Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeFast-DetectGPT: Efficient Zero-Shot Detection of Machine-Generated Text via Conditional Probability Curvature
Large language models (LLMs) have shown the ability to produce fluent and cogent content, presenting both productivity opportunities and societal risks. To build trustworthy AI systems, it is imperative to distinguish between machine-generated and human-authored content. The leading zero-shot detector, DetectGPT, showcases commendable performance but is marred by its intensive computational costs. In this paper, we introduce the concept of conditional probability curvature to elucidate discrepancies in word choices between LLMs and humans within a given context. Utilizing this curvature as a foundational metric, we present **Fast-DetectGPT**, an optimized zero-shot detector, which substitutes DetectGPT's perturbation step with a more efficient sampling step. Our evaluations on various datasets, source models, and test conditions indicate that Fast-DetectGPT not only surpasses DetectGPT by a relative around 75% in both the white-box and black-box settings but also accelerates the detection process by a factor of 340, as detailed in Table 1. See https://github.com/baoguangsheng/fast-detect-gpt for code, data, and results.
Sample and Computation Redistribution for Efficient Face Detection
Although tremendous strides have been made in uncontrolled face detection, efficient face detection with a low computation cost as well as high precision remains an open challenge. In this paper, we point out that training data sampling and computation distribution strategies are the keys to efficient and accurate face detection. Motivated by these observations, we introduce two simple but effective methods (1) Sample Redistribution (SR), which augments training samples for the most needed stages, based on the statistics of benchmark datasets; and (2) Computation Redistribution (CR), which reallocates the computation between the backbone, neck and head of the model, based on a meticulously defined search methodology. Extensive experiments conducted on WIDER FACE demonstrate the state-of-the-art efficiency-accuracy trade-off for the proposed \scrfd family across a wide range of compute regimes. In particular, 34 outperforms the best competitor, TinaFace, by 3.86% (AP at hard set) while being more than 3times faster on GPUs with VGA-resolution images. We also release our code to facilitate future research.
TALL: Thumbnail Layout for Deepfake Video Detection
The growing threats of deepfakes to society and cybersecurity have raised enormous public concerns, and increasing efforts have been devoted to this critical topic of deepfake video detection. Existing video methods achieve good performance but are computationally intensive. This paper introduces a simple yet effective strategy named Thumbnail Layout (TALL), which transforms a video clip into a pre-defined layout to realize the preservation of spatial and temporal dependencies. Specifically, consecutive frames are masked in a fixed position in each frame to improve generalization, then resized to sub-images and rearranged into a pre-defined layout as the thumbnail. TALL is model-agnostic and extremely simple by only modifying a few lines of code. Inspired by the success of vision transformers, we incorporate TALL into Swin Transformer, forming an efficient and effective method TALL-Swin. Extensive experiments on intra-dataset and cross-dataset validate the validity and superiority of TALL and SOTA TALL-Swin. TALL-Swin achieves 90.79% AUC on the challenging cross-dataset task, FaceForensics++ to Celeb-DF. The code is available at https://github.com/rainy-xu/TALL4Deepfake.
GW-YOLO: Multi-transient segmentation in LIGO using computer vision
Time series data and their time-frequency representation from gravitational-wave interferometers present multiple opportunities for the use of artificial intelligence methods associated with signal and image processing. Closely connected with this is the real-time aspect associated with gravitational-wave interferometers and the astrophysical observations they perform; the discovery potential of these instruments can be significantly enhanced when data processing can be achieved in O(1s) timescales. In this work, we introduce a novel signal and noise identification tool based on the YOLO (You Only Look Once) object detection framework. For its application into gravitational waves, we will refer to it as GW-YOLO. This tool can provide scene identification capabilities and essential information regarding whether an observed transient is any combination of noise and signal. Additionally, it supplies detailed time-frequency coordinates of the detected objects in the form of pixel masks, an essential property that can be used to understand and characterize astrophysical sources, as well as instrumental noise. The simultaneous identification of noise and signal, combined with precise pixel-level localization, represents a significant advancement in gravitational-wave data analysis. Our approach yields a 50\% detection efficiency for binary black hole signals at a signal-to-noise ratio (SNR) of 15 when such signals overlap with transient noise artifacts. When noise artifacts overlap with binary neutron star signals, our algorithm attains 50\% detection efficiency at an SNR of 30. This presents the first quantitative assessment of the ability to detect astrophysical events overlapping with realistic, instrument noise present in gravitational-wave interferometers.
Fast R-CNN
This paper proposes a Fast Region-based Convolutional Network method (Fast R-CNN) for object detection. Fast R-CNN builds on previous work to efficiently classify object proposals using deep convolutional networks. Compared to previous work, Fast R-CNN employs several innovations to improve training and testing speed while also increasing detection accuracy. Fast R-CNN trains the very deep VGG16 network 9x faster than R-CNN, is 213x faster at test-time, and achieves a higher mAP on PASCAL VOC 2012. Compared to SPPnet, Fast R-CNN trains VGG16 3x faster, tests 10x faster, and is more accurate. Fast R-CNN is implemented in Python and C++ (using Caffe) and is available under the open-source MIT License at https://github.com/rbgirshick/fast-rcnn.
Cosmological Distance Measurement of 12 Nearby Supernovae IIP with ROTSE-IIIB
We present cosmological analysis of 12 nearby (z<0.06) Type IIP supernovae (SNe IIP) observed with the ROTSE-IIIb telescope. To achieve precise photometry, we present a new image differencing technique that is implemented for the first time on the ROTSE SN photometry pipeline. With this method, we find up to a 20\% increase in the detection efficiency and significant reduction in residual RMS scatter of the SN lightcurves when compared to the previous pipeline performance. We use the published optical spectra and broadband photometry of well studied SNe IIP to establish temporal models for ejecta velocity and photospheric temperature evolution for our SNe IIP population. This study yields measurements that are competitive to other methods even when the data are limited to a single epoch during the photospheric phase of SNe IIP. Using the fully reduced ROTSE photometry and optical spectra, we apply these models to the respective photometric epochs for each SN in the ROTSE IIP sample. This facilitates the use of the Expanding Photosphere Method (EPM) to obtain distance estimates to their respective host galaxies. We then perform cosmological parameter fitting using these EPM distances from which we measure the Hubble constant to be 72.9^{+5.7}_{-4.3}~{rm kms^{-1}~Mpc^{-1}}, which is consistent with the standard Lambda CDM model values derived using other independent techniques.
Novel Human Machine Interface via Robust Hand Gesture Recognition System using Channel Pruned YOLOv5s Model
Hand gesture recognition (HGR) is a vital component in enhancing the human-computer interaction experience, particularly in multimedia applications, such as virtual reality, gaming, smart home automation systems, etc. Users can control and navigate through these applications seamlessly by accurately detecting and recognizing gestures. However, in a real-time scenario, the performance of the gesture recognition system is sometimes affected due to the presence of complex background, low-light illumination, occlusion problems, etc. Another issue is building a fast and robust gesture-controlled human-computer interface (HCI) in the real-time scenario. The overall objective of this paper is to develop an efficient hand gesture detection and classification model using a channel-pruned YOLOv5-small model and utilize the model to build a gesture-controlled HCI with a quick response time (in ms) and higher detection speed (in fps). First, the YOLOv5s model is chosen for the gesture detection task. Next, the model is simplified by using a channel-pruned algorithm. After that, the pruned model is further fine-tuned to ensure detection efficiency. We have compared our suggested scheme with other state-of-the-art works, and it is observed that our model has shown superior results in terms of mAP (mean average precision), precision (\%), recall (\%), and F1-score (\%), fast inference time (in ms), and detection speed (in fps). Our proposed method paves the way for deploying a pruned YOLOv5s model for a real-time gesture-command-based HCI to control some applications, such as the VLC media player, Spotify player, etc., using correctly classified gesture commands in real-time scenarios. The average detection speed of our proposed system has reached more than 60 frames per second (fps) in real-time, which meets the perfect requirement in real-time application control.
From Accidents to Insights: Leveraging Multimodal Data for Scenario-Driven ADS Testing
The rapid advancements in Autonomous Driving Systems (ADS) have necessitated robust software testing to ensure safety and reliability. However, automating the generation of scalable and concrete test scenarios remains a significant challenge. Current scenario-based test case generation methods often face limitations, such as unrealistic scenes and inaccurate vehicle trajectories. These challenges largely result from the loss of map information during data extraction and the lack of an effective verification mechanism to mitigate hallucinations in large language models (LLMs). This paper introduces TRACE, a scenario-based ADS Test case Generation framework for Critical Scenarios. By leveraging multimodal data to extract challenging scenarios from real-world car crash reports, TRACE constructs numerous critical test cases with less data, significantly enhancing ADS bug detection efficiency. Using in-context learning, chain-of-thought prompting, and self-validation approaches, we use LLMs to extract environmental and road network information from crash reports. For vehicle trajectory planning, data containing map information and vehicle coordinates serves as a knowledge base to build a ChatGPT-based LLM with path-planning capabilities, which we named TrackMate. Based on 50 existing crash reports, our approach successfully tested three ADS models across two simulation platforms, MetaDrive and BeamNG. Of the 290 constructed test scenarios, 127 are identified as critical, as they resulted in vehicle collisions. Additionally, user feedback reveals that TRACE demonstrates superior scenario reconstruction accuracy, with 77.5% of the scenarios being rated as 'mostly or 'totally' consistent, compared to only 27% for the most related SOTA, LCTGen.
Machine learning approach for segmenting glands in colon histology images using local intensity and texture features
Colon Cancer is one of the most common types of cancer. The treatment is planned to depend on the grade or stage of cancer. One of the preconditions for grading of colon cancer is to segment the glandular structures of tissues. Manual segmentation method is very time-consuming, and it leads to life risk for the patients. The principal objective of this project is to assist the pathologist to accurate detection of colon cancer. In this paper, the authors have proposed an algorithm for an automatic segmentation of glands in colon histology using local intensity and texture features. Here the dataset images are cropped into patches with different window sizes and taken the intensity of those patches, and also calculated texture-based features. Random forest classifier has been used to classify this patch into different labels. A multilevel random forest technique in a hierarchical way is proposed. This solution is fast, accurate and it is very much applicable in a clinical setup.
Algorithm-based diagnostic application for diabetic retinopathy detection
Diabetic retinopathy (DR) is a growing health problem worldwide and is a leading cause of visual impairment and blindness, especially among working people aged 20-65. Its incidence is increasing along with the number of diabetes cases, and it is more common in developed countries than in developing countries. Recent research in the field of diabetic retinopathy diagnosis is using advanced technologies, such as analysis of images obtained by ophthalmoscopy. Automatic methods for analyzing eye images based on neural networks, deep learning and image analysis algorithms can improve the efficiency of diagnosis. This paper describes an automatic DR diagnosis method that includes processing and analysis of ophthalmoscopic images of the eye. It uses morphological algorithms to identify the optic disc and lesions characteristic of DR, such as microaneurysms, hemorrhages and exudates. Automated DR diagnosis has the potential to improve the efficiency of early detection of this disease and contribute to reducing the number of cases of diabetes-related visual impairment. The final step was to create an application with a graphical user interface that allowed retinal images taken at cooperating ophthalmology offices to be uploaded to the server. These images were then analyzed using a developed algorithm to make a diagnosis.
SimROD: A Simple Baseline for Raw Object Detection with Global and Local Enhancements
Most visual models are designed for sRGB images, yet RAW data offers significant advantages for object detection by preserving sensor information before ISP processing. This enables improved detection accuracy and more efficient hardware designs by bypassing the ISP. However, RAW object detection is challenging due to limited training data, unbalanced pixel distributions, and sensor noise. To address this, we propose SimROD, a lightweight and effective approach for RAW object detection. We introduce a Global Gamma Enhancement (GGE) module, which applies a learnable global gamma transformation with only four parameters, improving feature representation while keeping the model efficient. Additionally, we leverage the green channel's richer signal to enhance local details, aligning with the human eye's sensitivity and Bayer filter design. Extensive experiments on multiple RAW object detection datasets and detectors demonstrate that SimROD outperforms state-of-the-art methods like RAW-Adapter and DIAP while maintaining efficiency. Our work highlights the potential of RAW data for real-world object detection. Code is available at https://ocean146.github.io/SimROD2025/.
Playing Technique Detection by Fusing Note Onset Information in Guzheng Performance
The Guzheng is a kind of traditional Chinese instruments with diverse playing techniques. Instrument playing techniques (IPT) play an important role in musical performance. However, most of the existing works for IPT detection show low efficiency for variable-length audio and provide no assurance in the generalization as they rely on a single sound bank for training and testing. In this study, we propose an end-to-end Guzheng playing technique detection system using Fully Convolutional Networks that can be applied to variable-length audio. Because each Guzheng playing technique is applied to a note, a dedicated onset detector is trained to divide an audio into several notes and its predictions are fused with frame-wise IPT predictions. During fusion, we add the IPT predictions frame by frame inside each note and get the IPT with the highest probability within each note as the final output of that note. We create a new dataset named GZ_IsoTech from multiple sound banks and real-world recordings for Guzheng performance analysis. Our approach achieves 87.97% in frame-level accuracy and 80.76% in note-level F1-score, outperforming existing works by a large margin, which indicates the effectiveness of our proposed method in IPT detection.
Normal-Abnormal Guided Generalist Anomaly Detection
Generalist Anomaly Detection (GAD) aims to train a unified model on an original domain that can detect anomalies in new target domains. Previous GAD methods primarily use only normal samples as references, overlooking the valuable information contained in anomalous samples that are often available in real-world scenarios. To address this limitation, we propose a more practical approach: normal-abnormal-guided generalist anomaly detection, which leverages both normal and anomalous samples as references to guide anomaly detection across diverse domains. We introduce the Normal-Abnormal Generalist Learning (NAGL) framework, consisting of two key components: Residual Mining (RM) and Anomaly Feature Learning (AFL). RM extracts abnormal patterns from normal-abnormal reference residuals to establish transferable anomaly representations, while AFL adaptively learns anomaly features in query images through residual mapping to identify instance-aware anomalies. Our approach effectively utilizes both normal and anomalous references for more accurate and efficient cross-domain anomaly detection. Extensive experiments across multiple benchmarks demonstrate that our method significantly outperforms existing GAD approaches. This work represents the first to adopt a mixture of normal and abnormal samples as references in generalist anomaly detection. The code and datasets are available at https://github.com/JasonKyng/NAGL.
KnowPhish: Large Language Models Meet Multimodal Knowledge Graphs for Enhancing Reference-Based Phishing Detection
Phishing attacks have inflicted substantial losses on individuals and businesses alike, necessitating the development of robust and efficient automated phishing detection approaches. Reference-based phishing detectors (RBPDs), which compare the logos on a target webpage to a known set of logos, have emerged as the state-of-the-art approach. However, a major limitation of existing RBPDs is that they rely on a manually constructed brand knowledge base, making it infeasible to scale to a large number of brands, which results in false negative errors due to the insufficient brand coverage of the knowledge base. To address this issue, we propose an automated knowledge collection pipeline, using which we collect a large-scale multimodal brand knowledge base, KnowPhish, containing 20k brands with rich information about each brand. KnowPhish can be used to boost the performance of existing RBPDs in a plug-and-play manner. A second limitation of existing RBPDs is that they solely rely on the image modality, ignoring useful textual information present in the webpage HTML. To utilize this textual information, we propose a Large Language Model (LLM)-based approach to extract brand information of webpages from text. Our resulting multimodal phishing detection approach, KnowPhish Detector (KPD), can detect phishing webpages with or without logos. We evaluate KnowPhish and KPD on a manually validated dataset, and a field study under Singapore's local context, showing substantial improvements in effectiveness and efficiency compared to state-of-the-art baselines.
Learning Using Privileged Information for Litter Detection
As litter pollution continues to rise globally, developing automated tools capable of detecting litter effectively remains a significant challenge. This study presents a novel approach that combines, for the first time, privileged information with deep learning object detection to improve litter detection while maintaining model efficiency. We evaluate our method across five widely used object detection models, addressing challenges such as detecting small litter and objects partially obscured by grass or stones. In addition to this, a key contribution of our work can also be attributed to formulating a means of encoding bounding box information as a binary mask, which can be fed to the detection model to refine detection guidance. Through experiments on both within-dataset evaluation on the renowned SODA dataset and cross-dataset evaluation on the BDW and UAVVaste litter detection datasets, we demonstrate consistent performance improvements across all models. Our approach not only bolsters detection accuracy within the training sets but also generalises well to other litter detection contexts. Crucially, these improvements are achieved without increasing model complexity or adding extra layers, ensuring computational efficiency and scalability. Our results suggest that this methodology offers a practical solution for litter detection, balancing accuracy and efficiency in real-world applications.
