new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 11

ZeroSearch: Incentivize the Search Capability of LLMs without Searching

Effective information searching is essential for enhancing the reasoning and generation capabilities of large language models (LLMs). Recent research has explored using reinforcement learning (RL) to improve LLMs' search capabilities by interacting with live search engines in real-world environments. While these approaches show promising results, they face two major challenges: (1) Uncontrolled Document Quality: The quality of documents returned by search engines is often unpredictable, introducing noise and instability into the training process. (2) Prohibitively High API Costs: RL training requires frequent rollouts, potentially involving hundreds of thousands of search requests, which incur substantial API expenses and severely constrain scalability. To address these challenges, we introduce ZeroSearch, a reinforcement learning framework that incentivizes the search capabilities of LLMs without interacting with real search engines. Our approach begins with lightweight supervised fine-tuning to transform the LLM into a retrieval module capable of generating both relevant and noisy documents in response to a query. During RL training, we employ a curriculum-based rollout strategy that incrementally degrades the quality of generated documents, progressively eliciting the model's reasoning ability by exposing it to increasingly challenging retrieval scenarios. Extensive experiments demonstrate that ZeroSearch effectively incentivizes the search capabilities of LLMs using a 3B LLM as the retrieval module. Remarkably, a 7B retrieval module achieves comparable performance to the real search engine, while a 14B retrieval module even surpasses it. Furthermore, it generalizes well across both base and instruction-tuned models of various parameter sizes and is compatible with a wide range of RL algorithms.

  • 9 authors
·
May 7 8

DUMP: Automated Distribution-Level Curriculum Learning for RL-based LLM Post-training

Recent advances in reinforcement learning (RL)-based post-training have led to notable improvements in large language models (LLMs), particularly in enhancing their reasoning capabilities to handle complex tasks. However, most existing methods treat the training data as a unified whole, overlooking the fact that modern LLM training often involves a mixture of data from diverse distributions-varying in both source and difficulty. This heterogeneity introduces a key challenge: how to adaptively schedule training across distributions to optimize learning efficiency. In this paper, we present a principled curriculum learning framework grounded in the notion of distribution-level learnability. Our core insight is that the magnitude of policy advantages reflects how much a model can still benefit from further training on a given distribution. Based on this, we propose a distribution-level curriculum learning framework for RL-based LLM post-training, which leverages the Upper Confidence Bound (UCB) principle to dynamically adjust sampling probabilities for different distrubutions. This approach prioritizes distributions with either high average advantage (exploitation) or low sample count (exploration), yielding an adaptive and theoretically grounded training schedule. We instantiate our curriculum learning framework with GRPO as the underlying RL algorithm and demonstrate its effectiveness on logic reasoning datasets with multiple difficulties and sources. Our experiments show that our framework significantly improves convergence speed and final performance, highlighting the value of distribution-aware curriculum strategies in LLM post-training. Code: https://github.com/ZhentingWang/DUMP.

  • 4 authors
·
Apr 13 2

Self-Evolving Curriculum for LLM Reasoning

Reinforcement learning (RL) has proven effective for fine-tuning large language models (LLMs), significantly enhancing their reasoning abilities in domains such as mathematics and code generation. A crucial factor influencing RL fine-tuning success is the training curriculum: the order in which training problems are presented. While random curricula serve as common baselines, they remain suboptimal; manually designed curricula often rely heavily on heuristics, and online filtering methods can be computationally prohibitive. To address these limitations, we propose Self-Evolving Curriculum (SEC), an automatic curriculum learning method that learns a curriculum policy concurrently with the RL fine-tuning process. Our approach formulates curriculum selection as a non-stationary Multi-Armed Bandit problem, treating each problem category (e.g., difficulty level or problem type) as an individual arm. We leverage the absolute advantage from policy gradient methods as a proxy measure for immediate learning gain. At each training step, the curriculum policy selects categories to maximize this reward signal and is updated using the TD(0) method. Across three distinct reasoning domains: planning, inductive reasoning, and mathematics, our experiments demonstrate that SEC significantly improves models' reasoning capabilities, enabling better generalization to harder, out-of-distribution test problems. Additionally, our approach achieves better skill balance when fine-tuning simultaneously on multiple reasoning domains. These findings highlight SEC as a promising strategy for RL fine-tuning of LLMs.

  • 9 authors
·
May 20

Learning Like Humans: Advancing LLM Reasoning Capabilities via Adaptive Difficulty Curriculum Learning and Expert-Guided Self-Reformulation

Despite impressive progress in areas like mathematical reasoning, large language models still face significant challenges in consistently solving complex problems. Drawing inspiration from key human learning strategies, we propose two novel strategies to enhance the capability of large language models to solve these complex problems. First, Adaptive Difficulty Curriculum Learning (ADCL) is a novel curriculum learning strategy that tackles the Difficulty Shift phenomenon (i.e., a model's perception of problem difficulty dynamically changes during training) by periodically re-estimating difficulty within upcoming data batches to maintain alignment with the model's evolving capabilities. Second, Expert-Guided Self-Reformulation (EGSR) is a novel reinforcement learning strategy that bridges the gap between imitation learning and pure exploration by guiding models to reformulate expert solutions within their own conceptual framework, rather than relying on direct imitation, fostering deeper understanding and knowledge assimilation. Extensive experiments on challenging mathematical reasoning benchmarks, using Qwen2.5-7B as the base model, demonstrate that these human-inspired strategies synergistically and significantly enhance performance. Notably, their combined application improves performance over the standard Zero-RL baseline by 10% on the AIME24 benchmark and 16.6% on AIME25.

  • 5 authors
·
May 13

CurES: From Gradient Analysis to Efficient Curriculum Learning for Reasoning LLMs

Curriculum learning plays a crucial role in enhancing the training efficiency of large language models (LLMs) on reasoning tasks. However, existing methods often fail to adequately account for variations in prompt difficulty or rely on simplistic filtering mechanisms to select prompt datasets within a narrow criterion range, resulting in significant computational waste. In this work, we approach the problem from the perspective of reinforcement learning gradient optimization, offering a systematic and theoretical investigation into how to improve the training efficiency of LLMs. We identify two key factors influencing training efficiency: the selection of training prompts and the allocation of rollout quantities across different prompts. Our theoretical analysis reveals that the sampling distribution of prompts dictates the convergence rate of gradient descent, while the allocation of the rollout quantity influences the consistency and stability of overall gradient updates. Based on these insights, we propose CurES, an efficient training method that accelerates convergence and employs Bayesian posterior estimation to minimize computational overhead. Experiments demonstrate that our CurES outperforms Group Relative Policy Optimization (GRPO) by +3.30 points and +4.82 points with 1.5B and 7B models, respectively. Additionally, CurES exhibits faster convergence compared to baselines, including GRPO.

A Psychology-based Unified Dynamic Framework for Curriculum Learning

Directly learning from examples of random difficulty levels is often challenging for both humans and machine learning models. A more effective strategy involves exposing learners to examples in a progressive order, from easy to difficult. Curriculum Learning (CL) has been proposed to implement this strategy in machine learning model training. However, two key challenges persist in CL framework design: defining the difficulty of training data and determining the appropriate amount of data to input at each training step. This paper presents a Psychology-based Unified Dynamic Framework for Curriculum Learning (PUDF), drawing inspiration from psychometrics. We quantify the difficulty of training data by applying Item Response Theory (IRT) to responses from Artificial Crowds (AC). This theory-driven IRT-AC approach leads to global (i.e., model-independent) and interpretable difficulty values. Leveraging IRT, we propose a Dynamic Data Selection via Model Ability Estimation (DDS-MAE) strategy to schedule the appropriate amount of data during model training. Since our difficulty labeling and model ability estimation are based on a consistent theory, namely IRT, their values are comparable within the same scope, potentially leading to a faster convergence compared to the other CL methods. Experimental results demonstrate that fine-tuning pre-trained language models with PUDF enhances their performance on the GLUE benchmark. Moreover, PUDF surpasses other state-of-the-art (SOTA) CL methods on the GLUE benchmark. We further explore the components of PUDF, namely the difficulty measurer (IRT-AC) and the training scheduler (DDS-MAE) qualitatively and quantitatively. Lastly, we conduct an ablation study to clarify which components of PUDF contribute to faster convergence and higher accuracy.

  • 4 authors
·
Aug 9, 2024

Prompt Curriculum Learning for Efficient LLM Post-Training

We introduce Prompt Curriculum Learning (PCL), a lightweight reinforcement learning (RL) algorithm that selects intermediate-difficulty prompts using a learned value model to post-train language models. Since post-training LLMs via RL remains sensitive to batching and prompt selection strategies, we first conduct a series of systematic experiments where we (1) determine the optimal training batch size that balances generation efficiency and gradient quality and (2) establish the importance of focusing on prompts of intermediate difficulty for the policy. We build upon these results to design PCL, which identifies prompts of intermediate difficulty for the current policy in an on-policy manner by using a value model that is concurrently updated based on the current policy. By focusing on informative prompts that yield high effective ratios, PCL achieves either the highest performance or requires significantly less time to reach comparable performance to its counterparts. Compared to rollout-based filtering methods, PCL avoids costly rollouts and achieves 12.1times and 16.9times faster speed on identifying intermediate-difficulty prompts when training on MATH and DeepScaleR, respectively. We further demonstrate that our value model accurately predicts prompt difficulty and allows PCL to focus on progressively more challenging prompts during RL. Our results present a new methodology that delivers improved tradeoff between upper-bound performance and efficiency for reasoning-focused RL.

  • 7 authors
·
Oct 1

XRPO: Pushing the limits of GRPO with Targeted Exploration and Exploitation

Reinforcement learning algorithms such as GRPO have driven recent advances in large language model (LLM) reasoning. While scaling the number of rollouts stabilizes training, existing approaches suffer from limited exploration on challenging prompts and leave informative feedback signals underexploited, due to context-independent rollout allocation across prompts (e.g., generating 16 rollouts per prompt) and relying heavily on sparse rewards. This paper presents XRPO(eXplore - eXploit GRPO), a unified framework that recasts policy optimization through the principled lens of rollout exploration-exploitation. To enhance exploration, XRPO introduces a mathematically grounded rollout allocator that adaptively prioritizes prompts with higher potential for uncertainty reduction. It further addresses stagnation on zero-reward prompts through an in-context seeding strategy that injects curated exemplars, steering the model into more difficult reasoning trajectories. To strengthen exploitation, XRPO develops a group-relative, novelty-aware advantage sharpening mechanism that leverages sequence likelihoods to amplify low-probability yet correct responses, thereby extending the policy's reach beyond sparse rewards. Experiments across diverse math and coding benchmarks on both reasoning and non-reasoning models demonstrate that XRPO outperforms existing advances (e.g., GRPO and GSPO) up to 4% pass@1 and 6% cons@32, while accelerating training convergence by up to 2.7X.

