Our conclusions are based on (i) comparing each medical model head-to-head, directly against the corresponding base model; (ii) optimizing the prompts for each model separately in zero-/few-shot prompting; and (iii) accounting for statistical uncertainty in comparisons. While these basic practices are not consistently adopted in the literature, our ablations show that they substantially impact conclusions. Meanwhile, we find that after fine-tuning on specific QA tasks, medical LLMs can show performance improvements, but the benefits do not carry over to tasks based on clinical notes. Our findings suggest that state-of-the-art general-domain models may already exhibit strong medical knowledge and reasoning capabilities, and offer recommendations to strengthen the conclusions of future studies.
Medical Adaptation of Large Language and Vision-Language Models: Are We Making Progress?
Several recent works seek to develop foundation models specifically for medical applications, adapting general-purpose large language models (LLMs) and vision-language models (VLMs) via continued pretraining on publicly available biomedical corpora. These works typically claim that such domain-adaptive pretraining (DAPT) improves performance on downstream medical tasks, such as answering medical licensing exam questions. In this paper, we compare seven public "medical" LLMs and two VLMs against their corresponding base models, arriving at a different conclusion: all medical VLMs and nearly all medical LLMs fail to consistently improve over their base models in the zero-/few-shot prompting regime for medical question-answering (QA) tasks. For instance, across the tasks and model pairs we consider in the 3-shot setting, medical LLMs only outperform their base models in 12.1% of cases, reach a (statistical) tie in 49.8% of cases, and are significantly worse than their base models in the remaining 38.2% of cases. Our conclusions are based on (i) comparing each medical model head-to-head, directly against the corresponding base model; (ii) optimizing the prompts for each model separately; and (iii) accounting for statistical uncertainty in comparisons. While these basic practices are not consistently adopted in the literature, our ablations show that they substantially impact conclusions. Our findings suggest that state-of-the-art general-domain models may already exhibit strong medical knowledge and reasoning capabilities, and offer recommendations to strengthen the conclusions of future studies.
Memory Decoder: A Pretrained, Plug-and-Play Memory for Large Language Models
Large Language Models (LLMs) have shown strong abilities in general language tasks, yet adapting them to specific domains remains a challenge. Current method like Domain Adaptive Pretraining (DAPT) requires costly full-parameter training and suffers from catastrophic forgetting. Meanwhile, Retrieval-Augmented Generation (RAG) introduces substantial inference latency due to expensive nearest-neighbor searches and longer context. This paper introduces Memory Decoder, a plug-and-play pretrained memory that enables efficient domain adaptation without changing the original model's parameters. Memory Decoder employs a small transformer decoder that learns to imitate the behavior of an external non-parametric retriever. Once trained, Memory Decoder can be seamlessly integrated with any pretrained language model that shares the same tokenizer, requiring no model-specific modifications. Experimental results demonstrate that Memory Decoder enables effective adaptation of various Qwen and Llama models to three distinct specialized domains: biomedicine, finance, and law, reducing perplexity by an average of 6.17 points. Overall, Memory Decoder introduces a novel paradigm centered on a specially pretrained memory component designed for domain-specific adaptation. This memory architecture can be integrated in a plug-and-play manner, consistently enhancing performance across multiple models within the target domain.
MedDINOv3: How to adapt vision foundation models for medical image segmentation?
Accurate segmentation of organs and tumors in CT and MRI scans is essential for diagnosis, treatment planning, and disease monitoring. While deep learning has advanced automated segmentation, most models remain task-specific, lacking generalizability across modalities and institutions. Vision foundation models (FMs) pretrained on billion-scale natural images offer powerful and transferable representations. However, adapting them to medical imaging faces two key challenges: (1) the ViT backbone of most foundation models still underperform specialized CNNs on medical image segmentation, and (2) the large domain gap between natural and medical images limits transferability. We introduce MedDINOv3, a simple and effective framework for adapting DINOv3 to medical segmentation. We first revisit plain ViTs and design a simple and effective architecture with multi-scale token aggregation. Then, we perform domain-adaptive pretraining on CT-3M, a curated collection of 3.87M axial CT slices, using a multi-stage DINOv3 recipe to learn robust dense features. MedDINOv3 matches or exceeds state-of-the-art performance across four segmentation benchmarks, demonstrating the potential of vision foundation models as unified backbones for medical image segmentation. The code is available at https://github.com/ricklisz/MedDINOv3.
ClinText-SP and RigoBERTa Clinical: a new set of open resources for Spanish Clinical NLP
We present a novel contribution to Spanish clinical natural language processing by introducing the largest publicly available clinical corpus, ClinText-SP, along with a state-of-the-art clinical encoder language model, RigoBERTa Clinical. Our corpus was meticulously curated from diverse open sources, including clinical cases from medical journals and annotated corpora from shared tasks, providing a rich and diverse dataset that was previously difficult to access. RigoBERTa Clinical, developed through domain-adaptive pretraining on this comprehensive dataset, significantly outperforms existing models on multiple clinical NLP benchmarks. By publicly releasing both the dataset and the model, we aim to empower the research community with robust resources that can drive further advancements in clinical NLP and ultimately contribute to improved healthcare applications.