CE-SSL: Computation-Efficient Semi-Supervised Learning for ECG-based Cardiovascular Diseases Detection
The label scarcity problem is the main challenge that hinders the wide application of deep learning systems in automatic cardiovascular diseases (CVDs) detection using electrocardiography (ECG). Tuning pre-trained models alleviates this problem by transferring knowledge learned from large datasets to downstream small datasets. However, bottlenecks in computational efficiency and detection performance limit its clinical applications. It is difficult to improve the detection performance without significantly sacrificing the computational efficiency during model training. Here, we propose a computation-efficient semi-supervised learning paradigm (CE-SSL) for robust and computation-efficient CVDs detection using ECG. It enables a robust adaptation of pre-trained models on downstream datasets with limited supervision and high computational efficiency. First, a random-deactivation technique is developed to achieve robust and fast low-rank adaptation of pre-trained weights. Subsequently, we propose a one-shot rank allocation module to determine the optimal ranks for the update matrices of the pre-trained weights. Finally, a lightweight semi-supervised learning pipeline is introduced to enhance model performance by leveraging labeled and unlabeled data with high computational efficiency. Extensive experiments on four downstream datasets demonstrate that CE-SSL not only outperforms the state-of-the-art methods in multi-label CVDs detection but also consumes fewer GPU footprints, training time, and parameter storage space. As such, this paradigm provides an effective solution for achieving high computational efficiency and robust detection performance in the clinical applications of pre-trained models under limited supervision. Code and Supplementary Materials are available at https://github.com/KAZABANA/CE-SSL
YOLOv13: Real-Time Object Detection with Hypergraph-Enhanced Adaptive Visual Perception
The YOLO series models reign supreme in real-time object detection due to their superior accuracy and computational efficiency. However, both the convolutional architectures of YOLO11 and earlier versions and the area-based self-attention mechanism introduced in YOLOv12 are limited to local information aggregation and pairwise correlation modeling, lacking the capability to capture global multi-to-multi high-order correlations, which limits detection performance in complex scenarios. In this paper, we propose YOLOv13, an accurate and lightweight object detector. To address the above-mentioned challenges, we propose a Hypergraph-based Adaptive Correlation Enhancement (HyperACE) mechanism that adaptively exploits latent high-order correlations and overcomes the limitation of previous methods that are restricted to pairwise correlation modeling based on hypergraph computation, achieving efficient global cross-location and cross-scale feature fusion and enhancement. Subsequently, we propose a Full-Pipeline Aggregation-and-Distribution (FullPAD) paradigm based on HyperACE, which effectively achieves fine-grained information flow and representation synergy within the entire network by distributing correlation-enhanced features to the full pipeline. Finally, we propose to leverage depthwise separable convolutions to replace vanilla large-kernel convolutions, and design a series of blocks that significantly reduce parameters and computational complexity without sacrificing performance. We conduct extensive experiments on the widely used MS COCO benchmark, and the experimental results demonstrate that our method achieves state-of-the-art performance with fewer parameters and FLOPs. Specifically, our YOLOv13-N improves mAP by 3.0\% over YOLO11-N and by 1.5\% over YOLOv12-N. The code and models of our YOLOv13 model are available at: https://github.com/iMoonLab/yolov13.
Real-time Scene Text Detection with Differentiable Binarization
Recently, segmentation-based methods are quite popular in scene text detection, as the segmentation results can more accurately describe scene text of various shapes such as curve text. However, the post-processing of binarization is essential for segmentation-based detection, which converts probability maps produced by a segmentation method into bounding boxes/regions of text. In this paper, we propose a module named Differentiable Binarization (DB), which can perform the binarization process in a segmentation network. Optimized along with a DB module, a segmentation network can adaptively set the thresholds for binarization, which not only simplifies the post-processing but also enhances the performance of text detection. Based on a simple segmentation network, we validate the performance improvements of DB on five benchmark datasets, which consistently achieves state-of-the-art results, in terms of both detection accuracy and speed. In particular, with a light-weight backbone, the performance improvements by DB are significant so that we can look for an ideal tradeoff between detection accuracy and efficiency. Specifically, with a backbone of ResNet-18, our detector achieves an F-measure of 82.8, running at 62 FPS, on the MSRA-TD500 dataset. Code is available at: https://github.com/MhLiao/DB
YOLO9tr: A Lightweight Model for Pavement Damage Detection Utilizing a Generalized Efficient Layer Aggregation Network and Attention Mechanism
Maintaining road pavement integrity is crucial for ensuring safe and efficient transportation. Conventional methods for assessing pavement condition are often laborious and susceptible to human error. This paper proposes YOLO9tr, a novel lightweight object detection model for pavement damage detection, leveraging the advancements of deep learning. YOLO9tr is based on the YOLOv9 architecture, incorporating a partial attention block that enhances feature extraction and attention mechanisms, leading to improved detection performance in complex scenarios. The model is trained on a comprehensive dataset comprising road damage images from multiple countries, including an expanded set of damage categories beyond the standard four. This broadened classification range allows for a more accurate and realistic assessment of pavement conditions. Comparative analysis demonstrates YOLO9tr's superior precision and inference speed compared to state-of-the-art models like YOLO8, YOLO9 and YOLO10, achieving a balance between computational efficiency and detection accuracy. The model achieves a high frame rate of up to 136 FPS, making it suitable for real-time applications such as video surveillance and automated inspection systems. The research presents an ablation study to analyze the impact of architectural modifications and hyperparameter variations on model performance, further validating the effectiveness of the partial attention block. The results highlight YOLO9tr's potential for practical deployment in real-time pavement condition monitoring, contributing to the development of robust and efficient solutions for maintaining safe and functional road infrastructure.
R3D-AD: Reconstruction via Diffusion for 3D Anomaly Detection
3D anomaly detection plays a crucial role in monitoring parts for localized inherent defects in precision manufacturing. Embedding-based and reconstruction-based approaches are among the most popular and successful methods. However, there are two major challenges to the practical application of the current approaches: 1) the embedded models suffer the prohibitive computational and storage due to the memory bank structure; 2) the reconstructive models based on the MAE mechanism fail to detect anomalies in the unmasked regions. In this paper, we propose R3D-AD, reconstructing anomalous point clouds by diffusion model for precise 3D anomaly detection. Our approach capitalizes on the data distribution conversion of the diffusion process to entirely obscure the input's anomalous geometry. It step-wisely learns a strict point-level displacement behavior, which methodically corrects the aberrant points. To increase the generalization of the model, we further present a novel 3D anomaly simulation strategy named Patch-Gen to generate realistic and diverse defect shapes, which narrows the domain gap between training and testing. Our R3D-AD ensures a uniform spatial transformation, which allows straightforwardly generating anomaly results by distance comparison. Extensive experiments show that our R3D-AD outperforms previous state-of-the-art methods, achieving 73.4% Image-level AUROC on the Real3D-AD dataset and 74.9% Image-level AUROC on the Anomaly-ShapeNet dataset with an exceptional efficiency.
Arc-support Line Segments Revisited: An Efficient and High-quality Ellipse Detection
Over the years many ellipse detection algorithms spring up and are studied broadly, while the critical issue of detecting ellipses accurately and efficiently in real-world images remains a challenge. In this paper, we propose a valuable industry-oriented ellipse detector by arc-support line segments, which simultaneously reaches high detection accuracy and efficiency. To simplify the complicated curves in an image while retaining the general properties including convexity and polarity, the arc-support line segments are extracted, which grounds the successful detection of ellipses. The arc-support groups are formed by iteratively and robustly linking the arc-support line segments that latently belong to a common ellipse. Afterward, two complementary approaches, namely, locally selecting the arc-support group with higher saliency and globally searching all the valid paired groups, are adopted to fit the initial ellipses in a fast way. Then, the ellipse candidate set can be formulated by hierarchical clustering of 5D parameter space of initial ellipses. Finally, the salient ellipse candidates are selected and refined as detections subject to the stringent and effective verification. Extensive experiments on three public datasets are implemented and our method achieves the best F-measure scores compared to the state-of-the-art methods. The source code is available at https://github.com/AlanLuSun/High-quality-ellipse-detection.
I Can't Believe It's Not Real: CV-MuSeNet: Complex-Valued Multi-Signal Segmentation
The increasing congestion of the radio frequency spectrum presents challenges for efficient spectrum utilization. Cognitive radio systems enable dynamic spectrum access with the aid of recent innovations in neural networks. However, traditional real-valued neural networks (RVNNs) face difficulties in low signal-to-noise ratio (SNR) environments, as they were not specifically developed to capture essential wireless signal properties such as phase and amplitude. This work presents CMuSeNet, a complex-valued multi-signal segmentation network for wideband spectrum sensing, to address these limitations. Extensive hyperparameter analysis shows that a naive conversion of existing RVNNs into their complex-valued counterparts is ineffective. Built on complex-valued neural networks (CVNNs) with a residual architecture, CMuSeNet introduces a complexvalued Fourier spectrum focal loss (CFL) and a complex plane intersection over union (CIoU) similarity metric to enhance training performance. Extensive evaluations on synthetic, indoor overthe-air, and real-world datasets show that CMuSeNet achieves an average accuracy of 98.98%-99.90%, improving by up to 9.2 percentage points over its real-valued counterpart and consistently outperforms state of the art. Strikingly, CMuSeNet achieves the accuracy level of its RVNN counterpart in just two epochs, compared to the 27 epochs required for RVNN, while reducing training time by up to a 92.2% over the state of the art. The results highlight the effectiveness of complex-valued architectures in improving weak signal detection and training efficiency for spectrum sensing in challenging low-SNR environments. The dataset is available at: https://dx.doi.org/10.21227/hcc1-6p22
HieraEdgeNet: A Multi-Scale Edge-Enhanced Framework for Automated Pollen Recognition
Automated pollen recognition is vital to paleoclimatology, biodiversity monitoring, and public health, yet conventional methods are hampered by inefficiency and subjectivity. Existing deep learning models often struggle to achieve the requisite localization accuracy for microscopic targets like pollen, which are characterized by their minute size, indistinct edges, and complex backgrounds. To overcome this limitation, we introduce HieraEdgeNet, a multi-scale edge-enhancement framework. The framework's core innovation is the introduction of three synergistic modules: the Hierarchical Edge Module (HEM), which explicitly extracts a multi-scale pyramid of edge features that corresponds to the semantic hierarchy at early network stages; the Synergistic Edge Fusion (SEF) module, for deeply fusing these edge priors with semantic information at each respective scale; and the Cross Stage Partial Omni-Kernel Module (CSPOKM), which maximally refines the most detail-rich feature layers using an Omni-Kernel operator - comprising anisotropic large-kernel convolutions and mixed-domain attention - all within a computationally efficient Cross-Stage Partial (CSP) framework. On a large-scale dataset comprising 120 pollen classes, HieraEdgeNet achieves a mean Average Precision ([email protected]) of 0.9501, significantly outperforming state-of-the-art baseline models such as YOLOv12n and RT-DETR. Furthermore, qualitative analysis confirms that our approach generates feature representations that are more precisely focused on object boundaries. By systematically integrating edge information, HieraEdgeNet provides a robust and powerful solution for high-precision, high-efficiency automated detection of microscopic objects.
Pre-Training LiDAR-Based 3D Object Detectors Through Colorization
Accurate 3D object detection and understanding for self-driving cars heavily relies on LiDAR point clouds, necessitating large amounts of labeled data to train. In this work, we introduce an innovative pre-training approach, Grounded Point Colorization (GPC), to bridge the gap between data and labels by teaching the model to colorize LiDAR point clouds, equipping it with valuable semantic cues. To tackle challenges arising from color variations and selection bias, we incorporate color as "context" by providing ground-truth colors as hints during colorization. Experimental results on the KITTI and Waymo datasets demonstrate GPC's remarkable effectiveness. Even with limited labeled data, GPC significantly improves fine-tuning performance; notably, on just 20% of the KITTI dataset, GPC outperforms training from scratch with the entire dataset. In sum, we introduce a fresh perspective on pre-training for 3D object detection, aligning the objective with the model's intended role and ultimately advancing the accuracy and efficiency of 3D object detection for autonomous vehicles.
Accuracy and Efficiency Trade-Offs in LLM-Based Malware Detection and Explanation: A Comparative Study of Parameter Tuning vs. Full Fine-Tuning
This study examines whether Low-Rank Adaptation (LoRA) fine-tuned Large Language Models (LLMs) can approximate the performance of fully fine-tuned models in generating human-interpretable decisions and explanations for malware classification. Achieving trustworthy malware detection, particularly when LLMs are involved, remains a significant challenge. We developed an evaluation framework using Bilingual Evaluation Understudy (BLEU), Recall-Oriented Understudy for Gisting Evaluation (ROUGE), and Semantic Similarity Metrics to benchmark explanation quality across five LoRA configurations and a fully fine-tuned baseline. Results indicate that full fine-tuning achieves the highest overall scores, with BLEU and ROUGE improvements of up to 10% over LoRA variants. However, mid-range LoRA models deliver competitive performance exceeding full fine-tuning on two metrics while reducing model size by approximately 81% and training time by over 80% on a LoRA model with 15.5% trainable parameters. These findings demonstrate that LoRA offers a practical balance of interpretability and resource efficiency, enabling deployment in resource-constrained environments without sacrificing explanation quality. By providing feature-driven natural language explanations for malware classifications, this approach enhances transparency, analyst confidence, and operational scalability in malware detection systems.
Improving Classifier Training Efficiency for Automatic Cyberbullying Detection with Feature Density
We study the effectiveness of Feature Density (FD) using different linguistically-backed feature preprocessing methods in order to estimate dataset complexity, which in turn is used to comparatively estimate the potential performance of machine learning (ML) classifiers prior to any training. We hypothesise that estimating dataset complexity allows for the reduction of the number of required experiments iterations. This way we can optimize the resource-intensive training of ML models which is becoming a serious issue due to the increases in available dataset sizes and the ever rising popularity of models based on Deep Neural Networks (DNN). The problem of constantly increasing needs for more powerful computational resources is also affecting the environment due to alarmingly-growing amount of CO2 emissions caused by training of large-scale ML models. The research was conducted on multiple datasets, including popular datasets, such as Yelp business review dataset used for training typical sentiment analysis models, as well as more recent datasets trying to tackle the problem of cyberbullying, which, being a serious social problem, is also a much more sophisticated problem form the point of view of linguistic representation. We use cyberbullying datasets collected for multiple languages, namely English, Japanese and Polish. The difference in linguistic complexity of datasets allows us to additionally discuss the efficacy of linguistically-backed word preprocessing.
GID: Graph-based Intrusion Detection on Massive Process Traces for Enterprise Security Systems
Intrusion detection system (IDS) is an important part of enterprise security system architecture. In particular, anomaly-based IDS has been widely applied to detect abnormal process behaviors that deviate from the majority. However, such abnormal behavior usually consists of a series of low-level heterogeneous events. The gap between the low-level events and the high-level abnormal behaviors makes it hard to infer which single events are related to the real abnormal activities, especially considering that there are massive "noisy" low-level events happening in between. Hence, the existing work that focus on detecting single entities/events can hardly achieve high detection accuracy. Different from previous work, we design and implement GID, an efficient graph-based intrusion detection technique that can identify abnormal event sequences from a massive heterogeneous process traces with high accuracy. GID first builds a compact graph structure to capture the interactions between different system entities. The suspiciousness or anomaly score of process paths is then measured by leveraging random walk technique to the constructed acyclic directed graph. To eliminate the score bias from the path length, the Box-Cox power transformation based approach is introduced to normalize the anomaly scores so that the scores of paths of different lengths have the same distribution. The efficiency of suspicious path discovery is further improved by the proposed optimization scheme. We fully implement our GID algorithm and deploy it into a real enterprise security system, and it greatly helps detect the advanced threats, and optimize the incident response. Executing GID on system monitoring datasets showing that GID is efficient (about 2 million records per minute) and accurate (higher than 80% in terms of detection rate).
Efficient Transformer-based 3D Object Detection with Dynamic Token Halting
Balancing efficiency and accuracy is a long-standing problem for deploying deep learning models. The trade-off is even more important for real-time safety-critical systems like autonomous vehicles. In this paper, we propose an effective approach for accelerating transformer-based 3D object detectors by dynamically halting tokens at different layers depending on their contribution to the detection task. Although halting a token is a non-differentiable operation, our method allows for differentiable end-to-end learning by leveraging an equivalent differentiable forward-pass. Furthermore, our framework allows halted tokens to be reused to inform the model's predictions through a straightforward token recycling mechanism. Our method significantly improves the Pareto frontier of efficiency versus accuracy when compared with the existing approaches. By halting tokens and increasing model capacity, we are able to improve the baseline model's performance without increasing the model's latency on the Waymo Open Dataset.