  • 5 authors
·
Oct 8

Thinking vs. Doing: Agents that Reason by Scaling Test-Time Interaction

The current paradigm of test-time scaling relies on generating long reasoning traces ("thinking" more) before producing a response. In agent problems that require interaction, this can be done by generating thinking traces before acting in the world. However, this process does not allow agents to acquire new information from the environment or adapt their behavior over time. In this work, we propose to scale test-time interaction, an untapped dimension of test-time scaling that increases the agent's interaction horizon to enable running rich behaviors such as exploration, backtracking, and dynamic re-planning within a single rollout. To demonstrate the promise of this scaling dimension, we study the domain of web agents. We first show that even prompting-based interaction scaling without any training can improve task success on web benchmarks non-trivially. Building on this, we introduce TTI (Test-Time Interaction), a curriculum-based online reinforcement learning (RL) approach that trains agents by adaptively adjusting their rollout lengths. Using a Gemma 3 12B model, TTI produces state-of-the-art open-source, open-data web agents on WebVoyager and WebArena benchmarks. We further show that TTI enables agents to balance exploration and exploitation adaptively. Our results establish interaction scaling as a powerful, complementary axis to scaling per-step compute, offering new avenues for training adaptive agents.

CLPO: Curriculum Learning meets Policy Optimization for LLM Reasoning

Recently, online Reinforcement Learning with Verifiable Rewards (RLVR) has become a key paradigm for enhancing the reasoning capabilities of Large Language Models (LLMs). However, existing methods typically treat all training samples uniformly, overlooking the vast differences in problem difficulty relative to the model's current capabilities. This uniform training strategy leads to inefficient exploration of problems the model has already mastered, while concurrently lacking effective guidance on problems that are challenging its abilities the most, limiting both learning efficiency and upper-bound performance. To address this, we propose CLPO (Curriculum-guided Learning for Policy Optimization), a novel algorithm that creates a dynamic pedagogical feedback loop within the policy optimization process. The core of CLPO leverages the model's own rollout performance to conduct real-time difficulty assessment, thereby constructing an Online Curriculum. This curriculum then guides an Adaptive Problem Restructuring mechanism, where the model acts as its own teacher: it diversifies medium-difficulty problems to promote generalization and simplifies challenging problems to make them more attainable. Our approach transforms the static training procedure into a dynamic process that co-evolves with the model's capabilities. Experiments show that CLPO achieves state-of-the-art performance across eight challenging mathematical and general reasoning benchmarks, with an average pass@1 improvement of 6.96% over other methods, demonstrating its potential for more efficiently training more capable reasoning models.

  • 5 authors
·
Sep 29

How Learning Rate Decay Wastes Your Best Data in Curriculum-Based LLM Pretraining

Due to the scarcity of high-quality data, large language models (LLMs) are often trained on mixtures of data with varying quality levels, even after sophisticated data curation. A natural approach to better leverage high-quality data is curriculum-based pretraining, where the model is trained on data sorted in ascending order of quality as determined by a quality metric. However, prior studies have reported limited improvements from such curriculum-based pretraining strategies. This work identifies a critical factor constraining these methods: the incompatibility between the ascending data quality order and the decaying learning rate (LR) schedule. We find that while curriculum-based training substantially outperforms random shuffling when using a constant LR, its advantage diminishes under standard LR decay schedules. Our experiments show this incompatibility can be mitigated by two simple strategies: (1) employing a more moderate LR decay schedule, where the final LR is only moderately smaller than the peak LR, and (2) replacing LR decay with model averaging, i.e., computing a weighted average of the final few checkpoints. By combining these strategies, we improve the average score on a suite of standard benchmarks by 1.64% over random shuffling, without additional data refinement. Validated on 1.5B-parameter models trained over 30B tokens with various data-quality metrics, our findings call for a re-evaluation of curriculum-based LLM pretraining and underscore the potential of co-designing data curricula with optimization methods.

  • 8 authors
·
Nov 24

Learning to Learn: How to Continuously Teach Humans and Machines

Curriculum design is a fundamental component of education. For example, when we learn mathematics at school, we build upon our knowledge of addition to learn multiplication. These and other concepts must be mastered before our first algebra lesson, which also reinforces our addition and multiplication skills. Designing a curriculum for teaching either a human or a machine shares the underlying goal of maximizing knowledge transfer from earlier to later tasks, while also minimizing forgetting of learned tasks. Prior research on curriculum design for image classification focuses on the ordering of training examples during a single offline task. Here, we investigate the effect of the order in which multiple distinct tasks are learned in a sequence. We focus on the online class-incremental continual learning setting, where algorithms or humans must learn image classes one at a time during a single pass through a dataset. We find that curriculum consistently influences learning outcomes for humans and for multiple continual machine learning algorithms across several benchmark datasets. We introduce a novel-object recognition dataset for human curriculum learning experiments and observe that curricula that are effective for humans are highly correlated with those that are effective for machines. As an initial step towards automated curriculum design for online class-incremental learning, we propose a novel algorithm, dubbed Curriculum Designer (CD), that designs and ranks curricula based on inter-class feature similarities. We find significant overlap between curricula that are empirically highly effective and those that are highly ranked by our CD. Our study establishes a framework for further research on teaching humans and machines to learn continuously using optimized curricula.

  • 10 authors
·
Nov 28, 2022

When Do Curricula Work in Federated Learning?

An oft-cited open problem of federated learning is the existence of data heterogeneity at the clients. One pathway to understanding the drastic accuracy drop in federated learning is by scrutinizing the behavior of the clients' deep models on data with different levels of "difficulty", which has been left unaddressed. In this paper, we investigate a different and rarely studied dimension of FL: ordered learning. Specifically, we aim to investigate how ordered learning principles can contribute to alleviating the heterogeneity effects in FL. We present theoretical analysis and conduct extensive empirical studies on the efficacy of orderings spanning three kinds of learning: curriculum, anti-curriculum, and random curriculum. We find that curriculum learning largely alleviates non-IIDness. Interestingly, the more disparate the data distributions across clients the more they benefit from ordered learning. We provide analysis explaining this phenomenon, specifically indicating how curriculum training appears to make the objective landscape progressively less convex, suggesting fast converging iterations at the beginning of the training procedure. We derive quantitative results of convergence for both convex and nonconvex objectives by modeling the curriculum training on federated devices as local SGD with locally biased stochastic gradients. Also, inspired by ordered learning, we propose a novel client selection technique that benefits from the real-world disparity in the clients. Our proposed approach to client selection has a synergic effect when applied together with ordered learning in FL.

  • 8 authors
·
Dec 24, 2022 1

Learning Neural PDE Solvers with Parameter-Guided Channel Attention

Scientific Machine Learning (SciML) is concerned with the development of learned emulators of physical systems governed by partial differential equations (PDE). In application domains such as weather forecasting, molecular dynamics, and inverse design, ML-based surrogate models are increasingly used to augment or replace inefficient and often non-differentiable numerical simulation algorithms. While a number of ML-based methods for approximating the solutions of PDEs have been proposed in recent years, they typically do not adapt to the parameters of the PDEs, making it difficult to generalize to PDE parameters not seen during training. We propose a Channel Attention mechanism guided by PDE Parameter Embeddings (CAPE) component for neural surrogate models and a simple yet effective curriculum learning strategy. The CAPE module can be combined with neural PDE solvers allowing them to adapt to unseen PDE parameters. The curriculum learning strategy provides a seamless transition between teacher-forcing and fully auto-regressive training. We compare CAPE in conjunction with the curriculum learning strategy using a popular PDE benchmark and obtain consistent and significant improvements over the baseline models. The experiments also show several advantages of CAPE, such as its increased ability to generalize to unseen PDE parameters without large increases inference time and parameter count.

  • 3 authors
·
Apr 27, 2023

EduPlanner: LLM-Based Multi-Agent Systems for Customized and Intelligent Instructional Design

Large Language Models (LLMs) have significantly advanced smart education in the Artificial General Intelligence (AGI) era. A promising application lies in the automatic generalization of instructional design for curriculum and learning activities, focusing on two key aspects: (1) Customized Generation: generating niche-targeted teaching content based on students' varying learning abilities and states, and (2) Intelligent Optimization: iteratively optimizing content based on feedback from learning effectiveness or test scores. Currently, a single large LLM cannot effectively manage the entire process, posing a challenge for designing intelligent teaching plans. To address these issues, we developed EduPlanner, an LLM-based multi-agent system comprising an evaluator agent, an optimizer agent, and a question analyst, working in adversarial collaboration to generate customized and intelligent instructional design for curriculum and learning activities. Taking mathematics lessons as our example, EduPlanner employs a novel Skill-Tree structure to accurately model the background mathematics knowledge of student groups, personalizing instructional design for curriculum and learning activities according to students' knowledge levels and learning abilities. Additionally, we introduce the CIDDP, an LLM-based five-dimensional evaluation module encompassing clarity, Integrity, Depth, Practicality, and Pertinence, to comprehensively assess mathematics lesson plan quality and bootstrap intelligent optimization. Experiments conducted on the GSM8K and Algebra datasets demonstrate that EduPlanner excels in evaluating and optimizing instructional design for curriculum and learning activities. Ablation studies further validate the significance and effectiveness of each component within the framework. Our code is publicly available at https://github.com/Zc0812/Edu_Planner

  • 6 authors
·
Apr 7

Teacher algorithms for curriculum learning of Deep RL in continuously parameterized environments

We consider the problem of how a teacher algorithm can enable an unknown Deep Reinforcement Learning (DRL) student to become good at a skill over a wide range of diverse environments. To do so, we study how a teacher algorithm can learn to generate a learning curriculum, whereby it sequentially samples parameters controlling a stochastic procedural generation of environments. Because it does not initially know the capacities of its student, a key challenge for the teacher is to discover which environments are easy, difficult or unlearnable, and in what order to propose them to maximize the efficiency of learning over the learnable ones. To achieve this, this problem is transformed into a surrogate continuous bandit problem where the teacher samples environments in order to maximize absolute learning progress of its student. We present a new algorithm modeling absolute learning progress with Gaussian mixture models (ALP-GMM). We also adapt existing algorithms and provide a complete study in the context of DRL. Using parameterized variants of the BipedalWalker environment, we study their efficiency to personalize a learning curriculum for different learners (embodiments), their robustness to the ratio of learnable/unlearnable environments, and their scalability to non-linear and high-dimensional parameter spaces. Videos and code are available at https://github.com/flowersteam/teachDeepRL.