Exploring the Versatility of Zero-Shot CLIP for Interstitial Lung Disease Classification
Interstitial lung diseases (ILD) present diagnostic challenges due to their varied manifestations and overlapping imaging features. To address this, we propose a machine learning approach that utilizes CLIP, a multimodal (image and text) self-supervised model, for ILD classification. We extensively integrate zero-shot CLIP throughout our workflow, starting from the initial extraction of image patches from volumetric CT scans and proceeding to ILD classification using "patch montages". Furthermore, we investigate how domain adaptive pretraining (DAPT) CLIP with task-specific images (CT "patch montages" extracted with ILD-specific prompts for CLIP) and/or text (lung-specific sections of radiology reports) affects downstream ILD classification performance. By leveraging CLIP-extracted "patch montages" and DAPT, we achieve strong zero-shot ILD classification results, including an AUROC of 0.893, without the need for any labeled training data. This work highlights the versatility and potential of multimodal models like CLIP for medical image classification tasks where labeled data is scarce.
NaijaHate: Evaluating Hate Speech Detection on Nigerian Twitter Using Representative Data
To address the global issue of hateful content proliferating in online platforms, hate speech detection (HSD) models are typically developed on datasets collected in the United States, thereby failing to generalize to English dialects from the Majority World. Furthermore, HSD models are often evaluated on curated samples, raising concerns about overestimating model performance in real-world settings. In this work, we introduce NaijaHate, the first dataset annotated for HSD which contains a representative sample of Nigerian tweets. We demonstrate that HSD evaluated on biased datasets traditionally used in the literature largely overestimates real-world performance on representative data. We also propose NaijaXLM-T, a pretrained model tailored to the Nigerian Twitter context, and establish the key role played by domain-adaptive pretraining and finetuning in maximizing HSD performance. Finally, we show that in this context, a human-in-the-loop approach to content moderation where humans review 1% of Nigerian tweets flagged as hateful would enable to moderate 60% of all hateful content. Taken together, these results pave the way towards robust HSD systems and a better protection of social media users from hateful content in low-resource settings.
Efficient Domain-adaptive Continual Pretraining for the Process Industry in the German Language
Domain-adaptive continual pretraining (DAPT) is a state-of-the-art technique that further trains a language model (LM) on its pretraining task, e.g., language masking. Although popular, it requires a significant corpus of domain-related data, which is difficult to obtain for specific domains in languages other than English, such as the process industry in the German language. This paper introduces an efficient approach called ICL-augmented pretraining or ICL-APT that leverages in-context learning (ICL) and k-nearest neighbors (kNN) to augment target data with domain-related and in-domain texts, significantly reducing GPU time while maintaining strong model performance. Our results show that this approach performs better than traditional DAPT by 3.5 of the average IR metrics (e.g., mAP, MRR, and nDCG) and requires almost 4 times less computing time, providing a cost-effective solution for industries with limited computational capacity. The findings highlight the broader applicability of this framework to other low-resource industries, making NLP-based solutions more accessible and feasible in production environments.
Less Data, More Security: Advancing Cybersecurity LLMs Specialization via Resource-Efficient Domain-Adaptive Continuous Pre-training with Minimal Tokens
While Large Language Models (LLMs) demonstrate exceptional natural language capabilities, general-purpose models lack specialized domain knowledge for effective cybersecurity analysis. In this work, we investigate Domain-Adaptive Continuous Pretraining (DAP) as a methodology for enhancing cybersecurity understanding in pretrained LLMs while preserving general language capabilities. We systematically adapted three decoder-based architectures -- Llama-3.1-8B, DeepSeek-R1-Distill-Qwen-14B, and Llama-3.3-70B-Instruct -- using a curated 126-million-word cybersecurity corpus from standards, academic literature, and various other sources. Our approach employed constrained training parameters and distributed FSDP training to balance domain specialization with knowledge preservation. Evaluation across three cybersecurity benchmarks, namely, CTI-MCQ, CyberMetric, and SecEval, demonstrates consistent improvements post-adaptation. The Llama-3.3-70B-Ins-DAP model achieved state-of-the-art accuracies of 0.718, 0.933, and 0.864, respectively, outperforming specialized models, including Llama-Primus-Base. Notably, competitive performance was achieved using substantially smaller datasets (118.8 million versus 2.77 billion tokens), demonstrating efficient domain specialization viability. We establish that targeted continuous pretraining enables effective cybersecurity domain adaptation with computational feasibility, providing foundations for specialized AI assistants in threat analysis, vulnerability assessment, and security documentation while challenging prevailing assumptions about data requirements for LLM specialization.
ChipNeMo: Domain-Adapted LLMs for Chip Design
ChipNeMo aims to explore the applications of large language models (LLMs) for industrial chip design. Instead of directly deploying off-the-shelf commercial or open-source LLMs, we instead adopt the following domain adaptation techniques: custom tokenizers, domain-adaptive continued pretraining, supervised fine-tuning (SFT) with domain-specific instructions, and domain-adapted retrieval models. We evaluate these methods on three selected LLM applications for chip design: an engineering assistant chatbot, EDA script generation, and bug summarization and analysis. Our results show that these domain adaptation techniques enable significant LLM performance improvements over general-purpose base models across the three evaluated applications, enabling up to 5x model size reduction with similar or better performance on a range of design tasks. Our findings also indicate that there's still room for improvement between our current results and ideal outcomes. We believe that further investigation of domain-adapted LLM approaches will help close this gap in the future.