Agglomerative Transformer for Human-Object Interaction Detection
We propose an agglomerative Transformer (AGER) that enables Transformer-based human-object interaction (HOI) detectors to flexibly exploit extra instance-level cues in a single-stage and end-to-end manner for the first time. AGER acquires instance tokens by dynamically clustering patch tokens and aligning cluster centers to instances with textual guidance, thus enjoying two benefits: 1) Integrality: each instance token is encouraged to contain all discriminative feature regions of an instance, which demonstrates a significant improvement in the extraction of different instance-level cues and subsequently leads to a new state-of-the-art performance of HOI detection with 36.75 mAP on HICO-Det. 2) Efficiency: the dynamical clustering mechanism allows AGER to generate instance tokens jointly with the feature learning of the Transformer encoder, eliminating the need of an additional object detector or instance decoder in prior methods, thus allowing the extraction of desirable extra cues for HOI detection in a single-stage and end-to-end pipeline. Concretely, AGER reduces GFLOPs by 8.5% and improves FPS by 36%, even compared to a vanilla DETR-like pipeline without extra cue extraction.
Feature Shift Detection: Localizing Which Features Have Shifted via Conditional Distribution Tests
While previous distribution shift detection approaches can identify if a shift has occurred, these approaches cannot localize which specific features have caused a distribution shift -- a critical step in diagnosing or fixing any underlying issue. For example, in military sensor networks, users will want to detect when one or more of the sensors has been compromised, and critically, they will want to know which specific sensors might be compromised. Thus, we first define a formalization of this problem as multiple conditional distribution hypothesis tests and propose both non-parametric and parametric statistical tests. For both efficiency and flexibility, we then propose to use a test statistic based on the density model score function (i.e. gradient with respect to the input) -- which can easily compute test statistics for all dimensions in a single forward and backward pass. Any density model could be used for computing the necessary statistics including deep density models such as normalizing flows or autoregressive models. We additionally develop methods for identifying when and where a shift occurs in multivariate time-series data and show results for multiple scenarios using realistic attack models on both simulated and real world data.
EfficientDet: Scalable and Efficient Object Detection
Model efficiency has become increasingly important in computer vision. In this paper, we systematically study neural network architecture design choices for object detection and propose several key optimizations to improve efficiency. First, we propose a weighted bi-directional feature pyramid network (BiFPN), which allows easy and fast multiscale feature fusion; Second, we propose a compound scaling method that uniformly scales the resolution, depth, and width for all backbone, feature network, and box/class prediction networks at the same time. Based on these optimizations and better backbones, we have developed a new family of object detectors, called EfficientDet, which consistently achieve much better efficiency than prior art across a wide spectrum of resource constraints. In particular, with single model and single-scale, our EfficientDet-D7 achieves state-of-the-art 55.1 AP on COCO test-dev with 77M parameters and 410B FLOPs, being 4x - 9x smaller and using 13x - 42x fewer FLOPs than previous detectors. Code is available at https://github.com/google/automl/tree/master/efficientdet.
Turk-LettuceDetect: A Hallucination Detection Models for Turkish RAG Applications
The widespread adoption of Large Language Models (LLMs) has been hindered by their tendency to hallucinate, generating plausible but factually incorrect information. While Retrieval-Augmented Generation (RAG) systems attempt to address this issue by grounding responses in external knowledge, hallucination remains a persistent challenge, particularly for morphologically complex, low-resource languages like Turkish. This paper introduces Turk-LettuceDetect, the first suite of hallucination detection models specifically designed for Turkish RAG applications. Building on the LettuceDetect framework, we formulate hallucination detection as a token-level classification task and fine-tune three distinct encoder architectures: a Turkish-specific ModernBERT, TurkEmbed4STS, and multilingual EuroBERT. These models were trained on a machine-translated version of the RAGTruth benchmark dataset containing 17,790 instances across question answering, data-to-text generation, and summarization tasks. Our experimental results show that the ModernBERT-based model achieves an F1-score of 0.7266 on the complete test set, with particularly strong performance on structured tasks. The models maintain computational efficiency while supporting long contexts up to 8,192 tokens, making them suitable for real-time deployment. Comparative analysis reveals that while state-of-the-art LLMs demonstrate high recall, they suffer from low precision due to over-generation of hallucinated content, underscoring the necessity of specialized detection mechanisms. By releasing our models and translated dataset, this work addresses a critical gap in multilingual NLP and establishes a foundation for developing more reliable and trustworthy AI applications for Turkish and other languages.
The Geometry of Truth: Layer-wise Semantic Dynamics for Hallucination Detection in Large Language Models
Large Language Models (LLMs) often produce fluent yet factually incorrect statements-a phenomenon known as hallucination-posing serious risks in high-stakes domains. We present Layer-wise Semantic Dynamics (LSD), a geometric framework for hallucination detection that analyzes the evolution of hidden-state semantics across transformer layers. Unlike prior methods that rely on multiple sampling passes or external verification sources, LSD operates intrinsically within the model's representational space. Using margin-based contrastive learning, LSD aligns hidden activations with ground-truth embeddings derived from a factual encoder, revealing a distinct separation in semantic trajectories: factual responses preserve stable alignment, while hallucinations exhibit pronounced semantic drift across depth. Evaluated on the TruthfulQA and synthetic factual-hallucination datasets, LSD achieves an F1-score of 0.92, AUROC of 0.96, and clustering accuracy of 0.89, outperforming SelfCheckGPT and Semantic Entropy baselines while requiring only a single forward pass. This efficiency yields a 5-20x speedup over sampling-based methods without sacrificing precision or interpretability. LSD offers a scalable, model-agnostic mechanism for real-time hallucination monitoring and provides new insights into the geometry of factual consistency within large language models.
Tiny-Toxic-Detector: A compact transformer-based model for toxic content detection
This paper presents Tiny-toxic-detector, a compact transformer-based model designed for toxic content detection. Despite having only 2.1 million parameters, Tiny-toxic-detector achieves competitive performance on benchmark datasets, with 90.97% accuracy on ToxiGen and 86.98% accuracy on the Jigsaw dataset, rivaling models over 50 times its size. This efficiency enables deployment in resource-constrained environments, addressing the need for effective content moderation tools that balance performance with computational efficiency. The model architecture features 4 transformer encoder layers, each with 2 attention heads, an embedding dimension of 64, and a feedforward dimension of 128. Trained on both public and private datasets, Tiny-toxic-detector demonstrates the potential of efficient, task-specific models for addressing online toxicity. The paper covers the model architecture, training process, performance benchmarks, and limitations, underscoring its suitability for applications such as social media monitoring and content moderation. By achieving results comparable to much larger models while significantly reducing computational demands, Tiny-toxic-detector represents progress toward more sustainable and scalable AI-driven content moderation solutions.
LeYOLO, New Scalable and Efficient CNN Architecture for Object Detection
Computational efficiency in deep neural networks is critical for object detection, especially as newer models prioritize speed over efficient computation (FLOP). This evolution has somewhat left behind embedded and mobile-oriented AI object detection applications. In this paper, we focus on design choices of neural network architectures for efficient object detection computation based on FLOP and propose several optimizations to enhance the efficiency of YOLO-based models. Firstly, we introduce an efficient backbone scaling inspired by inverted bottlenecks and theoretical insights from the Information Bottleneck principle. Secondly, we present the Fast Pyramidal Architecture Network (FPAN), designed to facilitate fast multiscale feature sharing while reducing computational resources. Lastly, we propose a Decoupled Network-in-Network (DNiN) detection head engineered to deliver rapid yet lightweight computations for classification and regression tasks. Building upon these optimizations and leveraging more efficient backbones, this paper contributes to a new scaling paradigm for object detection and YOLO-centric models called LeYOLO. Our contribution consistently outperforms existing models in various resource constraints, achieving unprecedented accuracy and flop ratio. Notably, LeYOLO-Small achieves a competitive mAP score of 38.2% on the COCOval with just 4.5 FLOP(G), representing a 42% reduction in computational load compared to the latest state-of-the-art YOLOv9-Tiny model while achieving similar accuracy. Our novel model family achieves a FLOP-to-accuracy ratio previously unattained, offering scalability that spans from ultra-low neural network configurations (< 1 GFLOP) to efficient yet demanding object detection setups (> 4 GFLOPs) with 25.2, 31.3, 35.2, 38.2, 39.3 and 41 mAP for 0.66, 1.47, 2.53, 4.51, 5.8 and 8.4 FLOP(G).
A Real-Time Framework for Domain-Adaptive Underwater Object Detection with Image Enhancement
In recent years, significant progress has been made in the field of underwater image enhancement (UIE). However, its practical utility for high-level vision tasks, such as underwater object detection (UOD) in Autonomous Underwater Vehicles (AUVs), remains relatively unexplored. It may be attributed to several factors: (1) Existing methods typically employ UIE as a pre-processing step, which inevitably introduces considerable computational overhead and latency. (2) The process of enhancing images prior to training object detectors may not necessarily yield performance improvements. (3) The complex underwater environments can induce significant domain shifts across different scenarios, seriously deteriorating the UOD performance. To address these challenges, we introduce EnYOLO, an integrated real-time framework designed for simultaneous UIE and UOD with domain-adaptation capability. Specifically, both the UIE and UOD task heads share the same network backbone and utilize a lightweight design. Furthermore, to ensure balanced training for both tasks, we present a multi-stage training strategy aimed at consistently enhancing their performance. Additionally, we propose a novel domain-adaptation strategy to align feature embeddings originating from diverse underwater environments. Comprehensive experiments demonstrate that our framework not only achieves state-of-the-art (SOTA) performance in both UIE and UOD tasks, but also shows superior adaptability when applied to different underwater scenarios. Our efficiency analysis further highlights the substantial potential of our framework for onboard deployment.
Objects do not disappear: Video object detection by single-frame object location anticipation
Objects in videos are typically characterized by continuous smooth motion. We exploit continuous smooth motion in three ways. 1) Improved accuracy by using object motion as an additional source of supervision, which we obtain by anticipating object locations from a static keyframe. 2) Improved efficiency by only doing the expensive feature computations on a small subset of all frames. Because neighboring video frames are often redundant, we only compute features for a single static keyframe and predict object locations in subsequent frames. 3) Reduced annotation cost, where we only annotate the keyframe and use smooth pseudo-motion between keyframes. We demonstrate computational efficiency, annotation efficiency, and improved mean average precision compared to the state-of-the-art on four datasets: ImageNet VID, EPIC KITCHENS-55, YouTube-BoundingBoxes, and Waymo Open dataset. Our source code is available at https://github.com/L-KID/Videoobject-detection-by-location-anticipation.
Joint Multi-Person Body Detection and Orientation Estimation via One Unified Embedding
Human body orientation estimation (HBOE) is widely applied into various applications, including robotics, surveillance, pedestrian analysis and autonomous driving. Although many approaches have been addressing the HBOE problem from specific under-controlled scenes to challenging in-the-wild environments, they assume human instances are already detected and take a well cropped sub-image as the input. This setting is less efficient and prone to errors in real application, such as crowds of people. In the paper, we propose a single-stage end-to-end trainable framework for tackling the HBOE problem with multi-persons. By integrating the prediction of bounding boxes and direction angles in one embedding, our method can jointly estimate the location and orientation of all bodies in one image directly. Our key idea is to integrate the HBOE task into the multi-scale anchor channel predictions of persons for concurrently benefiting from engaged intermediate features. Therefore, our approach can naturally adapt to difficult instances involving low resolution and occlusion as in object detection. We validated the efficiency and effectiveness of our method in the recently presented benchmark MEBOW with extensive experiments. Besides, we completed ambiguous instances ignored by the MEBOW dataset, and provided corresponding weak body-orientation labels to keep the integrity and consistency of it for supporting studies toward multi-persons. Our work is available at https://github.com/hnuzhy/JointBDOE.
You Actually Look Twice At it (YALTAi): using an object detection approach instead of region segmentation within the Kraken engine
Layout Analysis (the identification of zones and their classification) is the first step along line segmentation in Optical Character Recognition and similar tasks. The ability of identifying main body of text from marginal text or running titles makes the difference between extracting the work full text of a digitized book and noisy outputs. We show that most segmenters focus on pixel classification and that polygonization of this output has not been used as a target for the latest competition on historical document (ICDAR 2017 and onwards), despite being the focus in the early 2010s. We propose to shift, for efficiency, the task from a pixel classification-based polygonization to an object detection using isothetic rectangles. We compare the output of Kraken and YOLOv5 in terms of segmentation and show that the later severely outperforms the first on small datasets (1110 samples and below). We release two datasets for training and evaluation on historical documents as well as a new package, YALTAi, which injects YOLOv5 in the segmentation pipeline of Kraken 4.1.
Weakly Supervised Object Detection in Artworks
We propose a method for the weakly supervised detection of objects in paintings. At training time, only image-level annotations are needed. This, combined with the efficiency of our multiple-instance learning method, enables one to learn new classes on-the-fly from globally annotated databases, avoiding the tedious task of manually marking objects. We show on several databases that dropping the instance-level annotations only yields mild performance losses. We also introduce a new database, IconArt, on which we perform detection experiments on classes that could not be learned on photographs, such as Jesus Child or Saint Sebastian. To the best of our knowledge, these are the first experiments dealing with the automatic (and in our case weakly supervised) detection of iconographic elements in paintings. We believe that such a method is of great benefit for helping art historians to explore large digital databases.
Efficient Detection of Toxic Prompts in Large Language Models
Large language models (LLMs) like ChatGPT and Gemini have significantly advanced natural language processing, enabling various applications such as chatbots and automated content generation. However, these models can be exploited by malicious individuals who craft toxic prompts to elicit harmful or unethical responses. These individuals often employ jailbreaking techniques to bypass safety mechanisms, highlighting the need for robust toxic prompt detection methods. Existing detection techniques, both blackbox and whitebox, face challenges related to the diversity of toxic prompts, scalability, and computational efficiency. In response, we propose ToxicDetector, a lightweight greybox method designed to efficiently detect toxic prompts in LLMs. ToxicDetector leverages LLMs to create toxic concept prompts, uses embedding vectors to form feature vectors, and employs a Multi-Layer Perceptron (MLP) classifier for prompt classification. Our evaluation on various versions of the LLama models, Gemma-2, and multiple datasets demonstrates that ToxicDetector achieves a high accuracy of 96.39\% and a low false positive rate of 2.00\%, outperforming state-of-the-art methods. Additionally, ToxicDetector's processing time of 0.0780 seconds per prompt makes it highly suitable for real-time applications. ToxicDetector achieves high accuracy, efficiency, and scalability, making it a practical method for toxic prompt detection in LLMs.
YOLOv10: Real-Time End-to-End Object Detection
Over the past years, YOLOs have emerged as the predominant paradigm in the field of real-time object detection owing to their effective balance between computational cost and detection performance. Researchers have explored the architectural designs, optimization objectives, data augmentation strategies, and others for YOLOs, achieving notable progress. However, the reliance on the non-maximum suppression (NMS) for post-processing hampers the end-to-end deployment of YOLOs and adversely impacts the inference latency. Besides, the design of various components in YOLOs lacks the comprehensive and thorough inspection, resulting in noticeable computational redundancy and limiting the model's capability. It renders the suboptimal efficiency, along with considerable potential for performance improvements. In this work, we aim to further advance the performance-efficiency boundary of YOLOs from both the post-processing and model architecture. To this end, we first present the consistent dual assignments for NMS-free training of YOLOs, which brings competitive performance and low inference latency simultaneously. Moreover, we introduce the holistic efficiency-accuracy driven model design strategy for YOLOs. We comprehensively optimize various components of YOLOs from both efficiency and accuracy perspectives, which greatly reduces the computational overhead and enhances the capability. The outcome of our effort is a new generation of YOLO series for real-time end-to-end object detection, dubbed YOLOv10. Extensive experiments show that YOLOv10 achieves state-of-the-art performance and efficiency across various model scales. For example, our YOLOv10-S is 1.8times faster than RT-DETR-R18 under the similar AP on COCO, meanwhile enjoying 2.8times smaller number of parameters and FLOPs. Compared with YOLOv9-C, YOLOv10-B has 46\% less latency and 25\% fewer parameters for the same performance.
Non-Euclidean Hierarchical Representational Learning using Hyperbolic Graph Neural Networks for Environmental Claim Detection
Transformer-based models dominate NLP tasks like sentiment analysis, machine translation, and claim verification. However, their massive computational demands and lack of interpretability pose challenges for real-world applications requiring efficiency and transparency. In this work, we explore Graph Neural Networks (GNNs) and Hyperbolic Graph Neural Networks (HGNNs) as lightweight yet effective alternatives for Environmental Claim Detection, reframing it as a graph classification problem. We construct dependency parsing graphs to explicitly model syntactic structures, using simple word embeddings (word2vec) for node features with dependency relations encoded as edge features. Our results demonstrate that these graph-based models achieve comparable or superior performance to state-of-the-art transformers while using 30x fewer parameters. This efficiency highlights the potential of structured, interpretable, and computationally efficient graph-based approaches.