  • 4 authors
·
Oct 16, 2019

Train Long, Think Short: Curriculum Learning for Efficient Reasoning

Recent work on enhancing the reasoning abilities of large language models (LLMs) has introduced explicit length control as a means of constraining computational cost while preserving accuracy. However, existing approaches rely on fixed-length training budgets, which do not take advantage of the natural progression from exploration to compression during learning. In this work, we propose a curriculum learning strategy for length-controlled reasoning using Group Relative Policy Optimization (GRPO). Our method starts with generous token budgets and gradually tightens them over training, encouraging models to first discover effective solution strategies and then distill them into more concise reasoning traces. We augment GRPO with a reward function that balances three signals: task correctness (via verifier feedback), length efficiency, and formatting adherence (via structural tags). Experiments on GSM8K, MATH500, SVAMP, College Math, and GSM+ demonstrate that curriculum-based training consistently outperforms fixed-budget baselines at the same final budget, achieving higher accuracy and significantly improved token efficiency. We further ablate the impact of reward weighting and decay schedule design, showing that progressive constraint serves as a powerful inductive bias for training efficient reasoning models. Our code and checkpoints are released at: https://github.com/hammoudhasan/curriculum_grpo.

  • 6 authors
·
Aug 12 2

Meta Automatic Curriculum Learning

A major challenge in the Deep RL (DRL) community is to train agents able to generalize their control policy over situations never seen in training. Training on diverse tasks has been identified as a key ingredient for good generalization, which pushed researchers towards using rich procedural task generation systems controlled through complex continuous parameter spaces. In such complex task spaces, it is essential to rely on some form of Automatic Curriculum Learning (ACL) to adapt the task sampling distribution to a given learning agent, instead of randomly sampling tasks, as many could end up being either trivial or unfeasible. Since it is hard to get prior knowledge on such task spaces, many ACL algorithms explore the task space to detect progress niches over time, a costly tabula-rasa process that needs to be performed for each new learning agents, although they might have similarities in their capabilities profiles. To address this limitation, we introduce the concept of Meta-ACL, and formalize it in the context of black-box RL learners, i.e. algorithms seeking to generalize curriculum generation to an (unknown) distribution of learners. In this work, we present AGAIN, a first instantiation of Meta-ACL, and showcase its benefits for curriculum generation over classical ACL in multiple simulated environments including procedurally generated parkour environments with learners of varying morphologies. Videos and code are available at https://sites.google.com/view/meta-acl .

  • 4 authors
·
Nov 16, 2020

ThinkTuning: Instilling Cognitive Reflections without Distillation

Recent advances in test-time scaling have led to the emergence of thinking LLMs that exhibit self-reflective behaviors and multi-step reasoning. While RL drives this self-improvement paradigm, a recent study (Gandhi et al., 2025) shows that RL alone does not truly instill these new reasoning abilities - it merely draws out behaviors already present in the base models. This raises a question: How can we train the models that don't exhibit such thinking behavior to develop it in the first place? To this end, we propose ThinkTuning, a GRPO-based interactive training approach where we augment the rollouts of a student model with the guidance from a teacher model. A simple idea from classroom practice inspires our method: a teacher poses a problem, lets the student try an answer, then gives corrective feedback -- enough to point the mind in the right direction and then show the solution. Each piece of feedback reshapes the student's thoughts, leading them to arrive at the correct solution. Similarly, we find that this type of implicit supervision through feedback from a teacher model of the same size improves the reasoning capabilities of the student model. In particular, on average, our method shows a 3.85% improvement over zero-shot baselines across benchmarks, and on MATH-500, AIME and GPQA-Diamond it shows 2.08%, 2.23% and 3.99% improvements over the vanilla-GRPO baseline. Source code is available at https://github.com/3rdAT/ThinkTuning.

  • 7 authors
·
Aug 11

Distilling Instruction-following Abilities of Large Language Models with Task-aware Curriculum Planning

The process of instruction tuning aligns pre-trained large language models (LLMs) with open-domain instructions and human-preferred responses. While several studies have explored autonomous approaches to distilling and annotating instructions from more powerful proprietary LLMs, such as ChatGPT, they often neglect the impact of task distributions and the varying difficulty of instructions of the training sets. This oversight can lead to imbalanced knowledge capabilities and poor generalization powers of small student LLMs. To address this challenge, we introduce Task-Aware Curriculum Planning for Instruction Refinement (TAPIR), a multi-round distillation framework with balanced task distributions and dynamic difficulty adjustment. This approach utilizes an oracle LLM to select instructions that are difficult for a student LLM to follow and distill instructions with balanced task distributions. By incorporating curriculum planning, our approach systematically escalates the difficulty levels, progressively enhancing the student LLM's capabilities. We rigorously evaluate TAPIR using two widely recognized benchmarks, including AlpacaEval 2.0 and MT-Bench. The empirical results demonstrate that the student LLMs, trained with our method and less training data, outperform larger instruction-tuned models and strong distillation baselines. The improvement is particularly notable in complex tasks, such as logical reasoning and code generation.

  • 4 authors
·
May 22, 2024

Cyclical Curriculum Learning

Artificial neural networks (ANN) are inspired by human learning. However, unlike human education, classical ANN does not use a curriculum. Curriculum Learning (CL) refers to the process of ANN training in which examples are used in a meaningful order. When using CL, training begins with a subset of the dataset and new samples are added throughout the training, or training begins with the entire dataset and the number of samples used is reduced. With these changes in training dataset size, better results can be obtained with curriculum, anti-curriculum, or random-curriculum methods than the vanilla method. However, a generally efficient CL method for various architectures and data sets is not found. In this paper, we propose cyclical curriculum learning (CCL), in which the data size used during training changes cyclically rather than simply increasing or decreasing. Instead of using only the vanilla method or only the curriculum method, using both methods cyclically like in CCL provides more successful results. We tested the method on 18 different data sets and 15 architectures in image and text classification tasks and obtained more successful results than no-CL and existing CL methods. We also have shown theoretically that it is less erroneous to apply CL and vanilla cyclically instead of using only CL or only vanilla method. The code of Cyclical Curriculum is available at https://github.com/CyclicalCurriculum/Cyclical-Curriculum.

  • 2 authors
·
Feb 11, 2022

APRIL: Active Partial Rollouts in Reinforcement Learning to Tame Long-tail Generation

Reinforcement learning (RL) has become a cornerstone in advancing large-scale pre-trained language models (LLMs). Successive generations, including GPT-o series, DeepSeek-R1, Kimi-K1.5, Grok 4, and GLM-4.5, have relied on large-scale RL training to enhance reasoning and coding capabilities. To meet the community's growing RL needs, numerous RL frameworks have been proposed. However, RL training remains computationally expensive, with rollout generation accounting for more than 90% of total runtime. In addition, its efficiency is often constrained by the long-tail distribution of rollout response lengths, where a few lengthy responses stall entire batches, leaving GPUs idle and underutilized. As model and rollout sizes continue to grow, this bottleneck increasingly limits scalability. To address this challenge, we propose Active Partial Rollouts in Reinforcement Learning (APRIL), which mitigates long-tail inefficiency. In the rollout phase, APRIL over-provisions rollout requests, terminates once the target number of responses is reached, and recycles incomplete responses for continuation in future steps. This strategy ensures that no rollouts are discarded while substantially reducing GPU idle time. Experiments show that APRIL improves rollout throughput by 22.5% on average (at most 44%) across commonly used RL algorithms (GRPO, DAPO, GSPO), accelerates convergence, and achieves 2.1% on average(at most 8%) higher final accuracy across tasks. Moreover, APRIL is both framework and hardware agnostic, already integrated into the slime RL framework, and deployable on NVIDIA and AMD GPUs alike. Taken together, this work unifies system-level and algorithmic considerations in proposing APRIL, with the aim of advancing RL training efficiency and inspiring further optimizations in RL systems. Our codebase is available at https://github.com/RLsys-Foundation/APRIL

  • 18 authors
·
Sep 22

Learn the Ropes, Then Trust the Wins: Self-imitation with Progressive Exploration for Agentic Reinforcement Learning

Reinforcement learning (RL) is the dominant paradigm for sharpening strategic tool use capabilities of LLMs on long-horizon, sparsely-rewarded agent tasks, yet it faces a fundamental challenge of exploration-exploitation trade-off. Existing studies stimulate exploration through the lens of policy entropy, but such mechanical entropy maximization is prone to RL training instability due to the multi-turn distribution shifting. In this paper, we target the progressive exploration-exploitation balance under the guidance of the agent own experiences without succumbing to either entropy collapsing or runaway divergence. We propose SPEAR, a curriculum-based self-imitation learning (SIL) recipe for training agentic LLMs. It extends the vanilla SIL framework, where a replay buffer stores self-generated promising trajectories for off-policy update, by gradually steering the policy evolution within a well-balanced range of entropy across stages. Specifically, our approach incorporates a curriculum to manage the exploration process, utilizing intrinsic rewards to foster skill-level exploration and facilitating action-level exploration through SIL. At first, the auxiliary tool call reward plays a critical role in the accumulation of tool-use skills, enabling broad exposure to the unfamiliar distributions of the environment feedback with an upward entropy trend. As training progresses, self-imitation gets strengthened to exploit existing successful patterns from replayed experiences for comparative action-level exploration, accelerating solution iteration without unbounded entropy growth. To further stabilize training, we recalibrate the advantages of experiences in the replay buffer to address the potential policy drift. Reugularizations such as the clipping of tokens with high covariance between probability and advantage are introduced to the trajectory-level entropy control to curb over-confidence.

tencent Tencent
·
Sep 26 4

CRAFT-GUI: Curriculum-Reinforced Agent For GUI Tasks

As autonomous agents become adept at understanding and interacting with graphical user interface (GUI) environments, a new era of automated task execution is emerging. Recent studies have demonstrated that Reinforcement Learning (RL) can effectively enhance agents' performance in dynamic interactive GUI environments. However, these methods face two key limitations: (1) they overlook the significant variation in difficulty across different GUI tasks by treating the entire training data as a uniform set, which hampers the agent's ability to adapt its learning process; and (2) most approaches collapse task-specific nuances into a single, coarse reward, leaving the agent with a uniform signal that yields inefficient policy updates. To address these limitations, we propose CRAFT-GUI, a curriculum learning framework based on Group Relative Policy Optimization (GRPO) that explicitly accounts for the varying difficulty across trajectories. To enable more fine-grained policy optimization, we design a reward function that combines simple rule-based signals with model-judged evaluation, providing richer and more nuanced feedback during training. Experimental results demonstrate that our method achieves significant improvements over previous state-of-the-art approaches, outperforming them by 5.6% on public benchmarks Android Control and 10.3% on our internal online benchmarks, respectively. These findings empirically validate the effectiveness of integrating reinforcement learning with curriculum learning in GUI interaction tasks.