A Hybrid Task-Oriented Dialog System with Domain and Task Adaptive Pretraining
This paper describes our submission for the End-to-end Multi-domain Task Completion Dialog shared task at the 9th Dialog System Technology Challenge (DSTC-9). Participants in the shared task build an end-to-end task completion dialog system which is evaluated by human evaluation and a user simulator based automatic evaluation. Different from traditional pipelined approaches where modules are optimized individually and suffer from cascading failure, we propose an end-to-end dialog system that 1) uses Generative Pretraining 2 (GPT-2) as the backbone to jointly solve Natural Language Understanding, Dialog State Tracking, and Natural Language Generation tasks, 2) adopts Domain and Task Adaptive Pretraining to tailor GPT-2 to the dialog domain before finetuning, 3) utilizes heuristic pre/post-processing rules that greatly simplify the prediction tasks and improve generalizability, and 4) equips a fault tolerance module to correct errors and inappropriate responses. Our proposed method significantly outperforms baselines and ties for first place in the official evaluation. We make our source code publicly available.
ADEPT: Continual Pretraining via Adaptive Expansion and Dynamic Decoupled Tuning
Conventional continual pretraining (CPT) for large language model (LLM) domain adaptation often suffers from catastrophic forgetting and limited domain capacity. Existing strategies adopt layer expansion, introducing additional trainable parameters to accommodate new knowledge. However, the uniform expansion and updates still entangle general and domain learning, undermining its effectiveness. Our pilot studies reveal that LLMs exhibit functional specialization, where layers and units differentially encode general-critical capabilities, suggesting that parameter expansion and optimization should be function-aware. We then propose ADEPT, Adaptive Expansion and Dynamic Decoupled Tuning for continual pretraining, a two-stage framework for domain-adaptive CPT. ADEPT first performs General-Competence Guided Selective Layer Expansion, duplicating layers least critical for the general domain to increase representational capacity while minimizing interference with general knowledge. It then applies Adaptive Unit-Wise Decoupled Tuning, disentangling parameter units within expanded layers according to their general-domain importance and assigning asymmetric learning rates to balance knowledge injection and retention. Experiments on mathematical and medical benchmarks show that ADEPT outperforms full-parameter CPT by up to 5.76% on the general domain and 5.58% on the target domain with only 15% of parameters tuned and less than 50% training time. Ablation studies, theoretical analysis, and extended investigations further demonstrate the necessity of targeted expansion and decoupled optimization, providing new principles for efficient and robust domain-adaptive CPT. Our code is open-sourced at https://github.com/PuppyKnightUniversity/ADEPT
Demystifying Domain-adaptive Post-training for Financial LLMs
Domain-adaptive post-training of large language models (LLMs) has emerged as a promising approach for specialized domains such as medicine and finance. However, significant challenges remain in identifying optimal adaptation criteria and training strategies across varying data and model configurations. To address these challenges, we introduce FINDAP, a systematic and fine-grained investigation into domain-adaptive post-training of LLMs for the finance domain. Our approach begins by identifying the core capabilities required for the target domain and designing a comprehensive evaluation suite aligned with these needs. We then analyze the effectiveness of key post-training stages, including continual pretraining, instruction tuning, and preference alignment. Building on these insights, we propose an effective training recipe centered on a novel preference data distillation method, which leverages process signals from a generative reward model. The resulting model, Llama-Fin, achieves state-of-the-art performance across a wide range of financial tasks. Our analysis also highlights how each post-training stage contributes to distinct capabilities, uncovering specific challenges and effective solutions, providing valuable insights for domain adaptation of LLMs. Project page: https://github.com/SalesforceAIResearch/FinDap
DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation
As acquiring pixel-wise annotations of real-world images for semantic segmentation is a costly process, a model can instead be trained with more accessible synthetic data and adapted to real images without requiring their annotations. This process is studied in unsupervised domain adaptation (UDA). Even though a large number of methods propose new adaptation strategies, they are mostly based on outdated network architectures. As the influence of recent network architectures has not been systematically studied, we first benchmark different network architectures for UDA and newly reveal the potential of Transformers for UDA semantic segmentation. Based on the findings, we propose a novel UDA method, DAFormer. The network architecture of DAFormer consists of a Transformer encoder and a multi-level context-aware feature fusion decoder. It is enabled by three simple but crucial training strategies to stabilize the training and to avoid overfitting to the source domain: While (1) Rare Class Sampling on the source domain improves the quality of the pseudo-labels by mitigating the confirmation bias of self-training toward common classes, (2) a Thing-Class ImageNet Feature Distance and (3) a learning rate warmup promote feature transfer from ImageNet pretraining. DAFormer represents a major advance in UDA. It improves the state of the art by 10.8 mIoU for GTA-to-Cityscapes and 5.4 mIoU for Synthia-to-Cityscapes and enables learning even difficult classes such as train, bus, and truck well. The implementation is available at https://github.com/lhoyer/DAFormer.