Hate speech detection in algerian dialect using deep learning
With the proliferation of hate speech on social networks under different formats, such as abusive language, cyberbullying, and violence, etc., people have experienced a significant increase in violence, putting them in uncomfortable situations and threats. Plenty of efforts have been dedicated in the last few years to overcome this phenomenon to detect hate speech in different structured languages like English, French, Arabic, and others. However, a reduced number of works deal with Arabic dialects like Tunisian, Egyptian, and Gulf, mainly the Algerian ones. To fill in the gap, we propose in this work a complete approach for detecting hate speech on online Algerian messages. Many deep learning architectures have been evaluated on the corpus we created from some Algerian social networks (Facebook, YouTube, and Twitter). This corpus contains more than 13.5K documents in Algerian dialect written in Arabic, labeled as hateful or non-hateful. Promising results are obtained, which show the efficiency of our approach.
CoDeNet: Efficient Deployment of Input-Adaptive Object Detection on Embedded FPGAs
Deploying deep learning models on embedded systems has been challenging due to limited computing resources. The majority of existing work focuses on accelerating image classification, while other fundamental vision problems, such as object detection, have not been adequately addressed. Compared with image classification, detection problems are more sensitive to the spatial variance of objects, and therefore, require specialized convolutions to aggregate spatial information. To address this need, recent work introduces dynamic deformable convolution to augment regular convolutions. However, this will lead to inefficient memory accesses of inputs with existing hardware. In this work, we harness the flexibility of FPGAs to develop a novel object detection pipeline with deformable convolutions. We show the speed-accuracy tradeoffs for a set of algorithm modifications including irregular-access versus limited-range and fixed-shape. We then Co-Design a Network CoDeNet with the modified deformable convolution and quantize it to 4-bit weights and 8-bit activations. With our high-efficiency implementation, our solution reaches 26.9 frames per second with a tiny model size of 0.76 MB while achieving 61.7 AP50 on the standard object detection dataset, Pascal VOC. With our higher accuracy implementation, our model gets to 67.1 AP50 on Pascal VOC with only 2.9 MB of parameters-20.9x smaller but 10% more accurate than Tiny-YOLO.
An Improved YOLOv8 Approach for Small Target Detection of Rice Spikelet Flowering in Field Environments
Accurately detecting rice flowering time is crucial for timely pollination in hybrid rice seed production. This not only enhances pollination efficiency but also ensures higher yields. However, due to the complexity of field environments and the characteristics of rice spikelets, such as their small size and short flowering period, automated and precise recognition remains challenging. To address this, this study proposes a rice spikelet flowering recognition method based on an improved YOLOv8 object detection model. First, a Bidirectional Feature Pyramid Network (BiFPN) replaces the original PANet structure to enhance feature fusion and improve multi-scale feature utilization. Second, to boost small object detection, a p2 small-object detection head is added, using finer feature mapping to reduce feature loss commonly seen in detecting small targets. Given the lack of publicly available datasets for rice spikelet flowering in field conditions, a high-resolution RGB camera and data augmentation techniques are used to construct a dedicated dataset, providing reliable support for model training and testing. Experimental results show that the improved YOLOv8s-p2 model achieves an [email protected] of 65.9%, precision of 67.6%, recall of 61.5%, and F1-score of 64.41%, representing improvements of 3.10%, 8.40%, 10.80%, and 9.79%, respectively, over the baseline YOLOv8. The model also runs at 69 f/s on the test set, meeting practical application requirements. Overall, the improved YOLOv8s-p2 offers high accuracy and speed, providing an effective solution for automated monitoring in hybrid rice seed production.
Learning Camouflaged Object Detection from Noisy Pseudo Label
Existing Camouflaged Object Detection (COD) methods rely heavily on large-scale pixel-annotated training sets, which are both time-consuming and labor-intensive. Although weakly supervised methods offer higher annotation efficiency, their performance is far behind due to the unclear visual demarcations between foreground and background in camouflaged images. In this paper, we explore the potential of using boxes as prompts in camouflaged scenes and introduce the first weakly semi-supervised COD method, aiming for budget-efficient and high-precision camouflaged object segmentation with an extremely limited number of fully labeled images. Critically, learning from such limited set inevitably generates pseudo labels with serious noisy pixels. To address this, we propose a noise correction loss that facilitates the model's learning of correct pixels in the early learning stage, and corrects the error risk gradients dominated by noisy pixels in the memorization stage, ultimately achieving accurate segmentation of camouflaged objects from noisy labels. When using only 20% of fully labeled data, our method shows superior performance over the state-of-the-art methods.
AirShot: Efficient Few-Shot Detection for Autonomous Exploration
Few-shot object detection has drawn increasing attention in the field of robotic exploration, where robots are required to find unseen objects with a few online provided examples. Despite recent efforts have been made to yield online processing capabilities, slow inference speeds of low-powered robots fail to meet the demands of real-time detection-making them impractical for autonomous exploration. Existing methods still face performance and efficiency challenges, mainly due to unreliable features and exhaustive class loops. In this work, we propose a new paradigm AirShot, and discover that, by fully exploiting the valuable correlation map, AirShot can result in a more robust and faster few-shot object detection system, which is more applicable to robotics community. The core module Top Prediction Filter (TPF) can operate on multi-scale correlation maps in both the training and inference stages. During training, TPF supervises the generation of a more representative correlation map, while during inference, it reduces looping iterations by selecting top-ranked classes, thus cutting down on computational costs with better performance. Surprisingly, this dual functionality exhibits general effectiveness and efficiency on various off-the-shelf models. Exhaustive experiments on COCO2017, VOC2014, and SubT datasets demonstrate that TPF can significantly boost the efficacy and efficiency of most off-the-shelf models, achieving up to 36.4% precision improvements along with 56.3% faster inference speed. Code and Data are at: https://github.com/ImNotPrepared/AirShot.
Rethinking pose estimation in crowds: overcoming the detection information-bottleneck and ambiguity
Frequent interactions between individuals are a fundamental challenge for pose estimation algorithms. Current pipelines either use an object detector together with a pose estimator (top-down approach), or localize all body parts first and then link them to predict the pose of individuals (bottom-up). Yet, when individuals closely interact, top-down methods are ill-defined due to overlapping individuals, and bottom-up methods often falsely infer connections to distant body parts. Thus, we propose a novel pipeline called bottom-up conditioned top-down pose estimation (BUCTD) that combines the strengths of bottom-up and top-down methods. Specifically, we propose to use a bottom-up model as the detector, which in addition to an estimated bounding box provides a pose proposal that is fed as condition to an attention-based top-down model. We demonstrate the performance and efficiency of our approach on animal and human pose estimation benchmarks. On CrowdPose and OCHuman, we outperform previous state-of-the-art models by a significant margin. We achieve 78.5 AP on CrowdPose and 47.2 AP on OCHuman, an improvement of 8.6% and 4.9% over the prior art, respectively. Furthermore, we show that our method has excellent performance on non-crowded datasets such as COCO, and strongly improves the performance on multi-animal benchmarks involving mice, fish and monkeys.
NLP-based Cross-Layer 5G Vulnerabilities Detection via Fuzzing Generated Run-Time Profiling
The effectiveness and efficiency of 5G software stack vulnerability and unintended behavior detection are essential for 5G assurance, especially for its applications in critical infrastructures. Scalability and automation are the main challenges in testing approaches and cybersecurity research. In this paper, we propose an innovative approach for automatically detecting vulnerabilities, unintended emergent behaviors, and performance degradation in 5G stacks via run-time profiling documents corresponding to fuzz testing in code repositories. Piloting on srsRAN, we map the run-time profiling via Logging Information (LogInfo) generated by fuzzing test to a high dimensional metric space first and then construct feature spaces based on their timestamp information. Lastly, we further leverage machine learning-based classification algorithms, including Logistic Regression, K-Nearest Neighbors, and Random Forest to categorize the impacts on performance and security attributes. The performance of the proposed approach has high accuracy, ranging from 93.4 % to 95.9 % , in detecting the fuzzing impacts. In addition, the proof of concept could identify and prioritize real-time vulnerabilities on 5G infrastructures and critical applications in various verticals.
Instance-Aware Repeat Factor Sampling for Long-Tailed Object Detection
We propose an embarrassingly simple method -- instance-aware repeat factor sampling (IRFS) to address the problem of imbalanced data in long-tailed object detection. Imbalanced datasets in real-world object detection often suffer from a large disparity in the number of instances for each class. To improve the generalization performance of object detection models on rare classes, various data sampling techniques have been proposed. Repeat factor sampling (RFS) has shown promise due to its simplicity and effectiveness. Despite its efficiency, RFS completely neglects the instance counts and solely relies on the image count during re-sampling process. However, instance count may immensely vary for different classes with similar image counts. Such variation highlights the importance of both image and instance for addressing the long-tail distributions. Thus, we propose IRFS which unifies instance and image counts for the re-sampling process to be aware of different perspectives of the imbalance in long-tailed datasets. Our method shows promising results on the challenging LVIS v1.0 benchmark dataset over various architectures and backbones, demonstrating their effectiveness in improving the performance of object detection models on rare classes with a relative +50% average precision (AP) improvement over counterpart RFS. IRFS can serve as a strong baseline and be easily incorporated into existing long-tailed frameworks.
Engagement Detection with Multi-Task Training in E-Learning Environments
Recognition of user interaction, in particular engagement detection, became highly crucial for online working and learning environments, especially during the COVID-19 outbreak. Such recognition and detection systems significantly improve the user experience and efficiency by providing valuable feedback. In this paper, we propose a novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes mean squared error and triplet loss together to determine the engagement level of students in an e-learning environment. The performance of this system is evaluated and compared against the state-of-the-art on a publicly available dataset as well as videos collected from real-life scenarios. The results show that ED-MTT achieves 6% lower MSE than the best state-of-the-art performance with highly acceptable training time and lightweight feature extraction.
Deep vanishing point detection: Geometric priors make dataset variations vanish
Deep learning has improved vanishing point detection in images. Yet, deep networks require expensive annotated datasets trained on costly hardware and do not generalize to even slightly different domains, and minor problem variants. Here, we address these issues by injecting deep vanishing point detection networks with prior knowledge. This prior knowledge no longer needs to be learned from data, saving valuable annotation efforts and compute, unlocking realistic few-sample scenarios, and reducing the impact of domain changes. Moreover, the interpretability of the priors allows to adapt deep networks to minor problem variations such as switching between Manhattan and non-Manhattan worlds. We seamlessly incorporate two geometric priors: (i) Hough Transform -- mapping image pixels to straight lines, and (ii) Gaussian sphere -- mapping lines to great circles whose intersections denote vanishing points. Experimentally, we ablate our choices and show comparable accuracy to existing models in the large-data setting. We validate our model's improved data efficiency, robustness to domain changes, adaptability to non-Manhattan settings.
Dynamic Head: Unifying Object Detection Heads with Attentions
The complex nature of combining localization and classification in object detection has resulted in the flourished development of methods. Previous works tried to improve the performance in various object detection heads but failed to present a unified view. In this paper, we present a novel dynamic head framework to unify object detection heads with attentions. By coherently combining multiple self-attention mechanisms between feature levels for scale-awareness, among spatial locations for spatial-awareness, and within output channels for task-awareness, the proposed approach significantly improves the representation ability of object detection heads without any computational overhead. Further experiments demonstrate that the effectiveness and efficiency of the proposed dynamic head on the COCO benchmark. With a standard ResNeXt-101-DCN backbone, we largely improve the performance over popular object detectors and achieve a new state-of-the-art at 54.0 AP. Furthermore, with latest transformer backbone and extra data, we can push current best COCO result to a new record at 60.6 AP. The code will be released at https://github.com/microsoft/DynamicHead.
Explainable Deep Behavioral Sequence Clustering for Transaction Fraud Detection
In e-commerce industry, user behavior sequence data has been widely used in many business units such as search and merchandising to improve their products. However, it is rarely used in financial services not only due to its 3V characteristics - i.e. Volume, Velocity and Variety - but also due to its unstructured nature. In this paper, we propose a Financial Service scenario Deep learning based Behavior data representation method for Clustering (FinDeepBehaviorCluster) to detect fraudulent transactions. To utilize the behavior sequence data, we treat click stream data as event sequence, use time attention based Bi-LSTM to learn the sequence embedding in an unsupervised fashion, and combine them with intuitive features generated by risk experts to form a hybrid feature representation. We also propose a GPU powered HDBSCAN (pHDBSCAN) algorithm, which is an engineering optimization for the original HDBSCAN algorithm based on FAISS project, so that clustering can be carried out on hundreds of millions of transactions within a few minutes. The computation efficiency of the algorithm has increased 500 times compared with the original implementation, which makes flash fraud pattern detection feasible. Our experimental results show that the proposed FinDeepBehaviorCluster framework is able to catch missed fraudulent transactions with considerable business values. In addition, rule extraction method is applied to extract patterns from risky clusters using intuitive features, so that narrative descriptions can be attached to the risky clusters for case investigation, and unknown risk patterns can be mined for real-time fraud detection. In summary, FinDeepBehaviorCluster as a complementary risk management strategy to the existing real-time fraud detection engine, can further increase our fraud detection and proactive risk defense capabilities.
3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features
We present 3DiffTection, a state-of-the-art method for 3D object detection from single images, leveraging features from a 3D-aware diffusion model. Annotating large-scale image data for 3D detection is resource-intensive and time-consuming. Recently, pretrained large image diffusion models have become prominent as effective feature extractors for 2D perception tasks. However, these features are initially trained on paired text and image data, which are not optimized for 3D tasks, and often exhibit a domain gap when applied to the target data. Our approach bridges these gaps through two specialized tuning strategies: geometric and semantic. For geometric tuning, we fine-tune a diffusion model to perform novel view synthesis conditioned on a single image, by introducing a novel epipolar warp operator. This task meets two essential criteria: the necessity for 3D awareness and reliance solely on posed image data, which are readily available (e.g., from videos) and does not require manual annotation. For semantic refinement, we further train the model on target data with detection supervision. Both tuning phases employ ControlNet to preserve the integrity of the original feature capabilities. In the final step, we harness these enhanced capabilities to conduct a test-time prediction ensemble across multiple virtual viewpoints. Through our methodology, we obtain 3D-aware features that are tailored for 3D detection and excel in identifying cross-view point correspondences. Consequently, our model emerges as a powerful 3D detector, substantially surpassing previous benchmarks, e.g., Cube-RCNN, a precedent in single-view 3D detection by 9.43\% in AP3D on the Omni3D-ARkitscene dataset. Furthermore, 3DiffTection showcases robust data efficiency and generalization to cross-domain data.
Contrastive Self-Supervised Network Intrusion Detection using Augmented Negative Pairs
Network intrusion detection remains a critical challenge in cybersecurity. While supervised machine learning models achieve state-of-the-art performance, their reliance on large labelled datasets makes them impractical for many real-world applications. Anomaly detection methods, which train exclusively on benign traffic to identify malicious activity, suffer from high false positive rates, limiting their usability. Recently, self-supervised learning techniques have demonstrated improved performance with lower false positive rates by learning discriminative latent representations of benign traffic. In particular, contrastive self-supervised models achieve this by minimizing the distance between similar (positive) views of benign traffic while maximizing it between dissimilar (negative) views. Existing approaches generate positive views through data augmentation and treat other samples as negative. In contrast, this work introduces Contrastive Learning using Augmented Negative pairs (CLAN), a novel paradigm for network intrusion detection where augmented samples are treated as negative views - representing potentially malicious distributions - while other benign samples serve as positive views. This approach enhances both classification accuracy and inference efficiency after pretraining on benign traffic. Experimental evaluation on the Lycos2017 dataset demonstrates that the proposed method surpasses existing self-supervised and anomaly detection techniques in a binary classification task. Furthermore, when fine-tuned on a limited labelled dataset, the proposed approach achieves superior multi-class classification performance compared to existing self-supervised models.
PP-DocLayout: A Unified Document Layout Detection Model to Accelerate Large-Scale Data Construction
Document layout analysis is a critical preprocessing step in document intelligence, enabling the detection and localization of structural elements such as titles, text blocks, tables, and formulas. Despite its importance, existing layout detection models face significant challenges in generalizing across diverse document types, handling complex layouts, and achieving real-time performance for large-scale data processing. To address these limitations, we present PP-DocLayout, which achieves high precision and efficiency in recognizing 23 types of layout regions across diverse document formats. To meet different needs, we offer three models of varying scales. PP-DocLayout-L is a high-precision model based on the RT-DETR-L detector, achieving 90.4% [email protected] and an end-to-end inference time of 13.4 ms per page on a T4 GPU. PP-DocLayout-M is a balanced model, offering 75.2% [email protected] with an inference time of 12.7 ms per page on a T4 GPU. PP-DocLayout-S is a high-efficiency model designed for resource-constrained environments and real-time applications, with an inference time of 8.1 ms per page on a T4 GPU and 14.5 ms on a CPU. This work not only advances the state of the art in document layout analysis but also provides a robust solution for constructing high-quality training data, enabling advancements in document intelligence and multimodal AI systems. Code and models are available at https://github.com/PaddlePaddle/PaddleX .