  • 7 authors
·
Aug 15

DRIVE: Data Curation Best Practices for Reinforcement Learning with Verifiable Reward in Competitive Code Generation

Recent reasoning-first models (e.g., OpenAI o1, DeepSeek R1) have spurred a resurgence of interest in RLVR. Nevertheless, advances are dominated by mathematics (e.g., AIME), with competitive-programming code generation underexplored and data curation receiving less attention than RL algorithm design. We investigate how to construct RLVR datasets (i.e., RL prompts) and present practical training techniques that yield strong performance on competitive-programming code generation. Our pipeline begins with supervised fine-tuning (SFT) distilled from strong open-source models, augmented with general-purpose and reasoning-intensive data. RL then follows a two-stage process with executable, testcase-driven rewards: first, training on a large, uniformly distributed set of competitive-programming problems using Group Relative Policy Optimization (GRPO) with 8 rollouts per prompt and a relatively short response-generation window (e.g., 32k during SFT and 24k in this stage) to expand entropy and mitigate repetition and truncation; second, we perform Pre-GRPO: updating on a small, high-quality set of challenging problems with a large rollout budget (64 rollouts per prompt) under a hard-focus curriculum that continuously retains the most difficult instances throughout training. We implement our method on Qwen2.5-32B and evaluate on LeetCode and Codeforces weekly contests to avoid data leakage. The resulting model achieves state-of-the-art performance among models of similar scale and is comparable to leading systems such as DeepSeek v3.1 and Doubao-1.5-Thinking. We also examine scaling trends and observe strong RL scaling on an internal large-scale MoE model. Our study distills concise best practices for data curation, entropy expansion, and curriculum design in RLVR for competitive-programming code generation.

tencent Tencent
·
Nov 9 5

Efficient Multi-turn RL for GUI Agents via Decoupled Training and Adaptive Data Curation

Vision-language model (VLM) based GUI agents show promise for automating complex desktop and mobile tasks, but face significant challenges in applying reinforcement learning (RL): (1) slow multi-turn interactions with GUI environments for policy rollout, and (2) insufficient high-quality agent-environment interactions for policy learning. To address these challenges, we propose DART, a Decoupled Agentic RL Training framework for GUI agents, which coordinates heterogeneous modules in a highly decoupled manner. DART separates the training system into four asynchronous modules: environment cluster, rollout service, data manager, and trainer. This design enables non-blocking communication, asynchronous training, rollout-wise trajectory sampling, and per-worker model synchronization, significantly improving the system efficiency: 1.6*GPU utilization for rollout, 1.9* training throughput, and 5.5* environment utilization. To facilitate effective learning from abundant samples, we introduce an adaptive data curation scheme: (1) pre-collecting successful trajectories for challenging tasks to supplement sparse success in online sampling; (2) dynamically adjusting rollout numbers and trajectory lengths based on task difficulty; (3) training selectively on high-entropy steps to prioritize critical decisions; (4) stabilizing learning via truncated importance sampling for policy mismatch between policy rollout and updating. On the OSWorld benchmark, DART-GUI-7B achieves a 42.13% task success rate, a 14.61% absolute gain over the base model, and 7.34% higher than open-source SOTA. We will fully open-source our training framework, data, and model checkpoints via computer-use-agents.github.io/dart-gui, which we believe is a timely contribution to the open-source community of agentic RL training.

CLUTR: Curriculum Learning via Unsupervised Task Representation Learning

Reinforcement Learning (RL) algorithms are often known for sample inefficiency and difficult generalization. Recently, Unsupervised Environment Design (UED) emerged as a new paradigm for zero-shot generalization by simultaneously learning a task distribution and agent policies on the generated tasks. This is a non-stationary process where the task distribution evolves along with agent policies; creating an instability over time. While past works demonstrated the potential of such approaches, sampling effectively from the task space remains an open challenge, bottlenecking these approaches. To this end, we introduce CLUTR: a novel unsupervised curriculum learning algorithm that decouples task representation and curriculum learning into a two-stage optimization. It first trains a recurrent variational autoencoder on randomly generated tasks to learn a latent task manifold. Next, a teacher agent creates a curriculum by maximizing a minimax REGRET-based objective on a set of latent tasks sampled from this manifold. Using the fixed-pretrained task manifold, we show that CLUTR successfully overcomes the non-stationarity problem and improves stability. Our experimental results show CLUTR outperforms PAIRED, a principled and popular UED method, in the challenging CarRacing and navigation environments: achieving 10.6X and 45\% improvement in zero-shot generalization, respectively. CLUTR also performs comparably to the non-UED state-of-the-art for CarRacing, while requiring 500X fewer environment interactions.

  • 7 authors
·
Oct 18, 2022

FAPO: Flawed-Aware Policy Optimization for Efficient and Reliable Reasoning

Reinforcement learning with verifiable rewards (RLVR) has emerged as a promising paradigm for enhancing the reasoning capabilities of large language models (LLMs). In this context, models explore reasoning trajectories and exploit rollouts with correct answers as positive signals for policy optimization. However, these rollouts might involve flawed patterns such as answer-guessing and jump-in-reasoning. Such flawed-positive rollouts are rewarded identically to fully correct ones, causing policy models to internalize these unreliable reasoning patterns. In this work, we first conduct a systematic study of flawed-positive rollouts in RL and find that they enable rapid capability gains during the early optimization stage, while constraining reasoning capability later by reinforcing unreliable patterns. Building on these insights, we propose Flawed-Aware Policy Optimization (FAPO), which presents a parameter-free reward penalty for flawed-positive rollouts, enabling the policy to leverage them as useful shortcuts in the warm-up stage, securing stable early gains, while gradually shifting optimization toward reliable reasoning in the later refinement stage. To accurately and comprehensively detect flawed-positive rollouts, we introduce a generative reward model (GenRM) with a process-level reward that precisely localizes reasoning errors. Experiments show that FAPO is effective in broad domains, improving outcome correctness, process reliability, and training stability without increasing the token budget.

  • 6 authors
·
Oct 26 1

EduFlow: Advancing MLLMs' Problem-Solving Proficiency through Multi-Stage, Multi-Perspective Critique

Multimodal large language models (MLLMs) still perform poorly on scientific tasks, particularly those requiring multi-step and interpretable reasoning. Their limitations include insufficient scientific reasoning patterns, lack of global coherence in multi-step inference, and the absence of reflective self-correction, making them unreliable in structured scientific contexts. We introduce EduFlow, the first end-to-end framework that covers the full pipeline of educational scientific reasoning, including data selection, MCTS-based trajectory construction, model training, and output optimization. At its core is EduPRM, a process-aware reward model that critiques reasoning steps with tags and justifications. EduPRM is trained via curriculum learning on three complementary supervision sources: MCTS-guided trajectories, error-injected critiques, and teacher-student dialogues, enabling dynamic adaptation to multi-stage problem solving and iterative refinement during inference. We further propose EduMCTS, a domain-adapted search framework that introduces bootstrapping actions specifically designed for educational reasoning, such as a self-reflection mechanism that promotes reflective error correction. It further leverages EduPRM's fine-grained feedback to guide the search toward higher-quality reasoning trajectories. By applying self-consistency and rejection sampling, we constructed EduMCTS-160K, a large-scale dataset of educational reasoning trajectories. Extensive experiments demonstrate that EduFlow enhances reasoning consistency and coherence. Code, data, and models will be released.

  • 6 authors
·
Jul 12

Scaling Agent Learning via Experience Synthesis

While reinforcement learning (RL) can empower large language model (LLM) agents by enabling self-improvement through interaction, its practical adoption remains challenging due to costly rollouts, limited task diversity, unreliable reward signals, and infrastructure complexity, all of which obstruct the collection of scalable experience data. To address these challenges, we introduce DreamGym, the first unified framework designed to synthesize diverse experiences with scalability in mind to enable effective online RL training for autonomous agents. Rather than relying on expensive real-environment rollouts, DreamGym distills environment dynamics into a reasoning-based experience model that derives consistent state transitions and feedback signals through step-by-step reasoning, enabling scalable agent rollout collection for RL. To improve the stability and quality of transitions, DreamGym leverages an experience replay buffer initialized with offline real-world data and continuously enriched with fresh interactions to actively support agent training. To improve knowledge acquisition, DreamGym adaptively generates new tasks that challenge the current agent policy, enabling more effective online curriculum learning. Experiments across diverse environments and agent backbones demonstrate that DreamGym substantially improves RL training, both in fully synthetic settings and in sim-to-real transfer scenarios. On non-RL-ready tasks like WebArena, DreamGym outperforms all baselines by over 30%. And in RL-ready but costly settings, it matches GRPO and PPO performance using only synthetic interactions. When transferring a policy trained purely on synthetic experiences to real-environment RL, DreamGym yields significant additional performance gains while requiring far fewer real-world interactions, providing a scalable warm-start strategy for general-purpose RL.

Words as Beacons: Guiding RL Agents with High-Level Language Prompts

Sparse reward environments in reinforcement learning (RL) pose significant challenges for exploration, often leading to inefficient or incomplete learning processes. To tackle this issue, this work proposes a teacher-student RL framework that leverages Large Language Models (LLMs) as "teachers" to guide the agent's learning process by decomposing complex tasks into subgoals. Due to their inherent capability to understand RL environments based on a textual description of structure and purpose, LLMs can provide subgoals to accomplish the task defined for the environment in a similar fashion to how a human would do. In doing so, three types of subgoals are proposed: positional targets relative to the agent, object representations, and language-based instructions generated directly by the LLM. More importantly, we show that it is possible to query the LLM only during the training phase, enabling agents to operate within the environment without any LLM intervention. We assess the performance of this proposed framework by evaluating three state-of-the-art open-source LLMs (Llama, DeepSeek, Qwen) eliciting subgoals across various procedurally generated environment of the MiniGrid benchmark. Experimental results demonstrate that this curriculum-based approach accelerates learning and enhances exploration in complex tasks, achieving up to 30 to 200 times faster convergence in training steps compared to recent baselines designed for sparse reward environments.

  • 4 authors
·
Oct 11, 2024

VADE: Variance-Aware Dynamic Sampling via Online Sample-Level Difficulty Estimation for Multimodal RL

Group-based policy optimization methods like GRPO and GSPO have become standard for training multimodal models, leveraging group-wise rollouts and relative advantage estimation. However, they suffer from a critical gradient vanishing problem when all responses within a group receive identical rewards, causing advantage estimates to collapse and training signals to diminish. Existing attempts to mitigate this issue fall into two paradigms: filtering-based and sampling-based methods. Filtering-based methods first generate rollouts broadly and then retroactively filter out uninformative groups, leading to substantial computational overhead. Sampling-based methods proactively select effective samples before rollout but rely on static criteria or prior dataset knowledge, lacking real-time adaptability. To address these issues, we propose VADE, a Variance-Aware Dynamic sampling framework via online sample-level difficulty Estimation. Our framework integrates three key components: online sample-level difficulty estimation using Beta distributions, a Thompson sampler that maximizes information gain through the estimated correctness probability, and a two-scale prior decay mechanism that maintains robust estimation under policy evolution. This three components design enables VADE to dynamically select the most informative samples, thereby amplifying training signals while eliminating extra rollout costs. Extensive experiments on multimodal reasoning benchmarks show that VADE consistently outperforms strong baselines in both performance and sample efficiency, while achieving a dramatic reduction in computational overhead. More importantly, our framework can serves as a plug-and-play component to be seamlessly integrated into existing group-based RL algorithms. Code and models are available at https://VADE-RL.github.io.