A Domain-adaptive Pre-training Approach for Language Bias Detection in News
Media bias is a multi-faceted construct influencing individual behavior and collective decision-making. Slanted news reporting is the result of one-sided and polarized writing which can occur in various forms. In this work, we focus on an important form of media bias, i.e. bias by word choice. Detecting biased word choices is a challenging task due to its linguistic complexity and the lack of representative gold-standard corpora. We present DA-RoBERTa, a new state-of-the-art transformer-based model adapted to the media bias domain which identifies sentence-level bias with an F1 score of 0.814. In addition, we also train, DA-BERT and DA-BART, two more transformer models adapted to the bias domain. Our proposed domain-adapted models outperform prior bias detection approaches on the same data.
Chinese MentalBERT: Domain-Adaptive Pre-training on Social Media for Chinese Mental Health Text Analysis
In the current environment, psychological issues are prevalent and widespread, with social media serving as a key outlet for individuals to share their feelings. This results in the generation of vast quantities of data daily, where negative emotions have the potential to precipitate crisis situations. There is a recognized need for models capable of efficient analysis. While pre-trained language models have demonstrated their effectiveness broadly, there's a noticeable gap in pre-trained models tailored for specialized domains like psychology. To address this, we have collected a huge dataset from Chinese social media platforms and enriched it with publicly available datasets to create a comprehensive database encompassing 3.36 million text entries. To enhance the model's applicability to psychological text analysis, we integrated psychological lexicons into the pre-training masking mechanism. Building on an existing Chinese language model, we performed adaptive training to develop a model specialized for the psychological domain. We assessed our model's effectiveness across four public benchmarks, where it not only surpassed the performance of standard pre-trained models but also showed a inclination for making psychologically relevant predictions. Due to concerns regarding data privacy, the dataset will not be made publicly available. However, we have made the pre-trained models and codes publicly accessible to the community via: https://github.com/zwzzzQAQ/Chinese-MentalBERT.
ESCOXLM-R: Multilingual Taxonomy-driven Pre-training for the Job Market Domain
The increasing number of benchmarks for Natural Language Processing (NLP) tasks in the computational job market domain highlights the demand for methods that can handle job-related tasks such as skill extraction, skill classification, job title classification, and de-identification. While some approaches have been developed that are specific to the job market domain, there is a lack of generalized, multilingual models and benchmarks for these tasks. In this study, we introduce a language model called ESCOXLM-R, based on XLM-R, which uses domain-adaptive pre-training on the European Skills, Competences, Qualifications and Occupations (ESCO) taxonomy, covering 27 languages. The pre-training objectives for ESCOXLM-R include dynamic masked language modeling and a novel additional objective for inducing multilingual taxonomical ESCO relations. We comprehensively evaluate the performance of ESCOXLM-R on 6 sequence labeling and 3 classification tasks in 4 languages and find that it achieves state-of-the-art results on 6 out of 9 datasets. Our analysis reveals that ESCOXLM-R performs better on short spans and outperforms XLM-R on entity-level and surface-level span-F1, likely due to ESCO containing short skill and occupation titles, and encoding information on the entity-level.
AfroXLMR-Social: Adapting Pre-trained Language Models for African Languages Social Media Text
Language models built from various sources are the foundation of today's NLP progress. However, for many low-resource languages, the diversity of domains is often limited -- more biased to a religious domain, which impacts their performance when evaluated on distant and rapidly evolving domains such as social media. Domain adaptive pre-training (DAPT) and task-adaptive pre-training (TAPT) are popular techniques to reduce this bias through continual pre-training for BERT-based models, but they have not been explored for African multilingual encoders. In this paper, we explore DAPT and TAPT continual pertaining approaches for the African languages social media domain. We introduce AfriSocial-a large-scale social media and news domain corpus for continual pre-training on several African languages. Leveraging AfriSocial, we show that DAPT consistently improves performance on three subjective tasks: sentiment analysis, multi-label emotion, and hate speech classification, covering 19 languages from 1% to 30% F1 score. Similarly, leveraging TAPT on one task data improves performance on other related tasks. For example, training with unlabeled sentiment data (source) for a fine-grained emotion classification task (target) improves the baseline results by an F1 score ranging from 0.55% to 15.11%. Combining these two methods (i.e. DAPT + TAPT) further improves the overall performance.
Domain-adaptative Continual Learning for Low-resource Tasks: Evaluation on Nepali
Continual learning has emerged as an important research direction due to the infeasibility of retraining large language models (LLMs) from scratch in the event of new data availability. Of great interest is the domain-adaptive pre-training (DAPT) paradigm, which focuses on continually training a pre-trained language model to adapt it to a domain it was not originally trained on. In this work, we evaluate the feasibility of DAPT in a low-resource setting, namely the Nepali language. We use synthetic data to continue training Llama 3 8B to adapt it to the Nepali language in a 4-bit QLoRA setting. We evaluate the adapted model on its performance, forgetting, and knowledge acquisition. We compare the base model and the final model on their Nepali generation abilities, their performance on popular benchmarks, and run case-studies to probe their linguistic knowledge in Nepali. We see some unsurprising forgetting in the final model, but also surprisingly find that increasing the number of shots during evaluation yields better percent increases in the final model (as high as 19.29% increase) compared to the base model (4.98%), suggesting latent retention. We also explore layer-head self-attention heatmaps to establish dependency resolution abilities of the final model in Nepali.