A Fault Detection Scheme Utilizing Convolutional Neural Network for PV Solar Panels with High Accuracy
Solar energy is one of the most dependable renewable energy technologies, as it is feasible almost everywhere globally. However, improving the efficiency of a solar PV system remains a significant challenge. To enhance the robustness of the solar system, this paper proposes a trained convolutional neural network (CNN) based fault detection scheme to divide the images of photovoltaic modules. For binary classification, the algorithm classifies the input images of PV cells into two categories (i.e. faulty or normal). To further assess the network's capability, the defective PV cells are organized into shadowy, cracked, or dusty cells, and the model is utilized for multiple classifications. The success rate for the proposed CNN model is 91.1% for binary classification and 88.6% for multi-classification. Thus, the proposed trained CNN model remarkably outperforms the CNN model presented in a previous study which used the same datasets. The proposed CNN-based fault detection model is straightforward, simple and effective and could be applied in the fault detection of solar panel.
FLORA: Efficient Synthetic Data Generation for Object Detection in Low-Data Regimes via finetuning Flux LoRA
Recent advances in diffusion-based generative models have demonstrated significant potential in augmenting scarce datasets for object detection tasks. Nevertheless, most recent models rely on resource-intensive full fine-tuning of large-scale diffusion models, requiring enterprise-grade GPUs (e.g., NVIDIA V100) and thousands of synthetic images. To address these limitations, we propose Flux LoRA Augmentation (FLORA), a lightweight synthetic data generation pipeline. Our approach uses the Flux 1.1 Dev diffusion model, fine-tuned exclusively through Low-Rank Adaptation (LoRA). This dramatically reduces computational requirements, enabling synthetic dataset generation with a consumer-grade GPU (e.g., NVIDIA RTX 4090). We empirically evaluate our approach on seven diverse object detection datasets. Our results demonstrate that training object detectors with just 500 synthetic images generated by our approach yields superior detection performance compared to models trained on 5000 synthetic images from the ODGEN baseline, achieving improvements of up to 21.3% in [email protected]:.95. This work demonstrates that it is possible to surpass state-of-the-art performance with far greater efficiency, as FLORA achieves superior results using only 10% of the data and a fraction of the computational cost. This work demonstrates that a quality and efficiency-focused approach is more effective than brute-force generation, making advanced synthetic data creation more practical and accessible for real-world scenarios.
Leveraging Cloud-Fog Automation for Autonomous Collision Detection and Classification in Intelligent Unmanned Surface Vehicles
Industrial Cyber-Physical Systems (ICPS) technologies are foundational in driving maritime autonomy, particularly for Unmanned Surface Vehicles (USVs). However, onboard computational constraints and communication latency significantly restrict real-time data processing, analysis, and predictive modeling, hence limiting the scalability and responsiveness of maritime ICPS. To overcome these challenges, we propose a distributed Cloud-Edge-IoT architecture tailored for maritime ICPS by leveraging design principles from the recently proposed Cloud-Fog Automation paradigm. Our proposed architecture comprises three hierarchical layers: a Cloud Layer for centralized and decentralized data aggregation, advanced analytics, and future model refinement; an Edge Layer that executes localized AI-driven processing and decision-making; and an IoT Layer responsible for low-latency sensor data acquisition. Our experimental results demonstrated improvements in computational efficiency, responsiveness, and scalability. When compared with our conventional approaches, we achieved a classification accuracy of 86\%, with an improved latency performance. By adopting Cloud-Fog Automation, we address the low-latency processing constraints and scalability challenges in maritime ICPS applications. Our work offers a practical, modular, and scalable framework to advance robust autonomy and AI-driven decision-making and autonomy for intelligent USVs in future maritime ICPS.
GraphDART: Graph Distillation for Efficient Advanced Persistent Threat Detection
Cyber-physical-social systems (CPSSs) have emerged in many applications over recent decades, requiring increased attention to security concerns. The rise of sophisticated threats like Advanced Persistent Threats (APTs) makes ensuring security in CPSSs particularly challenging. Provenance graph analysis has proven effective for tracing and detecting anomalies within systems, but the sheer size and complexity of these graphs hinder the efficiency of existing methods, especially those relying on graph neural networks (GNNs). To address these challenges, we present GraphDART, a modular framework designed to distill provenance graphs into compact yet informative representations, enabling scalable and effective anomaly detection. GraphDART can take advantage of diverse graph distillation techniques, including classic and modern graph distillation methods, to condense large provenance graphs while preserving essential structural and contextual information. This approach significantly reduces computational overhead, allowing GNNs to learn from distilled graphs efficiently and enhance detection performance. Extensive evaluations on benchmark datasets demonstrate the robustness of GraphDART in detecting malicious activities across cyber-physical-social systems. By optimizing computational efficiency, GraphDART provides a scalable and practical solution to safeguard interconnected environments against APTs.
Real-time Multi-modal Object Detection and Tracking on Edge for Regulatory Compliance Monitoring
Regulatory compliance auditing across diverse industrial domains requires heightened quality assurance and traceability. Present manual and intermittent approaches to such auditing yield significant challenges, potentially leading to oversights in the monitoring process. To address these issues, we introduce a real-time, multi-modal sensing system employing 3D time-of-flight and RGB cameras, coupled with unsupervised learning techniques on edge AI devices. This enables continuous object tracking thereby enhancing efficiency in record-keeping and minimizing manual interventions. While we validate the system in a knife sanitization context within agrifood facilities, emphasizing its prowess against occlusion and low-light issues with RGB cameras, its potential spans various industrial monitoring settings.
DetectLLM: Leveraging Log Rank Information for Zero-Shot Detection of Machine-Generated Text
With the rapid progress of large language models (LLMs) and the huge amount of text they generated, it becomes more and more impractical to manually distinguish whether a text is machine-generated. Given the growing use of LLMs in social media and education, it prompts us to develop methods to detect machine-generated text, preventing malicious usage such as plagiarism, misinformation, and propaganda. Previous work has studied several zero-shot methods, which require no training data. These methods achieve good performance, but there is still a lot of room for improvement. In this paper, we introduce two novel zero-shot methods for detecting machine-generated text by leveraging the log rank information. One is called DetectLLM-LRR, which is fast and efficient, and the other is called DetectLLM-NPR, which is more accurate, but slower due to the need for perturbations. Our experiments on three datasets and seven language models show that our proposed methods improve over the state of the art by 3.9 and 1.75 AUROC points absolute. Moreover, DetectLLM-NPR needs fewer perturbations than previous work to achieve the same level of performance, which makes it more practical for real-world use. We also investigate the efficiency--performance trade-off based on users preference on these two measures and we provide intuition for using them in practice effectively. We release the data and the code of both methods in https://github.com/mbzuai-nlp/DetectLLM
FlowTransformer: A Transformer Framework for Flow-based Network Intrusion Detection Systems
This paper presents the FlowTransformer framework, a novel approach for implementing transformer-based Network Intrusion Detection Systems (NIDSs). FlowTransformer leverages the strengths of transformer models in identifying the long-term behaviour and characteristics of networks, which are often overlooked by most existing NIDSs. By capturing these complex patterns in network traffic, FlowTransformer offers a flexible and efficient tool for researchers and practitioners in the cybersecurity community who are seeking to implement NIDSs using transformer-based models. FlowTransformer allows the direct substitution of various transformer components, including the input encoding, transformer, classification head, and the evaluation of these across any flow-based network dataset. To demonstrate the effectiveness and efficiency of the FlowTransformer framework, we utilise it to provide an extensive evaluation of various common transformer architectures, such as GPT 2.0 and BERT, on three commonly used public NIDS benchmark datasets. We provide results for accuracy, model size and speed. A key finding of our evaluation is that the choice of classification head has the most significant impact on the model performance. Surprisingly, Global Average Pooling, which is commonly used in text classification, performs very poorly in the context of NIDS. In addition, we show that model size can be reduced by over 50\%, and inference and training times improved, with no loss of accuracy, by making specific choices of input encoding and classification head instead of other commonly used alternatives.
AURSAD: Universal Robot Screwdriving Anomaly Detection Dataset
Screwdriving is one of the most popular industrial processes. As such, it is increasingly common to automate that procedure by using various robots. Even though the automation increases the efficiency of the screwdriving process, if the process is not monitored correctly, faults may occur during operation, which can impact the effectiveness and quality of assembly. Machine Learning (ML) has the potential to detect those undesirable events and limit their impact. In order to do so, first a dataset that fully describes the operation of an industrial robot performing automated screwdriving must be available. This report describes a dataset created using a UR3e series robot and OnRobot Screwdriver. We create different scenarios and introduce 4 types of anomalies to the process while all available robot and screwdriver sensors are continuously recorded. The resulting data contains 2042 samples of normal and anomalous robot operation. Brief ML benchmarks using this data are also provided, showcasing the data's suitability and potential for further analysis and experimentation.
Fast and accurate object detection in high resolution 4K and 8K video using GPUs
Machine learning has celebrated a lot of achievements on computer vision tasks such as object detection, but the traditionally used models work with relatively low resolution images. The resolution of recording devices is gradually increasing and there is a rising need for new methods of processing high resolution data. We propose an attention pipeline method which uses two staged evaluation of each image or video frame under rough and refined resolution to limit the total number of necessary evaluations. For both stages, we make use of the fast object detection model YOLO v2. We have implemented our model in code, which distributes the work across GPUs. We maintain high accuracy while reaching the average performance of 3-6 fps on 4K video and 2 fps on 8K video.
FastFlow: Unsupervised Anomaly Detection and Localization via 2D Normalizing Flows
Unsupervised anomaly detection and localization is crucial to the practical application when collecting and labeling sufficient anomaly data is infeasible. Most existing representation-based approaches extract normal image features with a deep convolutional neural network and characterize the corresponding distribution through non-parametric distribution estimation methods. The anomaly score is calculated by measuring the distance between the feature of the test image and the estimated distribution. However, current methods can not effectively map image features to a tractable base distribution and ignore the relationship between local and global features which are important to identify anomalies. To this end, we propose FastFlow implemented with 2D normalizing flows and use it as the probability distribution estimator. Our FastFlow can be used as a plug-in module with arbitrary deep feature extractors such as ResNet and vision transformer for unsupervised anomaly detection and localization. In training phase, FastFlow learns to transform the input visual feature into a tractable distribution and obtains the likelihood to recognize anomalies in inference phase. Extensive experimental results on the MVTec AD dataset show that FastFlow surpasses previous state-of-the-art methods in terms of accuracy and inference efficiency with various backbone networks. Our approach achieves 99.4% AUC in anomaly detection with high inference efficiency.
Code-as-Monitor: Constraint-aware Visual Programming for Reactive and Proactive Robotic Failure Detection
Automatic detection and prevention of open-set failures are crucial in closed-loop robotic systems. Recent studies often struggle to simultaneously identify unexpected failures reactively after they occur and prevent foreseeable ones proactively. To this end, we propose Code-as-Monitor (CaM), a novel paradigm leveraging the vision-language model (VLM) for both open-set reactive and proactive failure detection. The core of our method is to formulate both tasks as a unified set of spatio-temporal constraint satisfaction problems and use VLM-generated code to evaluate them for real-time monitoring. To enhance the accuracy and efficiency of monitoring, we further introduce constraint elements that abstract constraint-related entities or their parts into compact geometric elements. This approach offers greater generality, simplifies tracking, and facilitates constraint-aware visual programming by leveraging these elements as visual prompts. Experiments show that CaM achieves a 28.7% higher success rate and reduces execution time by 31.8% under severe disturbances compared to baselines across three simulators and a real-world setting. Moreover, CaM can be integrated with open-loop control policies to form closed-loop systems, enabling long-horizon tasks in cluttered scenes with dynamic environments.
When retrieval outperforms generation: Dense evidence retrieval for scalable fake news detection
The proliferation of misinformation necessitates robust yet computationally efficient fact verification systems. While current state-of-the-art approaches leverage Large Language Models (LLMs) for generating explanatory rationales, these methods face significant computational barriers and hallucination risks in real-world deployments. We present DeReC (Dense Retrieval Classification), a lightweight framework that demonstrates how general-purpose text embeddings can effectively replace autoregressive LLM-based approaches in fact verification tasks. By combining dense retrieval with specialized classification, our system achieves better accuracy while being significantly more efficient. DeReC outperforms explanation-generating LLMs in efficiency, reducing runtime by 95% on RAWFC (23 minutes 36 seconds compared to 454 minutes 12 seconds) and by 92% on LIAR-RAW (134 minutes 14 seconds compared to 1692 minutes 23 seconds), showcasing its effectiveness across varying dataset sizes. On the RAWFC dataset, DeReC achieves an F1 score of 65.58%, surpassing the state-of-the-art method L-Defense (61.20%). Our results demonstrate that carefully engineered retrieval-based systems can match or exceed LLM performance in specialized tasks while being significantly more practical for real-world deployment.
A Novel Domain-Aware CNN Architecture for Faster-than-Nyquist Signaling Detection
This paper proposes a convolutional neural network (CNN)-based detector for faster-than-Nyquist (FTN) signaling that employs structured fixed kernel layers with domain-informed masking to mitigate intersymbol interference (ISI). Unlike standard CNNs with sliding kernels, the proposed method utilizes fixed-position kernels to directly capture ISI effects at varying distances from the central symbol. A hierarchical filter allocation strategy is also introduced, assigning more filters to earlier layers for strong ISI patterns and fewer to later layers for weaker ones. This design improves detection accuracy while reducing redundant operations. Simulation results show that the detector achieves near-optimal bit error rate (BER) performance for tau geq 0.7, closely matching the BCJR algorithm, and offers computational gains of up to 46% and 84% over M-BCJR for BPSK and QPSK, respectively. Comparative analysis with other methods further highlights the efficiency and effectiveness of the proposed approach. To the best of our knowledge, this is the first application of a fixed-kernel CNN architecture tailored for FTN detection in the literature.
Towards Efficient and Intelligent Laser Weeding: Method and Dataset for Weed Stem Detection
Weed control is a critical challenge in modern agriculture, as weeds compete with crops for essential nutrient resources, significantly reducing crop yield and quality. Traditional weed control methods, including chemical and mechanical approaches, have real-life limitations such as associated environmental impact and efficiency. An emerging yet effective approach is laser weeding, which uses a laser beam as the stem cutter. Although there have been studies that use deep learning in weed recognition, its application in intelligent laser weeding still requires a comprehensive understanding. Thus, this study represents the first empirical investigation of weed recognition for laser weeding. To increase the efficiency of laser beam cut and avoid damaging the crops of interest, the laser beam shall be directly aimed at the weed root. Yet, weed stem detection remains an under-explored problem. We integrate the detection of crop and weed with the localization of weed stem into one end-to-end system. To train and validate the proposed system in a real-life scenario, we curate and construct a high-quality weed stem detection dataset with human annotations. The dataset consists of 7,161 high-resolution pictures collected in the field with annotations of 11,151 instances of weed. Experimental results show that the proposed system improves weeding accuracy by 6.7% and reduces energy cost by 32.3% compared to existing weed recognition systems.
MSF: Motion-guided Sequential Fusion for Efficient 3D Object Detection from Point Cloud Sequences
Point cloud sequences are commonly used to accurately detect 3D objects in applications such as autonomous driving. Current top-performing multi-frame detectors mostly follow a Detect-and-Fuse framework, which extracts features from each frame of the sequence and fuses them to detect the objects in the current frame. However, this inevitably leads to redundant computation since adjacent frames are highly correlated. In this paper, we propose an efficient Motion-guided Sequential Fusion (MSF) method, which exploits the continuity of object motion to mine useful sequential contexts for object detection in the current frame. We first generate 3D proposals on the current frame and propagate them to preceding frames based on the estimated velocities. The points-of-interest are then pooled from the sequence and encoded as proposal features. A novel Bidirectional Feature Aggregation (BiFA) module is further proposed to facilitate the interactions of proposal features across frames. Besides, we optimize the point cloud pooling by a voxel-based sampling technique so that millions of points can be processed in several milliseconds. The proposed MSF method achieves not only better efficiency than other multi-frame detectors but also leading accuracy, with 83.12% and 78.30% mAP on the LEVEL1 and LEVEL2 test sets of Waymo Open Dataset, respectively. Codes can be found at https://github.com/skyhehe123/MSF.