  • 8 authors
·
Nov 24

BroRL: Scaling Reinforcement Learning via Broadened Exploration

Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a key ingredient for unlocking complex reasoning capabilities in large language models. Recent work ProRL has shown promise in scaling RL by increasing the number of training steps. However, performance plateaus after thousands of steps, with clear diminishing returns from allocating more computation to additional training. In this work, we investigate a complementary paradigm for scaling RL, BroR-Lincreasing the number of rollouts per example to hundreds to exhaustively Broaden exploration, which yields continuous performance gains beyond the saturation point observed in ProRL when scaling the number of training steps. Our approach is motivated by a mass balance equation analysis allowing us to characterize the rate of change in probability mass for correct and incorrect tokens during the reinforcement process. We show that under a one-step RL assumption, sampled rollout tokens always contribute to correct-mass expansion, while unsampled tokens outside rollouts may lead to gains or losses depending on their distribution and the net reward balance. Importantly, as the number of rollouts per example N increases, the effect of unsampled terms diminishes, ensuring overall correct-mass expansion. To validate our theoretical analysis, we conduct simulations under more relaxed conditions and find that a sufficiently large rollout size N-corresponding to ample exploration-guarantees an increase in the probability mass of all correct tokens. Empirically, BroRL revives models saturated after 3K ProRL training steps and demonstrates robust, continuous improvement, achieving state-of-the-art results for the 1.5B model across diverse benchmarks.

nvidia NVIDIA
·
Oct 1 2

Revolutionizing Reinforcement Learning Framework for Diffusion Large Language Models

We propose TraceRL, a trajectory-aware reinforcement learning framework for diffusion language models (DLMs) that incorporates preferred inference trajectory into post-training, and is applicable across different architectures. Equipped with a diffusion-based value model that enhances training stability, we demonstrate improved reasoning performance on complex math and coding tasks. Besides, it can also be applied to adapt block-specific models to larger blocks, which improves sampling flexibility. Employing TraceRL, we derive a series of state-of-the-art diffusion language models, namely TraDo. Although smaller than 7B-scale AR models, TraDo-4B-Instruct still consistently outperforms them across complex math reasoning tasks. TraDo-8B-Instruct achieves relative accuracy improvements of 6.1% over Qwen2.5-7B-Instruct and 51.3% over Llama3.1-8B-Instruct on mathematical reasoning benchmarks. Through curriculum learning, we also derive the first long-CoT DLM, outperforming Qwen2.5-7B-Instruct on MATH500 with an 18.1% relative accuracy gain. To facilitate reproducible research and practical applications, we release a comprehensive open-source framework for building, training, and deploying diffusion LLMs across diverse architectures. The framework integrates accelerated KV-cache techniques and inference engines for both inference and reinforcement learning, and includes implementations of various supervised fine-tuning and RL methods for mathematics, coding, and general tasks. Code and Models: https://github.com/Gen-Verse/dLLM-RL

  • 6 authors
·
Sep 8 5

MedS^3: Towards Medical Small Language Models with Self-Evolved Slow Thinking

Medical language models (MLMs) have become pivotal in advancing medical natural language processing. However, prior models that rely on pre-training or supervised fine-tuning often exhibit low data efficiency and limited practicality in real-world clinical applications. While OpenAIs O1 highlights test-time scaling in mathematics, attempts to replicate this approach in medicine typically distill responses from GPT-series models to open-source models, focusing primarily on multiple-choice tasks. This strategy, though straightforward, neglects critical concerns like data privacy and realistic deployment in clinical settings. In this work, we present a deployable, small-scale medical language model, \mone, designed for long-chain reasoning in clinical tasks using a self-evolution paradigm. Starting with a seed dataset of around 8,000 instances spanning five domains and 16 datasets, we prompt a base policy model to perform Monte Carlo Tree Search (MCTS) to construct verifiable reasoning chains. Each reasoning step is assigned an evolution rollout value, allowing verified trajectories to train the policy model and the reward model. During inference, the policy model generates multiple responses, and the reward model selects the one with the highest reward score. Experiments on eleven evaluation datasets demonstrate that \mone outperforms prior open-source models by 2 points, with the addition of the reward model further boosting performance (sim13 points), surpassing GPT-4o-mini. Code and data are available at https://github.com/pixas/MedSSS.

  • 6 authors
·
Jan 21

Beyond Scaling Law: A Data-Efficient Distillation Framework for Reasoning

Large language models (LLMs) demonstrate remarkable reasoning capabilities in tasks such as algorithmic coding and mathematical problem-solving. Recent methods have improved reasoning through expanded corpus and multistage training combining reinforcement learning and supervised fine-tuning. Although some methods suggest that small but targeted dataset can incentivize reasoning via only distillation, a reasoning scaling laws is still taking shape, increasing computational costs. To address this, we propose a data-efficient distillation framework (DED) that optimizes the Pareto frontier of reasoning distillation. Inspired by the on-policy learning and diverse roll-out strategies of reinforcement learning, the key idea of our approach is threefold: (1) We identify that benchmark scores alone do not determine an effective teacher model. Through comprehensive comparisons of leading reasoning LLMs, we develop a method to select an optimal teacher model. (2) While scaling distillation can enhance reasoning, it often degrades out-of-domain performance. A carefully curated, smaller corpus achieves a balanced trade-off between in-domain and out-of-domain capabilities. (3) Diverse reasoning trajectories encourage the student model to develop robust reasoning skills. We validate our method through evaluations on mathematical reasoning (AIME 2024/2025, MATH-500) and code generation (LiveCodeBench), achieving state-of-the-art results with only 0.8k carefully curated examples, bypassing the need for extensive scaling. Our systematic analysis demonstrates that DED outperforms existing methods by considering factors beyond superficial hardness, token length, or teacher model capability. This work offers a practical and efficient pathway to advanced reasoning while preserving general capabilities.

  • 14 authors
·
Aug 13

Agent0: Unleashing Self-Evolving Agents from Zero Data via Tool-Integrated Reasoning

Large Language Model (LLM) Agents, often trained with Reinforcement Learning (RL), are constrained by a dependency on human-curated data, limiting scalability and tethering AI to human knowledge. Existing self-evolution frameworks offer an alternative but are typically restricted by the model's inherent capabilities and single-round interactions, hindering the development of complex curricula involving tool use or dynamic reasoning. We introduce Agent0, a fully autonomous framework that evolves high-performing agents without external data through multi-step co-evolution and seamless tool integration. Agent0 establishes a symbiotic competition between two agents initialized from the same base LLM: a curriculum agent that proposes increasingly challenging frontier tasks, and an executor agent that learns to solve them. We integrate external tools to enhance the executor's problem-solving capacity; this improvement, in turn, pressures the curriculum agent to construct more complex, tool-aware tasks. Through this iterative process, Agent0 establishes a self-reinforcing cycle that continuously produces high-quality curricula. Empirically, Agent0 substantially boosts reasoning capabilities, improving the Qwen3-8B-Base model by 18% on mathematical reasoning and 24% on general reasoning benchmarks. Code is available at https://github.com/aiming-lab/Agent0.

DataEnvGym: Data Generation Agents in Teacher Environments with Student Feedback

The process of creating training data to teach models is currently driven by humans, who manually analyze model weaknesses and plan how to create data that improves a student model. Recent approaches using LLMs as annotators reduce human effort, but still require humans to interpret feedback from evaluations and control the LLM to produce data the student needs. Automating this labor-intensive process by creating autonomous data generation agents - or teachers - is desirable, but requires environments that can simulate the feedback-driven, iterative, closed loop of data creation. To enable rapid and scalable testing for such agents and their modules, we introduce DataEnvGym, a testbed of teacher environments for data generation agents. DataEnvGym frames data generation as a sequential decision-making task, involving an agent consisting of a data generation policy (which generates a plan for creating training data) and a data generation engine (which transforms the plan into data), inside an environment that provides student feedback. The agent's goal is to improve student performance. Students are iteratively trained and evaluated on generated data, with their feedback (in the form of errors or weak skills) being reported to the agent after each iteration. DataEnvGym includes multiple teacher environment instantiations across 3 levels of structure in the state representation and action space. More structured environments are based on inferred skills and offer more interpretability and curriculum control. We support 3 diverse tasks (math, code, and VQA) and test multiple students and teachers. Example agents in our teaching environments can iteratively improve students across tasks and settings. Moreover, we show that environments teach different skill levels and test variants of key modules, pointing to future work in improving data generation agents, engines, and feedback mechanisms.

  • 4 authors
·
Oct 8, 2024

TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL

Training autonomous agents able to generalize to multiple tasks is a key target of Deep Reinforcement Learning (DRL) research. In parallel to improving DRL algorithms themselves, Automatic Curriculum Learning (ACL) study how teacher algorithms can train DRL agents more efficiently by adapting task selection to their evolving abilities. While multiple standard benchmarks exist to compare DRL agents, there is currently no such thing for ACL algorithms. Thus, comparing existing approaches is difficult, as too many experimental parameters differ from paper to paper. In this work, we identify several key challenges faced by ACL algorithms. Based on these, we present TeachMyAgent (TA), a benchmark of current ACL algorithms leveraging procedural task generation. It includes 1) challenge-specific unit-tests using variants of a procedural Box2D bipedal walker environment, and 2) a new procedural Parkour environment combining most ACL challenges, making it ideal for global performance assessment. We then use TeachMyAgent to conduct a comparative study of representative existing approaches, showcasing the competitiveness of some ACL algorithms that do not use expert knowledge. We also show that the Parkour environment remains an open problem. We open-source our environments, all studied ACL algorithms (collected from open-source code or re-implemented), and DRL students in a Python package available at https://github.com/flowersteam/TeachMyAgent.

  • 4 authors
·
Mar 17, 2021

Boosting the Generalization and Reasoning of Vision Language Models with Curriculum Reinforcement Learning

While state-of-the-art vision-language models (VLMs) have demonstrated remarkable capabilities in complex visual-text tasks, their success heavily relies on massive model scaling, limiting their practical deployment. Small-scale VLMs offer a more practical alternative but face significant challenges when trained with traditional supervised fine-tuning (SFT), particularly in two aspects: out-of-domain (OOD) generalization and reasoning abilities, which significantly lags behind the contemporary Large language models (LLMs). To address these challenges, we propose Curriculum Reinforcement Finetuning (Curr-ReFT), a novel post-training paradigm specifically designed for small-scale VLMs. Inspired by the success of reinforcement learning in LLMs, Curr-ReFT comprises two sequential stages: (1) Curriculum Reinforcement Learning, which ensures steady progression of model capabilities through difficulty-aware reward design, transitioning from basic visual perception to complex reasoning tasks; and (2) Rejected Sampling-based Self-improvement, which maintains the fundamental capabilities of VLMs through selective learning from high-quality multimodal and language examples. Extensive experiments demonstrate that models trained with Curr-ReFT paradigm achieve state-of-the-art performance across various visual tasks in both in-domain and out-of-domain settings. Moreover, our Curr-ReFT enhanced 3B model matches the performance of 32B-parameter models, demonstrating that efficient training paradigms can effectively bridge the gap between small and large models.