Continual Pre-training of Language Models
Language models (LMs) have been instrumental for the rapid advance of natural language processing. This paper studies continual pre-training of LMs, in particular, continual domain-adaptive pre-training (or continual DAP-training). Existing research has shown that further pre-training an LM using a domain corpus to adapt the LM to the domain can improve the end-task performance in the domain. This paper proposes a novel method to continually DAP-train an LM with a sequence of unlabeled domain corpora to adapt the LM to these domains to improve their end-task performances. The key novelty of our method is a soft-masking mechanism that directly controls the update to the LM. A novel proxy is also proposed to preserve the general knowledge in the original LM. Additionally, it contrasts the representations of the previously learned domain knowledge (including the general knowledge in the pre-trained LM) and the knowledge from the current full network to achieve knowledge integration. The method not only overcomes catastrophic forgetting, but also achieves knowledge transfer to improve end-task performances. Empirical evaluation demonstrates the effectiveness of the proposed method.
AdaSent: Efficient Domain-Adapted Sentence Embeddings for Few-Shot Classification
Recent work has found that few-shot sentence classification based on pre-trained Sentence Encoders (SEs) is efficient, robust, and effective. In this work, we investigate strategies for domain-specialization in the context of few-shot sentence classification with SEs. We first establish that unsupervised Domain-Adaptive Pre-Training (DAPT) of a base Pre-trained Language Model (PLM) (i.e., not an SE) substantially improves the accuracy of few-shot sentence classification by up to 8.4 points. However, applying DAPT on SEs, on the one hand, disrupts the effects of their (general-domain) Sentence Embedding Pre-Training (SEPT). On the other hand, applying general-domain SEPT on top of a domain-adapted base PLM (i.e., after DAPT) is effective but inefficient, since the computationally expensive SEPT needs to be executed on top of a DAPT-ed PLM of each domain. As a solution, we propose AdaSent, which decouples SEPT from DAPT by training a SEPT adapter on the base PLM. The adapter can be inserted into DAPT-ed PLMs from any domain. We demonstrate AdaSent's effectiveness in extensive experiments on 17 different few-shot sentence classification datasets. AdaSent matches or surpasses the performance of full SEPT on DAPT-ed PLM, while substantially reducing the training costs. The code for AdaSent is available.
Summarizing Patients Problems from Hospital Progress Notes Using Pre-trained Sequence-to-Sequence Models
Automatically summarizing patients' main problems from daily progress notes using natural language processing methods helps to battle against information and cognitive overload in hospital settings and potentially assists providers with computerized diagnostic decision support. Problem list summarization requires a model to understand, abstract, and generate clinical documentation. In this work, we propose a new NLP task that aims to generate a list of problems in a patient's daily care plan using input from the provider's progress notes during hospitalization. We investigate the performance of T5 and BART, two state-of-the-art seq2seq transformer architectures, in solving this problem. We provide a corpus built on top of progress notes from publicly available electronic health record progress notes in the Medical Information Mart for Intensive Care (MIMIC)-III. T5 and BART are trained on general domain text, and we experiment with a data augmentation method and a domain adaptation pre-training method to increase exposure to medical vocabulary and knowledge. Evaluation methods include ROUGE, BERTScore, cosine similarity on sentence embedding, and F-score on medical concepts. Results show that T5 with domain adaptive pre-training achieves significant performance gains compared to a rule-based system and general domain pre-trained language models, indicating a promising direction for tackling the problem summarization task.
Multi-Modal Open-Domain Dialogue
Recent work in open-domain conversational agents has demonstrated that significant improvements in model engagingness and humanness metrics can be achieved via massive scaling in both pre-training data and model size (Adiwardana et al., 2020; Roller et al., 2020). However, if we want to build agents with human-like abilities, we must expand beyond handling just text. A particularly important topic is the ability to see images and communicate about what is perceived. With the goal of engaging humans in multi-modal dialogue, we investigate combining components from state-of-the-art open-domain dialogue agents with those from state-of-the-art vision models. We study incorporating different image fusion schemes and domain-adaptive pre-training and fine-tuning strategies, and show that our best resulting model outperforms strong existing models in multi-modal dialogue while simultaneously performing as well as its predecessor (text-only) BlenderBot (Roller et al., 2020) in text-based conversation. We additionally investigate and incorporate safety components in our final model, and show that such efforts do not diminish model performance with respect to engagingness metrics.
CrossNER: Evaluating Cross-Domain Named Entity Recognition
Cross-domain named entity recognition (NER) models are able to cope with the scarcity issue of NER samples in target domains. However, most of the existing NER benchmarks lack domain-specialized entity types or do not focus on a certain domain, leading to a less effective cross-domain evaluation. To address these obstacles, we introduce a cross-domain NER dataset (CrossNER), a fully-labeled collection of NER data spanning over five diverse domains with specialized entity categories for different domains. Additionally, we also provide a domain-related corpus since using it to continue pre-training language models (domain-adaptive pre-training) is effective for the domain adaptation. We then conduct comprehensive experiments to explore the effectiveness of leveraging different levels of the domain corpus and pre-training strategies to do domain-adaptive pre-training for the cross-domain task. Results show that focusing on the fractional corpus containing domain-specialized entities and utilizing a more challenging pre-training strategy in domain-adaptive pre-training are beneficial for the NER domain adaptation, and our proposed method can consistently outperform existing cross-domain NER baselines. Nevertheless, experiments also illustrate the challenge of this cross-domain NER task. We hope that our dataset and baselines will catalyze research in the NER domain adaptation area. The code and data are available at https://github.com/zliucr/CrossNER.