Maximizing Efficiency of Dataset Compression for Machine Learning Potentials With Information Theory
Machine learning interatomic potentials (MLIPs) balance high accuracy and lower costs compared to density functional theory calculations, but their performance often depends on the size and diversity of training datasets. Large datasets improve model accuracy and generalization but are computationally expensive to produce and train on, while smaller datasets risk discarding rare but important atomic environments and compromising MLIP accuracy/reliability. Here, we develop an information-theoretical framework to quantify the efficiency of dataset compression methods and propose an algorithm that maximizes this efficiency. By framing atomistic dataset compression as an instance of the minimum set cover (MSC) problem over atom-centered environments, our method identifies the smallest subset of structures that contains as much information as possible from the original dataset while pruning redundant information. The approach is extensively demonstrated on the GAP-20 and TM23 datasets, and validated on 64 varied datasets from the ColabFit repository. Across all cases, MSC consistently retains outliers, preserves dataset diversity, and reproduces the long-tail distributions of forces even at high compression rates, outperforming other subsampling methods. Furthermore, MLIPs trained on MSC-compressed datasets exhibit reduced error for out-of-distribution data even in low-data regimes. We explain these results using an outlier analysis and show that such quantitative conclusions could not be achieved with conventional dimensionality reduction methods. The algorithm is implemented in the open-source QUESTS package and can be used for several tasks in atomistic modeling, from data subsampling, outlier detection, and training improved MLIPs at a lower cost.
Revisiting Logit Distributions for Reliable Out-of-Distribution Detection
Out-of-distribution (OOD) detection is critical for ensuring the reliability of deep learning models in open-world applications. While post-hoc methods are favored for their efficiency and ease of deployment, existing approaches often underexploit the rich information embedded in the model's logits space. In this paper, we propose LogitGap, a novel post-hoc OOD detection method that explicitly exploits the relationship between the maximum logit and the remaining logits to enhance the separability between in-distribution (ID) and OOD samples. To further improve its effectiveness, we refine LogitGap by focusing on a more compact and informative subset of the logit space. Specifically, we introduce a training-free strategy that automatically identifies the most informative logits for scoring. We provide both theoretical analysis and empirical evidence to validate the effectiveness of our approach. Extensive experiments on both vision-language and vision-only models demonstrate that LogitGap consistently achieves state-of-the-art performance across diverse OOD detection scenarios and benchmarks. Code is available at https://github.com/GIT-LJc/LogitGap.
ReviewGuard: Enhancing Deficient Peer Review Detection via LLM-Driven Data Augmentation
Peer review serves as the gatekeeper of science, yet the surge in submissions and widespread adoption of large language models (LLMs) in scholarly evaluation present unprecedented challenges. Recent work has focused on using LLMs to improve review efficiency or generate insightful review content. However, unchecked deficient reviews from both human experts and AI systems threaten to systematically undermine the peer review ecosystem and compromise academic integrity. To address this critical issue, we introduce ReviewGuard, an automated system for detecting and categorizing deficient reviews. ReviewGuard employs a comprehensive four-stage LLM-driven framework that: (1) collects ICLR and NeurIPS papers with their corresponding reviews from OpenReview; (2) annotates review types using GPT-4.1 with human validation; (3) addresses class imbalance and data scarcity through LLM-driven synthetic data augmentation, producing a final corpus of 6,634 papers, 24,657 real reviews, and 46,438 synthetic reviews; and (4) fine-tunes both encoder-based models and open source LLMs. We perform comprehensive feature analysis of the structure and quality of the review text. Compared to sufficient reviews, deficient reviews demonstrate lower rating scores, higher self-reported confidence, reduced structural complexity, and a higher proportion of negative sentiment. AI-generated text detection reveals that, since ChatGPT's emergence, AI-generated reviews have increased dramatically. In the evaluation of deficient review detection models, mixed training with synthetic and real review data provides substantial enhancements to recall and F1 scores on the binary task. This study presents the first LLM-driven system for detecting deficient peer reviews, providing evidence to inform AI governance in peer review while offering valuable insights into human-AI collaboration to maintain academic integrity.
Beyond CNNs: Efficient Fine-Tuning of Multi-Modal LLMs for Object Detection on Low-Data Regimes
The field of object detection and understanding is rapidly evolving, driven by advances in both traditional CNN-based models and emerging multi-modal large language models (LLMs). While CNNs like ResNet and YOLO remain highly effective for image-based tasks, recent transformer-based LLMs introduce new capabilities such as dynamic context reasoning, language-guided prompts, and holistic scene understanding. However, when used out-of-the-box, the full potential of LLMs remains underexploited, often resulting in suboptimal performance on specialized visual tasks. In this work, we conduct a comprehensive comparison of fine-tuned traditional CNNs, zero-shot pre-trained multi-modal LLMs, and fine-tuned multi-modal LLMs on the challenging task of artificial text overlay detection in images. A key contribution of our study is demonstrating that LLMs can be effectively fine-tuned on very limited data (fewer than 1,000 images) to achieve up to 36% accuracy improvement, matching or surpassing CNN-based baselines that typically require orders of magnitude more data. By exploring how language-guided models can be adapted for precise visual understanding with minimal supervision, our work contributes to the broader effort of bridging vision and language, offering novel insights into efficient cross-modal learning strategies. These findings highlight the adaptability and data efficiency of LLM-based approaches for real-world object detection tasks and provide actionable guidance for applying multi-modal transformers in low-resource visual environments. To support continued progress in this area, we have made the code used to fine-tune the models available in our GitHub, enabling future improvements and reuse in related applications.
UAVDB: Trajectory-Guided Adaptable Bounding Boxes for UAV Detection
The widespread deployment of Unmanned Aerial Vehicles (UAVs) in surveillance, security, and airspace management has created an urgent demand for precise, scalable, and efficient UAV detection. However, existing datasets often suffer from limited scale diversity and inaccurate annotations, hindering robust model development. This paper introduces UAVDB, a high-resolution UAV detection dataset constructed using Patch Intensity Convergence (PIC). This novel technique automatically generates high-fidelity bounding box annotations from UAV trajectory data~li2020reconstruction, eliminating the need for manual labeling. UAVDB features single-class annotations with a fixed-camera setup and consists of RGB frames capturing UAVs across various scales, from large-scale UAVs to near-single-pixel representations, along with challenging backgrounds that pose difficulties for modern detectors. We first validate the accuracy and efficiency of PIC-generated bounding boxes by comparing Intersection over Union (IoU) performance and runtime against alternative annotation methods, demonstrating that PIC achieves higher annotation accuracy while being more efficient. Subsequently, we benchmark UAVDB using state-of-the-art (SOTA) YOLO-series detectors, establishing UAVDB as a valuable resource for advancing long-range and high-resolution UAV detection.
MedDet: Generative Adversarial Distillation for Efficient Cervical Disc Herniation Detection
Cervical disc herniation (CDH) is a prevalent musculoskeletal disorder that significantly impacts health and requires labor-intensive analysis from experts. Despite advancements in automated detection of medical imaging, two significant challenges hinder the real-world application of these methods. First, the computational complexity and resource demands present a significant gap for real-time application. Second, noise in MRI reduces the effectiveness of existing methods by distorting feature extraction. To address these challenges, we propose three key contributions: Firstly, we introduced MedDet, which leverages the multi-teacher single-student knowledge distillation for model compression and efficiency, meanwhile integrating generative adversarial training to enhance performance. Additionally, we customize the second-order nmODE to improve the model's resistance to noise in MRI. Lastly, we conducted comprehensive experiments on the CDH-1848 dataset, achieving up to a 5% improvement in mAP compared to previous methods. Our approach also delivers over 5 times faster inference speed, with approximately 67.8% reduction in parameters and 36.9% reduction in FLOPs compared to the teacher model. These advancements significantly enhance the performance and efficiency of automated CDH detection, demonstrating promising potential for future application in clinical practice. See project website https://steve-zeyu-zhang.github.io/MedDet
Conditioned Prompt-Optimization for Continual Deepfake Detection
The rapid advancement of generative models has significantly enhanced the realism and customization of digital content creation. The increasing power of these tools, coupled with their ease of access, fuels the creation of photorealistic fake content, termed deepfakes, that raises substantial concerns about their potential misuse. In response, there has been notable progress in developing detection mechanisms to identify content produced by these advanced systems. However, existing methods often struggle to adapt to the continuously evolving landscape of deepfake generation. This paper introduces Prompt2Guard, a novel solution for exemplar-free continual deepfake detection of images, that leverages Vision-Language Models (VLMs) and domain-specific multimodal prompts. Compared to previous VLM-based approaches that are either bounded by prompt selection accuracy or necessitate multiple forward passes, we leverage a prediction ensembling technique with read-only prompts. Read-only prompts do not interact with VLMs internal representation, mitigating the need for multiple forward passes. Thus, we enhance efficiency and accuracy in detecting generated content. Additionally, our method exploits a text-prompt conditioning tailored to deepfake detection, which we demonstrate is beneficial in our setting. We evaluate Prompt2Guard on CDDB-Hard, a continual deepfake detection benchmark composed of five deepfake detection datasets spanning multiple domains and generators, achieving a new state-of-the-art. Additionally, our results underscore the effectiveness of our approach in addressing the challenges posed by continual deepfake detection, paving the way for more robust and adaptable solutions in deepfake detection.
YOLO-FEDER FusionNet: A Novel Deep Learning Architecture for Drone Detection
Predominant methods for image-based drone detection frequently rely on employing generic object detection algorithms like YOLOv5. While proficient in identifying drones against homogeneous backgrounds, these algorithms often struggle in complex, highly textured environments. In such scenarios, drones seamlessly integrate into the background, creating camouflage effects that adversely affect the detection quality. To address this issue, we introduce a novel deep learning architecture called YOLO-FEDER FusionNet. Unlike conventional approaches, YOLO-FEDER FusionNet combines generic object detection methods with the specialized strength of camouflage object detection techniques to enhance drone detection capabilities. Comprehensive evaluations of YOLO-FEDER FusionNet show the efficiency of the proposed model and demonstrate substantial improvements in both reducing missed detections and false alarms.
A New Dataset and Comparative Study for Aphid Cluster Detection and Segmentation in Sorghum Fields
Aphid infestations are one of the primary causes of extensive damage to wheat and sorghum fields and are one of the most common vectors for plant viruses, resulting in significant agricultural yield losses. To address this problem, farmers often employ the inefficient use of harmful chemical pesticides that have negative health and environmental impacts. As a result, a large amount of pesticide is wasted on areas without significant pest infestation. This brings to attention the urgent need for an intelligent autonomous system that can locate and spray sufficiently large infestations selectively within the complex crop canopies. We have developed a large multi-scale dataset for aphid cluster detection and segmentation, collected from actual sorghum fields and meticulously annotated to include clusters of aphids. Our dataset comprises a total of 54,742 image patches, showcasing a variety of viewpoints, diverse lighting conditions, and multiple scales, highlighting its effectiveness for real-world applications. In this study, we trained and evaluated four real-time semantic segmentation models and three object detection models specifically for aphid cluster segmentation and detection. Considering the balance between accuracy and efficiency, Fast-SCNN delivered the most effective segmentation results, achieving 80.46% mean precision, 81.21% mean recall, and 91.66 frames per second (FPS). For object detection, RT-DETR exhibited the best overall performance with a 61.63% mean average precision (mAP), 92.6% mean recall, and 72.55 on an NVIDIA V100 GPU. Our experiments further indicate that aphid cluster segmentation is more suitable for assessing aphid infestations than using detection models.
Unsupervised Modality-Transferable Video Highlight Detection with Representation Activation Sequence Learning
Identifying highlight moments of raw video materials is crucial for improving the efficiency of editing videos that are pervasive on internet platforms. However, the extensive work of manually labeling footage has created obstacles to applying supervised methods to videos of unseen categories. The absence of an audio modality that contains valuable cues for highlight detection in many videos also makes it difficult to use multimodal strategies. In this paper, we propose a novel model with cross-modal perception for unsupervised highlight detection. The proposed model learns representations with visual-audio level semantics from image-audio pair data via a self-reconstruction task. To achieve unsupervised highlight detection, we investigate the latent representations of the network and propose the representation activation sequence learning (RASL) module with k-point contrastive learning to learn significant representation activations. To connect the visual modality with the audio modality, we use the symmetric contrastive learning (SCL) module to learn the paired visual and audio representations. Furthermore, an auxiliary task of masked feature vector sequence (FVS) reconstruction is simultaneously conducted during pretraining for representation enhancement. During inference, the cross-modal pretrained model can generate representations with paired visual-audio semantics given only the visual modality. The RASL module is used to output the highlight scores. The experimental results show that the proposed framework achieves superior performance compared to other state-of-the-art approaches.
Identity-Consistent Aggregation for Video Object Detection
In Video Object Detection (VID), a common practice is to leverage the rich temporal contexts from the video to enhance the object representations in each frame. Existing methods treat the temporal contexts obtained from different objects indiscriminately and ignore their different identities. While intuitively, aggregating local views of the same object in different frames may facilitate a better understanding of the object. Thus, in this paper, we aim to enable the model to focus on the identity-consistent temporal contexts of each object to obtain more comprehensive object representations and handle the rapid object appearance variations such as occlusion, motion blur, etc. However, realizing this goal on top of existing VID models faces low-efficiency problems due to their redundant region proposals and nonparallel frame-wise prediction manner. To aid this, we propose ClipVID, a VID model equipped with Identity-Consistent Aggregation (ICA) layers specifically designed for mining fine-grained and identity-consistent temporal contexts. It effectively reduces the redundancies through the set prediction strategy, making the ICA layers very efficient and further allowing us to design an architecture that makes parallel clip-wise predictions for the whole video clip. Extensive experimental results demonstrate the superiority of our method: a state-of-the-art (SOTA) performance (84.7% mAP) on the ImageNet VID dataset while running at a speed about 7x faster (39.3 fps) than previous SOTAs.
LoCoOp: Few-Shot Out-of-Distribution Detection via Prompt Learning
We present a novel vision-language prompt learning approach for few-shot out-of-distribution (OOD) detection. Few-shot OOD detection aims to detect OOD images from classes that are unseen during training using only a few labeled in-distribution (ID) images. While prompt learning methods such as CoOp have shown effectiveness and efficiency in few-shot ID classification, they still face limitations in OOD detection due to the potential presence of ID-irrelevant information in text embeddings. To address this issue, we introduce a new approach called Local regularized Context Optimization (LoCoOp), which performs OOD regularization that utilizes the portions of CLIP local features as OOD features during training. CLIP's local features have a lot of ID-irrelevant nuisances (e.g., backgrounds), and by learning to push them away from the ID class text embeddings, we can remove the nuisances in the ID class text embeddings and enhance the separation between ID and OOD. Experiments on the large-scale ImageNet OOD detection benchmarks demonstrate the superiority of our LoCoOp over zero-shot, fully supervised detection methods and prompt learning methods. Notably, even in a one-shot setting -- just one label per class, LoCoOp outperforms existing zero-shot and fully supervised detection methods. The code will be available via https://github.com/AtsuMiyai/LoCoOp.
EfficientAD: Accurate Visual Anomaly Detection at Millisecond-Level Latencies
Detecting anomalies in images is an important task, especially in real-time computer vision applications. In this work, we focus on computational efficiency and propose a lightweight feature extractor that processes an image in less than a millisecond on a modern GPU. We then use a student-teacher approach to detect anomalous features. We train a student network to predict the extracted features of normal, i.e., anomaly-free training images. The detection of anomalies at test time is enabled by the student failing to predict their features. We propose a training loss that hinders the student from imitating the teacher feature extractor beyond the normal images. It allows us to drastically reduce the computational cost of the student-teacher model, while improving the detection of anomalous features. We furthermore address the detection of challenging logical anomalies that involve invalid combinations of normal local features, for example, a wrong ordering of objects. We detect these anomalies by efficiently incorporating an autoencoder that analyzes images globally. We evaluate our method, called EfficientAD, on 32 datasets from three industrial anomaly detection dataset collections. EfficientAD sets new standards for both the detection and the localization of anomalies. At a latency of two milliseconds and a throughput of six hundred images per second, it enables a fast handling of anomalies. Together with its low error rate, this makes it an economical solution for real-world applications and a fruitful basis for future research.
Malware Detection and Prevention using Artificial Intelligence Techniques
With the rapid technological advancement, security has become a major issue due to the increase in malware activity that poses a serious threat to the security and safety of both computer systems and stakeholders. To maintain stakeholders, particularly, end users security, protecting the data from fraudulent efforts is one of the most pressing concerns. A set of malicious programming code, scripts, active content, or intrusive software that is designed to destroy intended computer systems and programs or mobile and web applications is referred to as malware. According to a study, naive users are unable to distinguish between malicious and benign applications. Thus, computer systems and mobile applications should be designed to detect malicious activities towards protecting the stakeholders. A number of algorithms are available to detect malware activities by utilizing novel concepts including Artificial Intelligence, Machine Learning, and Deep Learning. In this study, we emphasize Artificial Intelligence (AI) based techniques for detecting and preventing malware activity. We present a detailed review of current malware detection technologies, their shortcomings, and ways to improve efficiency. Our study shows that adopting futuristic approaches for the development of malware detection applications shall provide significant advantages. The comprehension of this synthesis shall help researchers for further research on malware detection and prevention using AI.