  • 6 authors
·
Mar 10

WebRL: Training LLM Web Agents via Self-Evolving Online Curriculum Reinforcement Learning

Large language models (LLMs) have shown remarkable potential as autonomous agents, particularly in web-based tasks. However, existing LLM web agents heavily rely on expensive proprietary LLM APIs, while open LLMs lack the necessary decision-making capabilities. This paper introduces WebRL, a self-evolving online curriculum reinforcement learning framework designed to train high-performance web agents using open LLMs. WebRL addresses three key challenges in building LLM web agents, including the scarcity of training tasks, sparse feedback signals, and policy distribution drift in online learning. Specifically, WebRL incorporates 1) a self-evolving curriculum that generates new tasks from unsuccessful attempts, 2) a robust outcome-supervised reward model (ORM), and 3) adaptive reinforcement learning strategies to ensure consistent improvements. We apply WebRL to transform open Llama-3.1 and GLM-4 models into proficient web agents. On WebArena-Lite, WebRL improves the success rate of Llama-3.1-8B from 4.8% to 42.4%, and from 6.1% to 43% for GLM-4-9B. These open models significantly surpass the performance of GPT-4-Turbo (17.6%) and GPT-4o (13.9%) and outperform previous state-of-the-art web agents trained on open LLMs (AutoWebGLM, 18.2%). Our findings demonstrate WebRL's effectiveness in bridging the gap between open and proprietary LLM-based web agents, paving the way for more accessible and powerful autonomous web interaction systems.

  • 13 authors
·
Nov 4, 2024 1

Depth-Breadth Synergy in RLVR: Unlocking LLM Reasoning Gains with Adaptive Exploration

Reinforcement Learning with Verifiable Reward (RLVR) has emerged as a powerful paradigm for unlocking reasoning capabilities in large language models, yet its full potential is hindered by two under-explored dimensions: Depth-the hardest problem a model can sample; Breadth-the number of instances consumed in a single iteration. We dissect the popular GRPO algorithm and reveal a systematic bias: the cumulative-advantage disproportionately weights samples with medium accuracy, while down-weighting the low-accuracy instances that are crucial for pushing reasoning boundaries. To rectify the depth neglect, we introduce Difficulty Adaptive Rollout Sampling (DARS), which re-weights hard problems through targeted multi-stage rollouts, thereby increasing the number of positive rollouts for hard problems. Empirically, naively enlarging rollout size only accelerates convergence and even hurts Pass@K. Our DARS, in contrast, delivers consistent Pass@K gains without extra inference cost at convergence. Just as we adaptively expanded the depth of exploration, we now ask whether aggressively scaling the breadth of training data can further amplify reasoning gains. To this end, we intensely scale batch size and replace PPO's mini-batch iterations with full-batch updates over multiple epochs. Increasing breadth significantly enhances Pass@1 performance. Large-breadth training sustains high token-level entropy, indicating continued exploration and reduced gradient noise. We further present DARS-B, which augments DARS with large breadth, and demonstrate simultaneous gains in Pass@K and Pass@1. The results confirm that breadth and adaptive exploration across depth operate as orthogonal dimensions in RLVR, which are key to unleashing the reasoning power of RLVR.

  • 8 authors
·
Aug 19

MMedAgent-RL: Optimizing Multi-Agent Collaboration for Multimodal Medical Reasoning

Medical Large Vision-Language Models (Med-LVLMs) have shown strong potential in multimodal diagnostic tasks. However, existing single-agent models struggle to generalize across diverse medical specialties, limiting their performance. Recent efforts introduce multi-agent collaboration frameworks inspired by clinical workflows, where general practitioners (GPs) and specialists interact in a fixed sequence. Despite improvements, these static pipelines lack flexibility and adaptability in reasoning. To address this, we propose MMedAgent-RL, a reinforcement learning (RL)-based multi-agent framework that enables dynamic, optimized collaboration among medical agents. Specifically, we train two GP agents based on Qwen2.5-VL via RL: the triage doctor learns to assign patients to appropriate specialties, while the attending physician integrates the judgments from multi-specialists and its own knowledge to make final decisions. To address the inconsistency in specialist outputs, we introduce a curriculum learning (CL)-guided RL strategy that progressively teaches the attending physician to balance between imitating specialists and correcting their mistakes. Experiments on five medical VQA benchmarks demonstrate that MMedAgent-RL not only outperforms both open-source and proprietary Med-LVLMs, but also exhibits human-like reasoning patterns. Notably, it achieves an average performance gain of 20.7% over supervised fine-tuning baselines.

  • 11 authors
·
May 31

Online Difficulty Filtering for Reasoning Oriented Reinforcement Learning

Reasoning-Oriented Reinforcement Learning (RORL) enhances the reasoning ability of Large Language Models (LLMs). However, due to the sparsity of rewards in RORL, effective training is highly dependent on the selection of problems of appropriate difficulty. Although curriculum learning attempts to address this by adjusting difficulty, it often relies on static schedules, and even recent online filtering methods lack theoretical grounding and a systematic understanding of their effectiveness. In this work, we theoretically and empirically show that curating the batch with the problems that the training model achieves intermediate accuracy on the fly can maximize the effectiveness of RORL training, namely balanced online difficulty filtering. We first derive that the lower bound of the KL divergence between the initial and the optimal policy can be expressed with the variance of the sampled accuracy. Building on those insights, we show that balanced filtering can maximize the lower bound, leading to better performance. Experimental results across five challenging math reasoning benchmarks show that balanced online filtering yields an additional 10% in AIME and 4% improvements in average over plain GRPO. Moreover, further analysis shows the gains in sample efficiency and training time efficiency, exceeding the maximum reward of plain GRPO within 60% training time and the volume of the training set.

  • 6 authors
·
Apr 4

Large Language Models As MOOCs Graders

Massive open online courses (MOOCs) unlock the doors to free education for anyone around the globe with access to a computer and the internet. Despite this democratization of learning, the massive enrollment in these courses means it is almost impossible for one instructor to assess every student's writing assignment. As a result, peer grading, often guided by a straightforward rubric, is the method of choice. While convenient, peer grading often falls short in terms of reliability and validity. In this study, using 18 distinct settings, we explore the feasibility of leveraging large language models (LLMs) to replace peer grading in MOOCs. Specifically, we focus on two state-of-the-art LLMs: GPT-4 and GPT-3.5, across three distinct courses: Introductory Astronomy, Astrobiology, and the History and Philosophy of Astronomy. To instruct LLMs, we use three different prompts based on a variant of the zero-shot chain-of-thought (Zero-shot-CoT) prompting technique: Zero-shot-CoT combined with instructor-provided correct answers; Zero-shot-CoT in conjunction with both instructor-formulated answers and rubrics; and Zero-shot-CoT with instructor-offered correct answers and LLM-generated rubrics. Our results show that Zero-shot-CoT, when integrated with instructor-provided answers and rubrics, produces grades that are more aligned with those assigned by instructors compared to peer grading. However, the History and Philosophy of Astronomy course proves to be more challenging in terms of grading as opposed to other courses. Finally, our study reveals a promising direction for automating grading systems for MOOCs, especially in subjects with well-defined rubrics.

  • 4 authors
·
Feb 6, 2024

h1: Bootstrapping LLMs to Reason over Longer Horizons via Reinforcement Learning

Large language models excel at short-horizon reasoning tasks, but performance drops as reasoning horizon lengths increase. Existing approaches to combat this rely on inference-time scaffolding or costly step-level supervision, neither of which scales easily. In this work, we introduce a scalable method to bootstrap long-horizon reasoning capabilities using only existing, abundant short-horizon data. Our approach synthetically composes simple problems into complex, multi-step dependency chains of arbitrary length. We train models on this data using outcome-only rewards under a curriculum that automatically increases in complexity, allowing RL training to be scaled much further without saturating. Empirically, our method generalizes remarkably well: curriculum training on composed 6th-grade level math problems (GSM8K) boosts accuracy on longer, competition-level benchmarks (GSM-Symbolic, MATH-500, AIME) by up to 2.06x. It also transfers significantly to diverse out-of-distribution ReasoningGym domains and long-context benchmarks, indicating broader generalization. Importantly, our long-horizon improvements are significantly higher than baselines even at high pass@k, showing that models can learn new reasoning paths under RL. Theoretically, we show that curriculum RL with outcome rewards achieves an exponential improvement in sample complexity over full-horizon training, providing training signal comparable to dense supervision. h1 therefore introduces an efficient path towards scaling RL for long-horizon problems using only existing data.

  • 8 authors
·
Oct 8

Breaking the Exploration Bottleneck: Rubric-Scaffolded Reinforcement Learning for General LLM Reasoning

Recent advances in Large Language Models (LLMs) have underscored the potential of Reinforcement Learning (RL) to facilitate the emergence of reasoning capabilities. Despite the encouraging results, a fundamental dilemma persists as RL improvement relies on learning from high-quality samples, yet the exploration for such samples remains bounded by the inherent limitations of LLMs. This, in effect, creates an undesirable cycle in which what cannot be explored cannot be learned. In this work, we propose Rubric-Scaffolded Reinforcement Learning (RuscaRL), a novel instructional scaffolding framework designed to break the exploration bottleneck for general LLM reasoning. Specifically, RuscaRL introduces checklist-style rubrics as (1) explicit scaffolding for exploration during rollout generation, where different rubrics are provided as external guidance within task instructions to steer diverse high-quality responses. This guidance is gradually decayed over time, encouraging the model to internalize the underlying reasoning patterns; (2) verifiable rewards for exploitation during model training, where we can obtain robust LLM-as-a-Judge scores using rubrics as references, enabling effective RL on general reasoning tasks. Extensive experiments demonstrate the superiority of the proposed RuscaRL across various benchmarks, effectively expanding reasoning boundaries under the best-of-N evaluation. Notably, RuscaRL significantly boosts Qwen-2.5-7B-Instruct from 23.6 to 50.3 on HealthBench-500, surpassing GPT-4.1. Furthermore, our fine-tuned variant on Qwen3-30B-A3B-Instruct achieves 61.1 on HealthBench-500, outperforming leading LLMs including OpenAI-o3.