OpenMed NER: Open-Source, Domain-Adapted State-of-the-Art Transformers for Biomedical NER Across 12 Public Datasets
Named-entity recognition (NER) is fundamental to extracting structured information from the >80% of healthcare data that resides in unstructured clinical notes and biomedical literature. Despite recent advances with large language models, achieving state-of-the-art performance across diverse entity types while maintaining computational efficiency remains a significant challenge. We introduce OpenMed NER, a suite of open-source, domain-adapted transformer models that combine lightweight domain-adaptive pre-training (DAPT) with parameter-efficient Low-Rank Adaptation (LoRA). Our approach performs cost-effective DAPT on a 350k-passage corpus compiled from ethically sourced, publicly available research repositories and de-identified clinical notes (PubMed, arXiv, and MIMIC-III) using DeBERTa-v3, PubMedBERT, and BioELECTRA backbones. This is followed by task-specific fine-tuning with LoRA, which updates less than 1.5% of model parameters. We evaluate our models on 12 established biomedical NER benchmarks spanning chemicals, diseases, genes, and species. OpenMed NER achieves new state-of-the-art micro-F1 scores on 10 of these 12 datasets, with substantial gains across diverse entity types. Our models advance the state-of-the-art on foundational disease and chemical benchmarks (e.g., BC5CDR-Disease, +2.70 pp), while delivering even larger improvements of over 5.3 and 9.7 percentage points on more specialized gene and clinical cell line corpora. This work demonstrates that strategically adapted open-source models can surpass closed-source solutions. This performance is achieved with remarkable efficiency: training completes in under 12 hours on a single GPU with a low carbon footprint (< 1.2 kg CO2e), producing permissively licensed, open-source checkpoints designed to help practitioners facilitate compliance with emerging data protection and AI regulations, such as the EU AI Act.
TransformLLM: Adapting Large Language Models via LLM-Transformed Reading Comprehension Text
Large Language Models (LLMs) have shown promise in highly-specialized domains, however challenges are still present in aspects of accuracy and costs. These limitations restrict the usage of existing models in domain-specific tasks. While fine-tuning pre-trained models have shown promising results, this process can be computationally expensive and require massive datasets of the specialized application in hand. In this work, we bridge that gap. We have developed Phi-2-Legal and Mistral-Legal-7B, which are language models specifically designed for legal applications. These models are based on Phi-2 and Mistral-7B-v0.1, and have gone through continued pre-training with over 500 million tokens of legal texts. Our innovative approach significantly improves capabilities in legal tasks by using Large Language Models (LLMs) to convert raw training data into reading comprehension text. Our legal LLMs have demonstrated superior performance in legal benchmarks, even outperforming models trained on much larger datasets with more resources. This work emphasizes the effectiveness of continued pre-training on domain-specific texts, while using affordable LLMs for data conversion, which gives these models domain expertise while retaining general language understanding capabilities. While this work uses the legal domain as a test case, our method can be scaled and applied to any pre-training dataset, resulting in significant improvements across different tasks. These findings underscore the potential of domain-adaptive pre-training and reading comprehension for the development of highly effective domain-specific language models.
Zero-Shot Entity Linking by Reading Entity Descriptions
We present the zero-shot entity linking task, where mentions must be linked to unseen entities without in-domain labeled data. The goal is to enable robust transfer to highly specialized domains, and so no metadata or alias tables are assumed. In this setting, entities are only identified by text descriptions, and models must rely strictly on language understanding to resolve the new entities. First, we show that strong reading comprehension models pre-trained on large unlabeled data can be used to generalize to unseen entities. Second, we propose a simple and effective adaptive pre-training strategy, which we term domain-adaptive pre-training (DAP), to address the domain shift problem associated with linking unseen entities in a new domain. We present experiments on a new dataset that we construct for this task and show that DAP improves over strong pre-training baselines, including BERT. The data and code are available at https://github.com/lajanugen/zeshel.
UniPercept: Towards Unified Perceptual-Level Image Understanding across Aesthetics, Quality, Structure, and Texture
Multimodal large language models (MLLMs) have achieved remarkable progress in visual understanding tasks such as visual grounding, segmentation, and captioning. However, their ability to perceive perceptual-level image features remains limited. In this work, we present UniPercept-Bench, a unified framework for perceptual-level image understanding across three key domains: Aesthetics, Quality, Structure and Texture. We establish a hierarchical definition system and construct large-scale datasets to evaluate perceptual-level image understanding. Based on this foundation, we develop a strong baseline UniPercept trained via Domain-Adaptive Pre-Training and Task-Aligned RL, enabling robust generalization across both Visual Rating (VR) and Visual Question Answering (VQA) tasks. UniPercept outperforms existing MLLMs on perceptual-level image understanding and can serve as a plug-and-play reward model for text-to-image generation. This work defines Perceptual-Level Image Understanding in the era of MLLMs and, through the introduction of a comprehensive benchmark together with a strong baseline, provides a solid foundation for advancing perceptual-level multimodal image understanding.