Query Intent Detection from the SEO Perspective
Google users have different intents from their queries such as acquiring information, buying products, comparing or simulating services, looking for products, and so on. Understanding the right intention of users helps to provide i) better content on web pages from the Search Engine Optimization (SEO) perspective and ii) more user-satisfying results from the search engine perspective. In this study, we aim to identify the user query's intent by taking advantage of Google results and machine learning methods. Our proposed approach is a clustering model that exploits some features to detect query's intent. A list of keywords extracted from the clustered queries is used to identify the intent of a new given query. Comparing the clustering results with the intents predicted by filtered keywords show the efficiency of the extracted keywords for detecting intents.
Audio-replay attack detection countermeasures
This paper presents the Speech Technology Center (STC) replay attack detection systems proposed for Automatic Speaker Verification Spoofing and Countermeasures Challenge 2017. In this study we focused on comparison of different spoofing detection approaches. These were GMM based methods, high level features extraction with simple classifier and deep learning frameworks. Experiments performed on the development and evaluation parts of the challenge dataset demonstrated stable efficiency of deep learning approaches in case of changing acoustic conditions. At the same time SVM classifier with high level features provided a substantial input in the efficiency of the resulting STC systems according to the fusion systems results.
Boosting Large-scale Parallel Training Efficiency with C4: A Communication-Driven Approach
The emergence of Large Language Models (LLMs) has necessitated the adoption of parallel training techniques, involving the deployment of thousands of GPUs to train a single model. Unfortunately, we have found that the efficiency of current parallel training is often suboptimal, largely due to the following two main issues. Firstly, hardware failures are inevitable, leading to interruptions in the training tasks. The inability to quickly identify the faulty components results in a substantial waste of GPU resources. Secondly, since GPUs must wait for parameter synchronization to complete before proceeding to the next round of computation, network congestions can greatly increase the waiting time for GPUs. To address these challenges, this paper introduces a communication-driven solution, namely the C4. The key insights of C4 are two folds. First, in parallel training, collective communication exhibits periodic and homogeneous characteristics, so any anomalies are certainly due to some form of hardware malfunction. By leveraging this feature, C4 can rapidly identify the faulty components, swiftly isolate the anomaly, and restart the task, thereby avoiding resource wastage caused by delays in anomaly detection. Second, the predictable communication model of collective communication, involving few large flows, allows C4 to efficiently execute traffic planning, substantially reducing network congestion. C4 has been extensively implemented across our production systems, cutting error-induced overhead by roughly 30% and enhancing runtime performance by about 15% for certain applications with moderate communication costs.
Efficient Intent Detection with Dual Sentence Encoders
Building conversational systems in new domains and with added functionality requires resource-efficient models that work under low-data regimes (i.e., in few-shot setups). Motivated by these requirements, we introduce intent detection methods backed by pretrained dual sentence encoders such as USE and ConveRT. We demonstrate the usefulness and wide applicability of the proposed intent detectors, showing that: 1) they outperform intent detectors based on fine-tuning the full BERT-Large model or using BERT as a fixed black-box encoder on three diverse intent detection data sets; 2) the gains are especially pronounced in few-shot setups (i.e., with only 10 or 30 annotated examples per intent); 3) our intent detectors can be trained in a matter of minutes on a single CPU; and 4) they are stable across different hyperparameter settings. In hope of facilitating and democratizing research focused on intention detection, we release our code, as well as a new challenging single-domain intent detection dataset comprising 13,083 annotated examples over 77 intents.
Mamba-FCS: Joint Spatio- Frequency Feature Fusion, Change-Guided Attention, and SeK Loss for Enhanced Semantic Change Detection in Remote Sensing
Semantic Change Detection (SCD) from remote sensing imagery requires models balancing extensive spatial context, computational efficiency, and sensitivity to class-imbalanced land-cover transitions. While Convolutional Neural Networks excel at local feature extraction but lack global context, Transformers provide global modeling at high computational costs. Recent Mamba architectures based on state-space models offer compelling solutions through linear complexity and efficient long-range modeling. In this study, we introduce Mamba-FCS, a SCD framework built upon Visual State Space Model backbone incorporating, a Joint Spatio-Frequency Fusion block incorporating log-amplitude frequency domain features to enhance edge clarity and suppress illumination artifacts, a Change-Guided Attention (CGA) module that explicitly links the naturally intertwined BCD and SCD tasks, and a Separated Kappa (SeK) loss tailored for class-imbalanced performance optimization. Extensive evaluation on SECOND and Landsat-SCD datasets shows that Mamba-FCS achieves state-of-the-art metrics, 88.62% Overall Accuracy, 65.78% F_scd, and 25.50% SeK on SECOND, 96.25% Overall Accuracy, 89.27% F_scd, and 60.26% SeK on Landsat-SCD. Ablation analyses confirm distinct contributions of each novel component, with qualitative assessments highlighting significant improvements in SCD. Our results underline the substantial potential of Mamba architectures, enhanced by proposed techniques, setting a new benchmark for effective and scalable semantic change detection in remote sensing applications. The complete source code, configuration files, and pre-trained models will be publicly available upon publication.
Multimodal Industrial Anomaly Detection by Crossmodal Feature Mapping
The paper explores the industrial multimodal Anomaly Detection (AD) task, which exploits point clouds and RGB images to localize anomalies. We introduce a novel light and fast framework that learns to map features from one modality to the other on nominal samples. At test time, anomalies are detected by pinpointing inconsistencies between observed and mapped features. Extensive experiments show that our approach achieves state-of-the-art detection and segmentation performance in both the standard and few-shot settings on the MVTec 3D-AD dataset while achieving faster inference and occupying less memory than previous multimodal AD methods. Moreover, we propose a layer-pruning technique to improve memory and time efficiency with a marginal sacrifice in performance.
HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection
Audio classification is an important task of mapping audio samples into their corresponding labels. Recently, the transformer model with self-attention mechanisms has been adopted in this field. However, existing audio transformers require large GPU memories and long training time, meanwhile relying on pretrained vision models to achieve high performance, which limits the model's scalability in audio tasks. To combat these problems, we introduce HTS-AT: an audio transformer with a hierarchical structure to reduce the model size and training time. It is further combined with a token-semantic module to map final outputs into class featuremaps, thus enabling the model for the audio event detection (i.e. localization in time). We evaluate HTS-AT on three datasets of audio classification where it achieves new state-of-the-art (SOTA) results on AudioSet and ESC-50, and equals the SOTA on Speech Command V2. It also achieves better performance in event localization than the previous CNN-based models. Moreover, HTS-AT requires only 35% model parameters and 15% training time of the previous audio transformer. These results demonstrate the high performance and high efficiency of HTS-AT.
YOLO26: Key Architectural Enhancements and Performance Benchmarking for Real-Time Object Detection
This study presents a comprehensive analysis of Ultralytics YOLO26, highlighting its key architectural enhancements and performance benchmarking for real-time object detection. YOLO26, released in September 2025, stands as the newest and most advanced member of the YOLO family, purpose-built to deliver efficiency, accuracy, and deployment readiness on edge and low-power devices. The paper sequentially details architectural innovations of YOLO26, including the removal of Distribution Focal Loss (DFL), adoption of end-to-end NMS-free inference, integration of ProgLoss and Small-Target-Aware Label Assignment (STAL), and the introduction of the MuSGD optimizer for stable convergence. Beyond architecture, the study positions YOLO26 as a multi-task framework, supporting object detection, instance segmentation, pose/keypoints estimation, oriented detection, and classification. We present performance benchmarks of YOLO26 on edge devices such as NVIDIA Jetson Nano and Orin, comparing its results with YOLOv8, YOLOv11, YOLOv12, YOLOv13, and transformer-based detectors(RF-DETR and RT-DETR). This paper further explores real-time deployment pathways, flexible export options (ONNX, TensorRT, CoreML, TFLite), and quantization for INT8/FP16. Practical use cases of YOLO26 across robotics, manufacturing, and IoT are highlighted to demonstrate cross-industry adaptability. Finally, insights on deployment efficiency and broader implications are discussed, with future directions for YOLO26 and the YOLO lineage outlined.
HalluciNot: Hallucination Detection Through Context and Common Knowledge Verification
This paper introduces a comprehensive system for detecting hallucinations in large language model (LLM) outputs in enterprise settings. We present a novel taxonomy of LLM responses specific to hallucination in enterprise applications, categorizing them into context-based, common knowledge, enterprise-specific, and innocuous statements. Our hallucination detection model HDM-2 validates LLM responses with respect to both context and generally known facts (common knowledge). It provides both hallucination scores and word-level annotations, enabling precise identification of problematic content. To evaluate it on context-based and common-knowledge hallucinations, we introduce a new dataset HDMBench. Experimental results demonstrate that HDM-2 out-performs existing approaches across RagTruth, TruthfulQA, and HDMBench datasets. This work addresses the specific challenges of enterprise deployment, including computational efficiency, domain specialization, and fine-grained error identification. Our evaluation dataset, model weights, and inference code are publicly available.
NaviDet: Efficient Input-level Backdoor Detection on Text-to-Image Synthesis via Neuron Activation Variation
In recent years, text-to-image (T2I) diffusion models have garnered significant attention for their ability to generate high-quality images reflecting text prompts. However, their growing popularity has also led to the emergence of backdoor threats, posing substantial risks. Currently, effective defense strategies against such threats are lacking due to the diversity of backdoor targets in T2I synthesis. In this paper, we propose NaviDet, the first general input-level backdoor detection framework for identifying backdoor inputs across various backdoor targets. Our approach is based on the new observation that trigger tokens tend to induce significant neuron activation variation in the early stage of the diffusion generation process, a phenomenon we term Early-step Activation Variation. Leveraging this insight, NaviDet detects malicious samples by analyzing neuron activation variations caused by input tokens. Through extensive experiments, we demonstrate the effectiveness and efficiency of our method against various T2I backdoor attacks, surpassing existing baselines with significantly lower computational overhead. Furthermore, we rigorously demonstrate that our method remains effective against potential adaptive attacks.
Refining Input Guardrails: Enhancing LLM-as-a-Judge Efficiency Through Chain-of-Thought Fine-Tuning and Alignment
Large Language Models (LLMs) have demonstrated powerful capabilities that render them valuable in different applications, including conversational AI products. It is paramount to ensure the security and reliability of these products by mitigating their vulnerabilities towards malicious user interactions, which can lead to the exposure of great risks and reputational repercussions. In this work, we present a comprehensive study on the efficacy of fine-tuning and aligning Chain-of-Thought (CoT) responses of different LLMs that serve as input moderation guardrails. We systematically explore various tuning methods by leveraging a small set of training data to adapt these models as proxy defense mechanisms to detect malicious inputs and provide a reasoning for their verdicts, thereby preventing the exploitation of conversational agents. We rigorously evaluate the efficacy and robustness of different tuning strategies to generalize across diverse adversarial and malicious query types. Our experimental results outline the potential of alignment processes tailored to a varied range of harmful input queries, even with constrained data resources. These techniques significantly enhance the safety of conversational AI systems and provide a feasible framework for deploying more secure and trustworthy AI-driven interactions.
A Closer Look at Data Augmentation Strategies for Finetuning-Based Low/Few-Shot Object Detection
Current methods for low- and few-shot object detection have primarily focused on enhancing model performance for detecting objects. One common approach to achieve this is by combining model finetuning with data augmentation strategies. However, little attention has been given to the energy efficiency of these approaches in data-scarce regimes. This paper seeks to conduct a comprehensive empirical study that examines both model performance and energy efficiency of custom data augmentations and automated data augmentation selection strategies when combined with a lightweight object detector. The methods are evaluated in three different benchmark datasets in terms of their performance and energy consumption, and the Efficiency Factor is employed to gain insights into their effectiveness considering both performance and efficiency. Consequently, it is shown that in many cases, the performance gains of data augmentation strategies are overshadowed by their increased energy usage, necessitating the development of more energy efficient data augmentation strategies to address data scarcity.
Rethinking Remote Sensing Change Detection With A Mask View
Remote sensing change detection aims to compare two or more images recorded for the same area but taken at different time stamps to quantitatively and qualitatively assess changes in geographical entities and environmental factors. Mainstream models usually built on pixel-by-pixel change detection paradigms, which cannot tolerate the diversity of changes due to complex scenes and variation in imaging conditions. To address this shortcoming, this paper rethinks the change detection with the mask view, and further proposes the corresponding: 1) meta-architecture CDMask and 2) instance network CDMaskFormer. Components of CDMask include Siamese backbone, change extractor, pixel decoder, transformer decoder and normalized detector, which ensures the proper functioning of the mask detection paradigm. Since the change query can be adaptively updated based on the bi-temporal feature content, the proposed CDMask can adapt to different latent data distributions, thus accurately identifying regions of interest changes in complex scenarios. Consequently, we further propose the instance network CDMaskFormer customized for the change detection task, which includes: (i) a Spatial-temporal convolutional attention-based instantiated change extractor to capture spatio-temporal context simultaneously with lightweight operations; and (ii) a scene-guided axial attention-instantiated transformer decoder to extract more spatial details. State-of-the-art performance of CDMaskFormer is achieved on five benchmark datasets with a satisfactory efficiency-accuracy trade-off. Code is available at https://github.com/xwmaxwma/rschange.
ASDF: Assembly State Detection Utilizing Late Fusion by Integrating 6D Pose Estimation
In medical and industrial domains, providing guidance for assembly processes can be critical to ensure efficiency and safety. Errors in assembly can lead to significant consequences such as extended surgery times and prolonged manufacturing or maintenance times in industry. Assembly scenarios can benefit from in-situ augmented reality visualization, i.e., augmentations in close proximity to the target object, to provide guidance, reduce assembly times, and minimize errors. In order to enable in-situ visualization, 6D pose estimation can be leveraged to identify the correct location for an augmentation. Existing 6D pose estimation techniques primarily focus on individual objects and static captures. However, assembly scenarios have various dynamics, including occlusion during assembly and dynamics in the appearance of assembly objects. Existing work focus either on object detection combined with state detection, or focus purely on the pose estimation. To address the challenges of 6D pose estimation in combination with assembly state detection, our approach ASDF builds upon the strengths of YOLOv8, a real-time capable object detection framework. We extend this framework, refine the object pose, and fuse pose knowledge with network-detected pose information. Utilizing our late fusion in our Pose2State module results in refined 6D pose estimation and assembly state detection. By combining both pose and state information, our Pose2State module predicts the final assembly state with precision. The evaluation of our ASDF dataset shows that our Pose2State module leads to an improved assembly state detection and that the improvement of the assembly state further leads to a more robust 6D pose estimation. Moreover, on the GBOT dataset, we outperform the pure deep learning-based network and even outperform the hybrid and pure tracking-based approaches.
LDTR: Transformer-based Lane Detection with Anchor-chain Representation
Despite recent advances in lane detection methods, scenarios with limited- or no-visual-clue of lanes due to factors such as lighting conditions and occlusion remain challenging and crucial for automated driving. Moreover, current lane representations require complex post-processing and struggle with specific instances. Inspired by the DETR architecture, we propose LDTR, a transformer-based model to address these issues. Lanes are modeled with a novel anchor-chain, regarding a lane as a whole from the beginning, which enables LDTR to handle special lanes inherently. To enhance lane instance perception, LDTR incorporates a novel multi-referenced deformable attention module to distribute attention around the object. Additionally, LDTR incorporates two line IoU algorithms to improve convergence efficiency and employs a Gaussian heatmap auxiliary branch to enhance model representation capability during training. To evaluate lane detection models, we rely on Frechet distance, parameterized F1-score, and additional synthetic metrics. Experimental results demonstrate that LDTR achieves state-of-the-art performance on well-known datasets.
Enhancing Vehicle Entrance and Parking Management: Deep Learning Solutions for Efficiency and Security
The auto-management of vehicle entrance and parking in any organization is a complex challenge encompassing record-keeping, efficiency, and security concerns. Manual methods for tracking vehicles and finding parking spaces are slow and a waste of time. To solve the problem of auto management of vehicle entrance and parking, we have utilized state-of-the-art deep learning models and automated the process of vehicle entrance and parking into any organization. To ensure security, our system integrated vehicle detection, license number plate verification, and face detection and recognition models to ensure that the person and vehicle are registered with the organization. We have trained multiple deep-learning models for vehicle detection, license number plate detection, face detection, and recognition, however, the YOLOv8n model outperformed all the other models. Furthermore, License plate recognition is facilitated by Google's Tesseract-OCR Engine. By integrating these technologies, the system offers efficient vehicle detection, precise identification, streamlined record keeping, and optimized parking slot allocation in buildings, thereby enhancing convenience, accuracy, and security. Future research opportunities lie in fine-tuning system performance for a wide range of real-world applications.
Extending Machine Learning-Based Early Sepsis Detection to Different Demographics
Sepsis requires urgent diagnosis, but research is predominantly focused on Western datasets. In this study, we perform a comparative analysis of two ensemble learning methods, LightGBM and XGBoost, using the public eICU-CRD dataset and a private South Korean St. Mary's Hospital's dataset. Our analysis reveals the effectiveness of these methods in addressing healthcare data imbalance and enhancing sepsis detection. Specifically, LightGBM shows a slight edge in computational efficiency and scalability. The study paves the way for the broader application of machine learning in critical care, thereby expanding the reach of predictive analytics in healthcare globally.