  • 13 authors
·
Aug 23 2

GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning

We present GLM-4.1V-Thinking, a vision-language model (VLM) designed to advance general-purpose multimodal reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework. We first develop a capable vision foundation model with significant potential through large-scale pre-training, which arguably sets the upper bound for the final performance. Reinforcement Learning with Curriculum Sampling (RLCS) then unlocks the full potential of the model, leading to comprehensive capability enhancement across a diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding, GUI-based agents, and long document understanding, among others. To facilitate research in this field, we open-source GLM-4.1V-9B-Thinking, which achieves state-of-the-art performance among models of comparable size. In a comprehensive evaluation across 28 public benchmarks, our model outperforms Qwen2.5-VL-7B on nearly all tasks and achieves comparable or even superior performance on 18 benchmarks relative to the significantly larger Qwen2.5-VL-72B. Notably, GLM-4.1V-9B-Thinking also demonstrates competitive or superior performance compared to closed-source models such as GPT-4o on challenging tasks including long document understanding and STEM reasoning, further underscoring its strong capabilities. Code, models and more information are released at https://github.com/THUDM/GLM-4.1V-Thinking.

Reinforcement Mid-Training

The development of state-of-the-art large language models is commonly understood as a two-stage process involving pre-training and post-training. We point out the need for an additional intermediate stage called reinforcement mid-training with potential for strong performance gains. In this paper, we formally define the problem and identify three key challenges: (1) inefficient training due to excessive reasoning steps, (2) disregard of the imbalanced token entropy distribution, and (3) underutilization of token information. To address these challenges, we propose RMT, a framework for efficient, adaptive, and unified reinforcement mid-training with various innovative components. In particular, we first introduce a dynamic token budget mechanism that constrains unnecessary reasoning steps and mitigates model overthinking. Next, we design a curriculum-based adaptive sampling method that fosters a progressive learning trajectory from easy to hard tokens. Finally, we present a dual training strategy that combines reinforcement learning with next-token prediction, ensuring targeted learning on key tokens and full exploitation of all token information. Extensive experiments demonstrate the superiority of RMT over state-of-the-art methods, achieving up to +64.91% performance improvement with only 21% of the reasoning length in language modeling. We also show that checkpoints obtained after reinforcement mid-training can benefit the subsequent post-training, yielding up to +18.76% improvement in the mathematical domain.

  • 7 authors
·
Sep 29 2

Squeeze the Soaked Sponge: Efficient Off-policy Reinforcement Finetuning for Large Language Model

Reinforcement Learning (RL) has demonstrated its potential to improve the reasoning ability of Large Language Models (LLMs). One major limitation of most existing Reinforcement Finetuning (RFT) methods is that they are on-policy RL in nature, i.e., data generated during the past learning process is not fully utilized. This inevitably comes at a significant cost of compute and time, posing a stringent bottleneck on continuing economic and efficient scaling. To this end, we launch the renaissance of off-policy RL and propose Reincarnating Mix-policy Proximal Policy Gradient (ReMix), a general approach to enable on-policy RFT methods like PPO and GRPO to leverage off-policy data. ReMix consists of three major components: (1) Mix-policy proximal policy gradient with an increased Update-To-Data (UTD) ratio for efficient training; (2) KL-Convex policy constraint to balance the trade-off between stability and flexibility; (3) Policy reincarnation to achieve a seamless transition from efficient early-stage learning to steady asymptotic improvement. In our experiments, we train a series of ReMix models upon PPO, GRPO and 1.5B, 7B base models. ReMix shows an average Pass@1 accuracy of 52.10% (for 1.5B model) with 0.079M response rollouts, 350 training steps and achieves 63.27%/64.39% (for 7B model) with 0.007M/0.011M response rollouts, 50/75 training steps, on five math reasoning benchmarks (i.e., AIME'24, AMC'23, Minerva, OlympiadBench, and MATH500). Compared with 15 recent advanced models, ReMix shows SOTA-level performance with an over 30x to 450x reduction in training cost in terms of rollout data volume. In addition, we reveal insightful findings via multifaceted analysis, including the implicit preference for shorter responses due to the Whipping Effect of off-policy discrepancy, the collapse mode of self-reflection behavior under the presence of severe off-policyness, etc.

  • 8 authors
·
Jul 9

EfficientTrain: Exploring Generalized Curriculum Learning for Training Visual Backbones

The superior performance of modern deep networks usually comes with a costly training procedure. This paper presents a new curriculum learning approach for the efficient training of visual backbones (e.g., vision Transformers). Our work is inspired by the inherent learning dynamics of deep networks: we experimentally show that at an earlier training stage, the model mainly learns to recognize some 'easier-to-learn' discriminative patterns within each example, e.g., the lower-frequency components of images and the original information before data augmentation. Driven by this phenomenon, we propose a curriculum where the model always leverages all the training data at each epoch, while the curriculum starts with only exposing the 'easier-to-learn' patterns of each example, and introduces gradually more difficult patterns. To implement this idea, we 1) introduce a cropping operation in the Fourier spectrum of the inputs, which enables the model to learn from only the lower-frequency components efficiently, 2) demonstrate that exposing the features of original images amounts to adopting weaker data augmentation, and 3) integrate 1) and 2) and design a curriculum learning schedule with a greedy-search algorithm. The resulting approach, EfficientTrain, is simple, general, yet surprisingly effective. As an off-the-shelf method, it reduces the wall-time training cost of a wide variety of popular models (e.g., ResNet, ConvNeXt, DeiT, PVT, Swin, and CSWin) by >1.5x on ImageNet-1K/22K without sacrificing accuracy. It is also effective for self-supervised learning (e.g., MAE). Code is available at https://github.com/LeapLabTHU/EfficientTrain.

  • 7 authors
·
Nov 17, 2022

SRLAgent: Enhancing Self-Regulated Learning Skills through Gamification and LLM Assistance

Self-regulated learning (SRL) is crucial for college students navigating increased academic demands and independence. Insufficient SRL skills can lead to disorganized study habits, low motivation, and poor time management, undermining learners ability to thrive in challenging environments. Through a formative study involving 59 college students, we identified key challenges students face in developing SRL skills, including difficulties with goal-setting, time management, and reflective learning. To address these challenges, we introduce SRLAgent, an LLM-assisted system that fosters SRL skills through gamification and adaptive support from large language models (LLMs). Grounded in Zimmermans three-phase SRL framework, SRLAgent enables students to engage in goal-setting, strategy execution, and self-reflection within an interactive game-based environment. The system offers real-time feedback and scaffolding powered by LLMs to support students independent study efforts. We evaluated SRLAgent using a between-subjects design, comparing it to a baseline system (SRL without Agent features) and a traditional multimedia learning condition. Results showed significant improvements in SRL skills within the SRLAgent group (p < .001, Cohens d = 0.234) and higher engagement compared to the baselines. This work highlights the value of embedding SRL scaffolding and real-time AI support within gamified environments, offering design implications for educational technologies that aim to promote deeper learning and metacognitive skill development.

  • 8 authors
·
Jun 11 2

Learning More with Less: A Dynamic Dual-Level Down-Sampling Framework for Efficient Policy Optimization

Critic-free methods like GRPO reduce memory demands by estimating advantages from multiple rollouts but tend to converge slowly, as critical learning signals are diluted by an abundance of uninformative samples and tokens. To tackle this challenge, we propose the Dynamic Dual-Level Down-Sampling (D^3S) framework that prioritizes the most informative samples and tokens across groups to improve the efficient of policy optimization. D^3S operates along two levels: (1) the sample-level, which selects a subset of rollouts to maximize advantage variance (Var(A)). We theoretically proven that this selection is positively correlated with the upper bound of the policy gradient norms, yielding higher policy gradients. (2) the token-level, which prioritizes tokens with a high product of advantage magnitude and policy entropy (|A_{i,t}|times H_{i,t}), focusing updates on tokens where the policy is both uncertain and impactful. Moreover, to prevent overfitting to high-signal data, D^3S employs a dynamic down-sampling schedule inspired by curriculum learning. This schedule starts with aggressive down-sampling to accelerate early learning and gradually relaxes to promote robust generalization. Extensive experiments on Qwen2.5 and Llama3.1 demonstrate that integrating D^3S into advanced RL algorithms achieves state-of-the-art performance and generalization while requiring fewer samples and tokens across diverse reasoning benchmarks. Our code is added in the supplementary materials and will be made publicly available.

  • 8 authors
·
Sep 26

When Models Can't Follow: Testing Instruction Adherence Across 256 LLMs

Despite widespread deployment of Large Language Models, systematic evaluation of instruction-following capabilities remains challenging. While comprehensive benchmarks exist, focused assessments that quickly diagnose specific instruction adherence patterns are valuable. As newer models may be trained on existing benchmarks, novel evaluation approaches are needed to assess genuine capabilities rather than memorized performance. This paper presents a streamlined evaluation framework using twenty carefully designed prompts to assess LLM instruction-following across diverse task categories. We demonstrate this framework through a large-scale empirical study conducted on October 14, 2025, testing 256 verified working models from 331 available via OpenRouter. To ensure methodological rigor and prevent selection bias, we first verified each model's basic functionality before inclusion. Unlike large-scale benchmarks requiring extensive computational resources, our approach offers a practical diagnostic tool researchers and practitioners can readily apply. Our methodology builds upon verifiable instructions while introducing a compact test suite balancing comprehensiveness with efficiency. Each prompt targets distinct aspects of instruction following, including format compliance, content constraints, logical sequencing, and multi-step task execution. We evaluate models from major providers (OpenAI, Anthropic, Google, Meta, Mistral) and emerging implementations (Qwen, DeepSeek, community models), providing comparative performance analysis. Our findings reveal consistent failure modes and identify specific instruction types posing particular challenges. This work contributes both a practical evaluation tool and one of the most comprehensive empirical analyses of instruction-following capabilities across the contemporary LLM landscape.

  • 3 authors
·
Oct 18

Angles Don't Lie: Unlocking Training-Efficient RL Through the Model's Own Signals

Current Reinforcement Fine-tuning (RFT) paradigms for Large Language Models (LLMs) suffer from sample inefficiency due to the redundant exposure of identical queries under uniform data sampling. While previous work has explored curriculum learning via heuristic difficulty metrics, these strategies exhibit limitations by neglecting the intrinsic learning signals generated by the model itself, thus leading to suboptimal training regimes. In this paper, we identify a model-inherent signal termed angle concentration that effectively reflects an LLM's capacity to learn from specific data. We theoretically and empirically demonstrate a correlation between the angular distribution of token hidden state vectors and the resulting gradient, revealing a learning preference for data exhibiting higher angle concentration. Inspired by this finding, we propose GAIN-RL, a Gradient-driven Angle-Informed Navigated RL framework. By leveraging the model's intrinsic angle concentration signal, GAIN-RL dynamically selects training data in each epoch, ensuring consistently impactful gradient updates and thus significantly enhancing overall training efficiency. Empirical evaluations show that GAIN-RL (GRPO) achieves over a 2.5x acceleration in training efficiency across diverse mathematical and coding tasks and varying model scales. Furthermore, GAIN-RL (GRPO)'s efficient sampling yields data-efficient training, achieving better performance with half the original data compared to vanilla GRPO with full training data. Code is realsed at https://github.com/wangqinsi1/GAINRL/tree/main.