Simplifying Traffic Anomaly Detection with Video Foundation Models
Recent methods for ego-centric Traffic Anomaly Detection (TAD) often rely on complex multi-stage or multi-representation fusion architectures, yet it remains unclear whether such complexity is necessary. Recent findings in visual perception suggest that foundation models, enabled by advanced pre-training, allow simple yet flexible architectures to outperform specialized designs. Therefore, in this work, we investigate an architecturally simple encoder-only approach using plain Video Vision Transformers (Video ViTs) and study how pre-training enables strong TAD performance. We find that: (i) strong pre-training enables simple encoder-only models to match or even surpass the performance of specialized state-of-the-art TAD methods, while also being significantly more efficient; (ii) although weakly- and fully-supervised pre-training are advantageous on standard benchmarks, we find them less effective for TAD. Instead, self-supervised Masked Video Modeling (MVM) provides the strongest signal; and (iii) Domain-Adaptive Pre-Training (DAPT) on unlabeled driving videos further improves downstream performance, without requiring anomalous examples. Our findings highlight the importance of pre-training and show that effective, efficient, and scalable TAD models can be built with minimal architectural complexity. We release our code, domain-adapted encoders, and fine-tuned models to support future work: https://github.com/tue-mps/simple-tad.
Continual Learning of Large Language Models: A Comprehensive Survey
The recent success of large language models (LLMs) trained on static, pre-collected, general datasets has sparked numerous research directions and applications. One such direction addresses the non-trivial challenge of integrating pre-trained LLMs into dynamic data distributions, task structures, and user preferences. Pre-trained LLMs, when tailored for specific needs, often experience significant performance degradation in previous knowledge domains -- a phenomenon known as "catastrophic forgetting". While extensively studied in the continual learning (CL) community, it presents new manifestations in the realm of LLMs. In this survey, we provide a comprehensive overview of the current research progress on LLMs within the context of CL. This survey is structured into four main sections: we first describe an overview of continually learning LLMs, consisting of two directions of continuity: vertical continuity (or vertical continual learning), i.e., continual adaptation from general to specific capabilities, and horizontal continuity (or horizontal continual learning), i.e., continual adaptation across time and domains (Section 3). We then summarize three stages of learning LLMs in the context of modern CL: Continual Pre-Training (CPT), Domain-Adaptive Pre-training (DAP), and Continual Fine-Tuning (CFT) (Section 4). Then we provide an overview of evaluation protocols for continual learning with LLMs, along with the current available data sources (Section 5). Finally, we discuss intriguing questions pertaining to continual learning for LLMs (Section 6). The full list of papers examined in this survey is available at https://github.com/Wang-ML-Lab/llm-continual-learning-survey.
Domain-Adaptive Continued Pre-Training of Small Language Models
Continued pre-training of small language models offers a promising path for domain adaptation with limited computational resources. I've investigated this approach within educational domains, evaluating it as a resource-efficient alternative to training models from scratch. Using a 125M parameter model, I demonstrate significant performance improvements through incremental training on 400 million tokens, followed by further training to reach 1 billion tokens. My approach includes comprehensive data preprocessing, memory-optimized training configurations, and benchmark-based evaluation. Results show notable gains in knowledge-intensive tasks (MMLU +8.1%) and contextual understanding (HellaSwag +7.6%), while revealing educational domain specialization trade-offs. I analyze token efficiency, catastrophic forgetting mitigation strategies, and scaling patterns. My findings suggest that thoughtful preprocessing and training methodologies enable meaningful improvements in language model capabilities even with constrained computational resources, opening pathways for domain-specific adaptation of smaller language models.
Velocitune: A Velocity-based Dynamic Domain Reweighting Method for Continual Pre-training
It is well-known that a diverse corpus is critical for training large language models, which are typically constructed from a mixture of various domains. In general, previous efforts resort to sampling training data from different domains with static proportions, as well as adjusting data proportions during training. However, few methods have addressed the complexities of domain-adaptive continual pre-training. To fill this gap, we propose Velocitune, a novel framework dynamically assesses learning velocity and adjusts data proportions accordingly, favoring slower-learning domains while shunning faster-learning ones, which is guided by a scaling law to indicate the desired learning goal for each domain with less associated cost. To evaluate the effectiveness of Velocitune, we conduct experiments in a reasoning-focused dataset with CodeLlama, as well as in a corpus specialised for system command generation with Llama3 and Mistral. Velocitune achieves performance gains in both math and code reasoning tasks and command-line generation benchmarks. Further analysis reveals that key factors driving Velocitune's effectiveness include target loss prediction and data ordering.