Fast and Accurate Factual Inconsistency Detection Over Long Documents
Generative AI models exhibit remarkable potential; however, hallucinations across various tasks present a significant challenge, particularly for longer inputs that current approaches struggle to address effectively. We introduce SCALE (Source Chunking Approach for Large-scale inconsistency Evaluation), a task-agnostic model for detecting factual inconsistencies using a novel chunking strategy. Specifically, SCALE is a Natural Language Inference (NLI) based model that uses large text chunks to condition over long texts. This approach achieves state-of-the-art performance in factual inconsistency detection for diverse tasks and long inputs. Additionally, we leverage the chunking mechanism and employ a novel algorithm to explain SCALE's decisions through relevant source sentence retrieval. Our evaluations reveal that SCALE outperforms existing methods on both standard benchmarks and a new long-form dialogue dataset ScreenEval we constructed. Moreover, SCALE surpasses competitive systems in efficiency and model explanation evaluations. We have released our code and data publicly to GitHub.
Balancing Computational Efficiency and Forecast Error in Machine Learning-based Time-Series Forecasting: Insights from Live Experiments on Meteorological Nowcasting
Machine learning for time-series forecasting remains a key area of research. Despite successful application of many machine learning techniques, relating computational efficiency to forecast error remains an under-explored domain. This paper addresses this topic through a series of real-time experiments to quantify the relationship between computational cost and forecast error using meteorological nowcasting as an example use-case. We employ a variety of popular regression techniques (XGBoost, FC-MLP, Transformer, and LSTM) for multi-horizon, short-term forecasting of three variables (temperature, wind speed, and cloud cover) for multiple locations. During a 5-day live experiment, 4000 data sources were streamed for training and inferencing 144 models per hour. These models were parameterized to explore forecast error for two computational cost minimization methods: a novel auto-adaptive data reduction technique (Variance Horizon) and a performance-based concept drift-detection mechanism. Forecast error of all model variations were benchmarked in real-time against a state-of-the-art numerical weather prediction model. Performance was assessed using classical and novel evaluation metrics. Results indicate that using the Variance Horizon reduced computational usage by more than 50\%, while increasing between 0-15\% in error. Meanwhile, performance-based retraining reduced computational usage by up to 90\% while also improving forecast error by up to 10\%. Finally, the combination of both the Variance Horizon and performance-based retraining outperformed other model configurations by up to 99.7\% when considering error normalized to computational usage.
RecursiveDet: End-to-End Region-based Recursive Object Detection
End-to-end region-based object detectors like Sparse R-CNN usually have multiple cascade bounding box decoding stages, which refine the current predictions according to their previous results. Model parameters within each stage are independent, evolving a huge cost. In this paper, we find the general setting of decoding stages is actually redundant. By simply sharing parameters and making a recursive decoder, the detector already obtains a significant improvement. The recursive decoder can be further enhanced by positional encoding (PE) of the proposal box, which makes it aware of the exact locations and sizes of input bounding boxes, thus becoming adaptive to proposals from different stages during the recursion. Moreover, we also design centerness-based PE to distinguish the RoI feature element and dynamic convolution kernels at different positions within the bounding box. To validate the effectiveness of the proposed method, we conduct intensive ablations and build the full model on three recent mainstream region-based detectors. The RecusiveDet is able to achieve obvious performance boosts with even fewer model parameters and slightly increased computation cost. Codes are available at https://github.com/bravezzzzzz/RecursiveDet.
E2E-LOAD: End-to-End Long-form Online Action Detection
Recently, there has been a growing trend toward feature-based approaches for Online Action Detection (OAD). However, these approaches have limitations due to their fixed backbone design, which ignores the potential capability of a trainable backbone. In this paper, we propose the first end-to-end OAD model, termed E2E-LOAD, designed to address the major challenge of OAD, namely, long-term understanding and efficient online reasoning. Specifically, our proposed approach adopts an initial spatial model that is shared by all frames and maintains a long sequence cache for inference at a low computational cost. We also advocate an asymmetric spatial-temporal model for long-form and short-form modeling effectively. Furthermore, we propose a novel and efficient inference mechanism that accelerates heavy spatial-temporal exploration. Extensive ablation studies and experiments demonstrate the effectiveness and efficiency of our proposed method. Notably, we achieve 17.3 (+12.6) FPS for end-to-end OAD with 72.4%~(+1.2%), 90.3%~(+0.7%), and 48.1%~(+26.0%) mAP on THMOUS14, TVSeries, and HDD, respectively, which is 3x faster than previous approaches. The source code will be made publicly available.
SparseFusion: Fusing Multi-Modal Sparse Representations for Multi-Sensor 3D Object Detection
By identifying four important components of existing LiDAR-camera 3D object detection methods (LiDAR and camera candidates, transformation, and fusion outputs), we observe that all existing methods either find dense candidates or yield dense representations of scenes. However, given that objects occupy only a small part of a scene, finding dense candidates and generating dense representations is noisy and inefficient. We propose SparseFusion, a novel multi-sensor 3D detection method that exclusively uses sparse candidates and sparse representations. Specifically, SparseFusion utilizes the outputs of parallel detectors in the LiDAR and camera modalities as sparse candidates for fusion. We transform the camera candidates into the LiDAR coordinate space by disentangling the object representations. Then, we can fuse the multi-modality candidates in a unified 3D space by a lightweight self-attention module. To mitigate negative transfer between modalities, we propose novel semantic and geometric cross-modality transfer modules that are applied prior to the modality-specific detectors. SparseFusion achieves state-of-the-art performance on the nuScenes benchmark while also running at the fastest speed, even outperforming methods with stronger backbones. We perform extensive experiments to demonstrate the effectiveness and efficiency of our modules and overall method pipeline. Our code will be made publicly available at https://github.com/yichen928/SparseFusion.
Memory-aided Contrastive Consensus Learning for Co-salient Object Detection
Co-Salient Object Detection (CoSOD) aims at detecting common salient objects within a group of relevant source images. Most of the latest works employ the attention mechanism for finding common objects. To achieve accurate CoSOD results with high-quality maps and high efficiency, we propose a novel Memory-aided Contrastive Consensus Learning (MCCL) framework, which is capable of effectively detecting co-salient objects in real time (~150 fps). To learn better group consensus, we propose the Group Consensus Aggregation Module (GCAM) to abstract the common features of each image group; meanwhile, to make the consensus representation more discriminative, we introduce the Memory-based Contrastive Module (MCM), which saves and updates the consensus of images from different groups in a queue of memories. Finally, to improve the quality and integrity of the predicted maps, we develop an Adversarial Integrity Learning (AIL) strategy to make the segmented regions more likely composed of complete objects with less surrounding noise. Extensive experiments on all the latest CoSOD benchmarks demonstrate that our lite MCCL outperforms 13 cutting-edge models, achieving the new state of the art (~5.9% and ~6.2% improvement in S-measure on CoSOD3k and CoSal2015, respectively). Our source codes, saliency maps, and online demos are publicly available at https://github.com/ZhengPeng7/MCCL.
An Overview of Violence Detection Techniques: Current Challenges and Future Directions
The Big Video Data generated in today's smart cities has raised concerns from its purposeful usage perspective, where surveillance cameras, among many others are the most prominent resources to contribute to the huge volumes of data, making its automated analysis a difficult task in terms of computation and preciseness. Violence Detection (VD), broadly plunging under Action and Activity recognition domain, is used to analyze Big Video data for anomalous actions incurred due to humans. The VD literature is traditionally based on manually engineered features, though advancements to deep learning based standalone models are developed for real-time VD analysis. This paper focuses on overview of deep sequence learning approaches along with localization strategies of the detected violence. This overview also dives into the initial image processing and machine learning-based VD literature and their possible advantages such as efficiency against the current complex models. Furthermore,the datasets are discussed, to provide an analysis of the current models, explaining their pros and cons with future directions in VD domain derived from an in-depth analysis of the previous methods.
itKD: Interchange Transfer-based Knowledge Distillation for 3D Object Detection
Point-cloud based 3D object detectors recently have achieved remarkable progress. However, most studies are limited to the development of network architectures for improving only their accuracy without consideration of the computational efficiency. In this paper, we first propose an autoencoder-style framework comprising channel-wise compression and decompression via interchange transfer-based knowledge distillation. To learn the map-view feature of a teacher network, the features from teacher and student networks are independently passed through the shared autoencoder; here, we use a compressed representation loss that binds the channel-wised compression knowledge from both student and teacher networks as a kind of regularization. The decompressed features are transferred in opposite directions to reduce the gap in the interchange reconstructions. Lastly, we present an head attention loss to match the 3D object detection information drawn by the multi-head self-attention mechanism. Through extensive experiments, we verify that our method can train the lightweight model that is well-aligned with the 3D point cloud detection task and we demonstrate its superiority using the well-known public datasets; e.g., Waymo and nuScenes.
DETR for Crowd Pedestrian Detection
Pedestrian detection in crowd scenes poses a challenging problem due to the heuristic defined mapping from anchors to pedestrians and the conflict between NMS and highly overlapped pedestrians. The recently proposed end-to-end detectors(ED), DETR and deformable DETR, replace hand designed components such as NMS and anchors using the transformer architecture, which gets rid of duplicate predictions by computing all pairwise interactions between queries. Inspired by these works, we explore their performance on crowd pedestrian detection. Surprisingly, compared to Faster-RCNN with FPN, the results are opposite to those obtained on COCO. Furthermore, the bipartite match of ED harms the training efficiency due to the large ground truth number in crowd scenes. In this work, we identify the underlying motives driving ED's poor performance and propose a new decoder to address them. Moreover, we design a mechanism to leverage the less occluded visible parts of pedestrian specifically for ED, and achieve further improvements. A faster bipartite match algorithm is also introduced to make ED training on crowd dataset more practical. The proposed detector PED(Pedestrian End-to-end Detector) outperforms both previous EDs and the baseline Faster-RCNN on CityPersons and CrowdHuman. It also achieves comparable performance with state-of-the-art pedestrian detection methods. Code will be released soon.
LettuceDetect: A Hallucination Detection Framework for RAG Applications
Retrieval Augmented Generation (RAG) systems remain vulnerable to hallucinated answers despite incorporating external knowledge sources. We present LettuceDetect a framework that addresses two critical limitations in existing hallucination detection methods: (1) the context window constraints of traditional encoder-based methods, and (2) the computational inefficiency of LLM based approaches. Building on ModernBERT's extended context capabilities (up to 8k tokens) and trained on the RAGTruth benchmark dataset, our approach outperforms all previous encoder-based models and most prompt-based models, while being approximately 30 times smaller than the best models. LettuceDetect is a token-classification model that processes context-question-answer triples, allowing for the identification of unsupported claims at the token level. Evaluations on the RAGTruth corpus demonstrate an F1 score of 79.22% for example-level detection, which is a 14.8% improvement over Luna, the previous state-of-the-art encoder-based architecture. Additionally, the system can process 30 to 60 examples per second on a single GPU, making it more practical for real-world RAG applications.
PhishNet: A Phishing Website Detection Tool using XGBoost
PhisNet is a cutting-edge web application designed to detect phishing websites using advanced machine learning. It aims to help individuals and organizations identify and prevent phishing attacks through a robust AI framework. PhisNet utilizes Python to apply various machine learning algorithms and feature extraction techniques for high accuracy and efficiency. The project starts by collecting and preprocessing a comprehensive dataset of URLs, comprising both phishing and legitimate sites. Key features such as URL length, special characters, and domain age are extracted to effectively train the model. Multiple machine learning algorithms, including logistic regression, decision trees, and neural networks, are evaluated to determine the best performance in phishing detection. The model is finely tuned to optimize metrics like accuracy, precision, recall, and the F1 score, ensuring reliable detection of both common and sophisticated phishing tactics. PhisNet's web application is developed using React.js, which allows for client-side rendering and smooth integration with backend services, creating a responsive and user-friendly interface. Users can input URLs and receive immediate predictions with confidence scores, thanks to a robust backend infrastructure that processes data and provides real-time results. The model is deployed using Google Colab and AWS EC2 for their computational power and scalability, ensuring the application remains accessible and functional under varying loads. In summary, PhisNet represents a significant advancement in cybersecurity, showcasing the effective use of machine learning and web development technologies to enhance user security. It empowers users to prevent phishing attacks and highlights AI's potential in transforming cybersecurity.
Large Language Model Agent for Fake News Detection
In the current digital era, the rapid spread of misinformation on online platforms presents significant challenges to societal well-being, public trust, and democratic processes, influencing critical decision making and public opinion. To address these challenges, there is a growing need for automated fake news detection mechanisms. Pre-trained large language models (LLMs) have demonstrated exceptional capabilities across various natural language processing (NLP) tasks, prompting exploration into their potential for verifying news claims. Instead of employing LLMs in a non-agentic way, where LLMs generate responses based on direct prompts in a single shot, our work introduces FactAgent, an agentic approach of utilizing LLMs for fake news detection. FactAgent enables LLMs to emulate human expert behavior in verifying news claims without any model training, following a structured workflow. This workflow breaks down the complex task of news veracity checking into multiple sub-steps, where LLMs complete simple tasks using their internal knowledge or external tools. At the final step of the workflow, LLMs integrate all findings throughout the workflow to determine the news claim's veracity. Compared to manual human verification, FactAgent offers enhanced efficiency. Experimental studies demonstrate the effectiveness of FactAgent in verifying claims without the need for any training process. Moreover, FactAgent provides transparent explanations at each step of the workflow and during final decision-making, offering insights into the reasoning process of fake news detection for end users. FactAgent is highly adaptable, allowing for straightforward updates to its tools that LLMs can leverage within the workflow, as well as updates to the workflow itself using domain knowledge. This adaptability enables FactAgent's application to news verification across various domains.
Automatic Detection and Classification of Waste Consumer Medications for Proper Management and Disposal
Every year, millions of pounds of medicines remain unused in the U.S. and are subject to an in-home disposal, i.e., kept in medicine cabinets, flushed in toilet or thrown in regular trash. In-home disposal, however, can negatively impact the environment and public health. The drug take-back programs (drug take-backs) sponsored by the Drug Enforcement Administration (DEA) and its state and industry partners collect unused consumer medications and provide the best alternative to in-home disposal of medicines. However, the drug take-backs are expensive to operate and not widely available. In this paper, we show that artificial intelligence (AI) can be applied to drug take-backs to render them operationally more efficient. Since identification of any waste is crucial to a proper disposal, we showed that it is possible to accurately identify loose consumer medications solely based on the physical features and visual appearance. We have developed an automatic technique that uses deep neural networks and computer vision to identify and segregate solid medicines. We applied the technique to images of about one thousand loose pills and succeeded in correctly identifying the pills with an accuracy of 0.912 and top-5 accuracy of 0.984. We also showed that hazardous pills could be distinguished from non-hazardous pills within the dataset with an accuracy of 0.984. We believe that the power of artificial intelligence could be harnessed in products that would facilitate the operation of the drug take-backs more efficiently and help them become widely available throughout the country.
AutoOD: Automated Outlier Detection via Curiosity-guided Search and Self-imitation Learning
Outlier detection is an important data mining task with numerous practical applications such as intrusion detection, credit card fraud detection, and video surveillance. However, given a specific complicated task with big data, the process of building a powerful deep learning based system for outlier detection still highly relies on human expertise and laboring trials. Although Neural Architecture Search (NAS) has shown its promise in discovering effective deep architectures in various domains, such as image classification, object detection, and semantic segmentation, contemporary NAS methods are not suitable for outlier detection due to the lack of intrinsic search space, unstable search process, and low sample efficiency. To bridge the gap, in this paper, we propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model within a predefined search space. Specifically, we firstly design a curiosity-guided search strategy to overcome the curse of local optimality. A controller, which acts as a search agent, is encouraged to take actions to maximize the information gain about the controller's internal belief. We further introduce an experience replay mechanism based on self-imitation learning to improve the sample efficiency. Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance, comparing with existing handcrafted models and traditional search methods.
A Distributed Intrusion Detection System Using Cooperating Agents
The current intrusion detection systems have a number of problems that limit their configurability, scalability and efficiency. There have been some propositions about distributed architectures based on multiple independent agents working collectively for intrusion detection. However, these distributed intrusion detection systems are not fully distributed as most of them centrally analyze data collected from distributed nodes which may lead to a single point of failure. In this paper, a distributed intrusion detection architecture is presented that is based on autonomous and cooperating agents without any centralized analysis components. The agents cooperate by using a hierarchical communication of interests and data, and the analysis of intrusion data is made by the agents at the lowest level of the hierarchy. This architecture provides significant advantages in scalability, flexibility, extensibility, fault tolerance, and resistance to compromise. A proof-of-concept prototype is developed and experiments have been conducted on it. The results show the effectiveness of the system in detecting intrusive activities.