Shaping Explanations: Semantic Reward Modeling with Encoder-Only Transformers for GRPO
While Large Language Models (LLMs) excel at generating human-like text, aligning their outputs with complex, qualitative goals like pedagogical soundness remains a significant challenge. Standard reinforcement learning techniques often rely on slow and expensive LLM-as-a-judge evaluations or on brittle, keyword-based metrics like ROUGE, which fail to capture the semantic essence of a high-quality explanation. In this work, we introduce a novel approach to reward shaping within the Group Relative Policy Optimisation (GRPO) framework. Our central contribution is the use of a small, efficient encoder-only transformer as a semantic reward model. This model provides a dense, semantically rich reward signal based on the cosine similarity between a generated explanation and a ground-truth reference, guiding the policy towards explanations that are not just factually correct but also structurally and conceptually aligned with expert reasoning. We apply this method to the task of training a model for the Italian medical-school entrance examinations, following standard domain-adaptive continued pre-training (CPT) and supervised fine-tuning (SFT). Our results demonstrate that GRPO with our proposed semantic reward significantly improves explanation faithfulness and clarity over a strong SFT baseline, showcasing the power of using lightweight encoder models for nuanced reward shaping in complex generation tasks
Exploring the Limits of Domain-Adaptive Training for Detoxifying Large-Scale Language Models
Pre-trained language models (LMs) are shown to easily generate toxic language. In this work, we systematically explore domain-adaptive training to reduce the toxicity of language models. We conduct this study on three dimensions: training corpus, model size, and parameter efficiency. For the training corpus, we propose to leverage the generative power of LMs and generate nontoxic datasets for domain-adaptive training, which mitigates the exposure bias and is shown to be more data-efficient than using a curated pre-training corpus. We demonstrate that the self-generation method consistently outperforms the existing baselines across various model sizes on both automatic and human evaluations, even when it uses a 1/3 smaller training corpus. We then comprehensively study detoxifying LMs with parameter sizes ranging from 126M up to 530B (3x larger than GPT-3), a scale that has never been studied before. We find that i) large LMs have similar toxicity levels as smaller ones given the same pre-training corpus, and ii) large LMs require more endeavor to detoxify. We also explore parameter-efficient training methods for detoxification. We demonstrate that adding and training adapter-only layers in LMs not only saves a lot of parameters but also achieves a better trade-off between toxicity and perplexity than whole model adaptation for the large-scale models.
User Satisfaction Estimation with Sequential Dialogue Act Modeling in Goal-oriented Conversational Systems
User Satisfaction Estimation (USE) is an important yet challenging task in goal-oriented conversational systems. Whether the user is satisfied with the system largely depends on the fulfillment of the user's needs, which can be implicitly reflected by users' dialogue acts. However, existing studies often neglect the sequential transitions of dialogue act or rely heavily on annotated dialogue act labels when utilizing dialogue acts to facilitate USE. In this paper, we propose a novel framework, namely USDA, to incorporate the sequential dynamics of dialogue acts for predicting user satisfaction, by jointly learning User Satisfaction Estimation and Dialogue Act Recognition tasks. In specific, we first employ a Hierarchical Transformer to encode the whole dialogue context, with two task-adaptive pre-training strategies to be a second-phase in-domain pre-training for enhancing the dialogue modeling ability. In terms of the availability of dialogue act labels, we further develop two variants of USDA to capture the dialogue act information in either supervised or unsupervised manners. Finally, USDA leverages the sequential transitions of both content and act features in the dialogue to predict the user satisfaction. Experimental results on four benchmark goal-oriented dialogue datasets across different applications show that the proposed method substantially and consistently outperforms existing methods on USE, and validate the important role of dialogue act sequences in USE.
CLDA-YOLO: Visual Contrastive Learning Based Domain Adaptive YOLO Detector
Unsupervised domain adaptive (UDA) algorithms can markedly enhance the performance of object detectors under conditions of domain shifts, thereby reducing the necessity for extensive labeling and retraining. Current domain adaptive object detection algorithms primarily cater to two-stage detectors, which tend to offer minimal improvements when directly applied to single-stage detectors such as YOLO. Intending to benefit the YOLO detector from UDA, we build a comprehensive domain adaptive architecture using a teacher-student cooperative system for the YOLO detector. In this process, we propose uncertainty learning to cope with pseudo-labeling generated by the teacher model with extreme uncertainty and leverage dynamic data augmentation to asymptotically adapt the teacher-student system to the environment. To address the inability of single-stage object detectors to align at multiple stages, we utilize a unified visual contrastive learning paradigm that aligns instance at backbone and head respectively, which steadily improves the robustness of the detectors in cross-domain tasks. In summary, we present an unsupervised domain adaptive YOLO detector based on visual contrastive learning (CLDA-YOLO), which achieves highly competitive results across multiple domain adaptive datasets without any reduction in inference speed.
TADACap: Time-series Adaptive Domain-Aware Captioning
While image captioning has gained significant attention, the potential of captioning time-series images, prevalent in areas like finance and healthcare, remains largely untapped. Existing time-series captioning methods typically offer generic, domain-agnostic descriptions of time-series shapes and struggle to adapt to new domains without substantial retraining. To address these limitations, we introduce TADACap, a retrieval-based framework to generate domain-aware captions for time-series images, capable of adapting to new domains without retraining. Building on TADACap, we propose a novel retrieval strategy that retrieves diverse image-caption pairs from a target domain database, namely TADACap-diverse. We benchmarked TADACap-diverse against state-of-the-art methods and ablation variants. TADACap-diverse demonstrates comparable semantic accuracy while requiring significantly less annotation effort.