  • 9 authors
·
Jun 2 2

A Domain-Agnostic Approach for Characterization of Lifelong Learning Systems

Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.

  • 47 authors
·
Jan 18, 2023

ETTRL: Balancing Exploration and Exploitation in LLM Test-Time Reinforcement Learning Via Entropy Mechanism

Recent advancements in Large Language Models have yielded significant improvements in complex reasoning tasks such as mathematics and programming. However, these models remain heavily dependent on annotated data and exhibit limited adaptability in unsupervised scenarios. To address these limitations, test-time reinforcement learning (TTRL) has been proposed, which enables self-optimization by leveraging model-generated pseudo-labels. Despite its promise, TTRL faces several key challenges, including high inference costs due to parallel rollouts and early-stage estimation bias that fosters overconfidence, reducing output diversity and causing performance plateaus. To address these challenges, we introduce an entropy-based mechanism to enhance the exploration-exploitation balance in test-time reinforcement learning through two strategies: Entropy-fork Tree Majority Rollout (ETMR) and Entropy-based Advantage Reshaping (EAR). Compared with the baseline, our approach enables Llama3.1-8B to achieve a 68 percent relative improvement in Pass at 1 metric on the AIME 2024 benchmark, while consuming only 60 percent of the rollout tokens budget. This highlights our method's ability to effectively optimize the trade-off between inference efficiency, diversity, and estimation robustness, thereby advancing unsupervised reinforcement learning for open-domain reasoning tasks.

  • 6 authors
·
Aug 15

Lookahead Tree-Based Rollouts for Enhanced Trajectory-Level Exploration in Reinforcement Learning with Verifiable Rewards

Reinforcement Learning with Verifiable Rewards (RLVR), particularly with algorithms like Group Relative Policy Optimization (GRPO), has proven highly effective in enhancing the reasoning capabilities of large language models. However, a critical bottleneck in current pipelines lies in the limited diversity of sampled trajectories during group rollouts. Homogeneous trajectories and their associated rewards would diminish the return signals for policy updates, thereby hindering effective policy learning. This lack of diversity stems primarily from token-level stochastic sampling, where local variations are likely to collapse into near-identical reasoning paths. To address this limitation, we propose Lookahead Tree-Based Rollouts (LATR), a novel rollout strategy designed to explicitly promotes trajectory-level diversity by enforcing branching into different candidate tokens likely to yield distinct continuations. Specifically, LATR iteratively operates in three stages: (1) branching at high-uncertainty generation steps, (2) performing lookahead simulation for each new branch, and (3) pruning branches that exhibits prolonged similarity during simulation. Compared with stochastic Sampling, LATR accelerates policy learning by 131% on average and improves final pass@1 performance by 4.2% on both GRPO and Dynamic sAmpling Policy Optimization (DAPO) algorithms across different reasoning tasks. Our code and data are publicly available at https://github.com/starreeze/latr.

  • 5 authors
·
Oct 28

Pedagogical Alignment of Large Language Models

In this paper, we introduce the novel concept of pedagogically aligned Large Language Models (LLMs) that signifies a transformative shift in the application of LLMs within educational contexts. Rather than providing direct responses to user queries, pedagogically-aligned LLMs function as scaffolding tools, breaking complex problems into manageable subproblems and guiding students towards the final answer through constructive feedback and hints. The objective is to equip learners with problem-solving strategies that deepen their understanding and internalization of the subject matter. Previous research in this field has primarily applied the supervised finetuning approach without framing the objective as an alignment problem, hence not employing reinforcement learning through human feedback (RLHF) methods. This study reinterprets the narrative by viewing the task through the lens of alignment and demonstrates how RLHF methods emerge naturally as a superior alternative for aligning LLM behaviour. Building on this perspective, we propose a novel approach for constructing a reward dataset specifically designed for the pedagogical alignment of LLMs. We apply three state-of-the-art RLHF algorithms and find that they outperform SFT significantly. Our qualitative analyses across model differences and hyperparameter sensitivity further validate the superiority of RLHF over SFT. Also, our study sheds light on the potential of online feedback for enhancing the performance of pedagogically-aligned LLMs, thus providing valuable insights for the advancement of these models in educational settings.

  • 4 authors
·
Feb 7, 2024

Denoising Task Difficulty-based Curriculum for Training Diffusion Models

Diffusion-based generative models have emerged as powerful tools in the realm of generative modeling. Despite extensive research on denoising across various timesteps and noise levels, a conflict persists regarding the relative difficulties of the denoising tasks. While various studies argue that lower timesteps present more challenging tasks, others contend that higher timesteps are more difficult. To address this conflict, our study undertakes a comprehensive examination of task difficulties, focusing on convergence behavior and changes in relative entropy between consecutive probability distributions across timesteps. Our observational study reveals that denoising at earlier timesteps poses challenges characterized by slower convergence and higher relative entropy, indicating increased task difficulty at these lower timesteps. Building on these observations, we introduce an easy-to-hard learning scheme, drawing from curriculum learning, to enhance the training process of diffusion models. By organizing timesteps or noise levels into clusters and training models with ascending orders of difficulty, we facilitate an order-aware training regime, progressing from easier to harder denoising tasks, thereby deviating from the conventional approach of training diffusion models simultaneously across all timesteps. Our approach leads to improved performance and faster convergence by leveraging benefits of curriculum learning, while maintaining orthogonality with existing improvements in diffusion training techniques. We validate these advantages through comprehensive experiments in image generation tasks, including unconditional, class-conditional, and text-to-image generation.

  • 4 authors
·
Mar 15, 2024

ELMES: An Automated Framework for Evaluating Large Language Models in Educational Scenarios

The emergence of Large Language Models (LLMs) presents transformative opportunities for education, generating numerous novel application scenarios. However, significant challenges remain: evaluation metrics vary substantially across different educational scenarios, while many emerging scenarios lack appropriate assessment metrics. Current benchmarks predominantly measure general intelligence rather than pedagogical capabilities. To address this gap, we introduce ELMES, an open-source automated evaluation framework specifically designed for assessing LLMs in educational settings. ELMES features a modular architecture that enables researchers to create dynamic, multi-agent dialogues through simple configuration files, facilitating flexible scenario design without requiring extensive programming expertise. The framework incorporates a hybrid evaluation engine that objectively quantifies traditionally subjective pedagogical metrics using an LLM-as-a-Judge methodology. We conduct systematic benchmarking of state-of-the-art LLMs across four critical educational scenarios: Knowledge Point Explanation, Guided Problem-Solving Teaching, Interdisciplinary Lesson Plan Generation, and Contextualized Question Generation, employing fine-grained metrics developed in collaboration with education specialists. Our results demonstrate distinct capability distributions among models, revealing context-specific strengths and limitations. ELMES provides educators and researchers with an accessible evaluation framework that significantly reduces adaptation barriers for diverse educational applications while advancing the practical implementation of LLMs in pedagogy. The framework is publicly available at https://github.com/sii-research/elmes.git.

  • 12 authors
·
Jul 27

Paired Open-Ended Trailblazer (POET): Endlessly Generating Increasingly Complex and Diverse Learning Environments and Their Solutions

While the history of machine learning so far largely encompasses a series of problems posed by researchers and algorithms that learn their solutions, an important question is whether the problems themselves can be generated by the algorithm at the same time as they are being solved. Such a process would in effect build its own diverse and expanding curricula, and the solutions to problems at various stages would become stepping stones towards solving even more challenging problems later in the process. The Paired Open-Ended Trailblazer (POET) algorithm introduced in this paper does just that: it pairs the generation of environmental challenges and the optimization of agents to solve those challenges. It simultaneously explores many different paths through the space of possible problems and solutions and, critically, allows these stepping-stone solutions to transfer between problems if better, catalyzing innovation. The term open-ended signifies the intriguing potential for algorithms like POET to continue to create novel and increasingly complex capabilities without bound. Our results show that POET produces a diverse range of sophisticated behaviors that solve a wide range of environmental challenges, many of which cannot be solved by direct optimization alone, or even through a direct-path curriculum-building control algorithm introduced to highlight the critical role of open-endedness in solving ambitious challenges. The ability to transfer solutions from one environment to another proves essential to unlocking the full potential of the system as a whole, demonstrating the unpredictable nature of fortuitous stepping stones. We hope that POET will inspire a new push towards open-ended discovery across many domains, where algorithms like POET can blaze a trail through their interesting possible manifestations and solutions.

  • 4 authors
·
Jan 7, 2019

Cog-Rethinker: Hierarchical Metacognitive Reinforcement Learning for LLM Reasoning

Contemporary progress in large language models (LLMs) has revealed notable inferential capacities via reinforcement learning (RL) employing verifiable reward, facilitating the development of O1 and R1-like reasoning models. Directly training from base models with RL is called zero-RL. However, previous works rely upon activating LLMs' inherent capacities through fixed prompt templates. This strategy introduces substantial sampling inefficiencies for weak LLMs, as the majority of problems generate invalid outputs during accuracy-driven filtration in reasoning tasks, which causes a waste of samples. To solve this issue, we propose Cog-Rethinker, a novel hierarchical metacognitive RL framework for LLM reasoning. Our Cog-Rethinker mainly focuses on the rollout procedure in RL training. After the direct rollout, our Cog-Rethinker improves sample utilization in a hierarchical metacognitive two-stage framework. By leveraging human cognition during solving problems, firstly, it prompts policy to decompose zero-accuracy problems into subproblems to produce final reasoning results. Secondly, with zero-accuracy problems in previous rollout stage, it further prompts policy to refine these answers by referencing previous wrong solutions. Moreover, to enable cold-start of the two new reasoning patterns and maintain train-test consistency across prompt templates, our Cog-Rethinker applies supervised fine-tuning on the policy using correct samples of the two stages with direct rollout template. Experimental results demonstrate Cog-Rethinker's superior performance on various mathematical reasoning benchmarks, we also analyzed its improved sample efficiency that accelerates convergence compared to baseline methods.

  • 6 authors
·
Oct 13

Socratic-Zero : Bootstrapping Reasoning via Data-Free Agent Co-evolution

Recent breakthroughs in large language models (LLMs) on reasoning tasks rely heavily on massive, high-quality datasets-typically human-annotated and thus difficult to scale. While data synthesis or distillation offers a promising alternative, existing methods struggle with inconsistent data quality and an inability to dynamically adapt to the evolving capabilities of the model, leading to suboptimal training signals. To address these limitations, we introduce Socratic-Zero, a fully autonomous framework that generates high-quality training data from minimal seed examples through the co-evolution of three agents: the Teacher, the Solver, and the Generator. The Solver continuously refines its reasoning by learning from preference feedback on both successful and failed trajectories; the Teacher adaptively crafts increasingly challenging questions based on the Solver's weaknesses; and the Generator distills the Teacher's question-design strategy to enable scalable, high-fidelity curriculum generation. This closed-loop system produces a self-improving curriculum-requiring no pre-existing tasks or labels. Remarkably, starting from only 100 seed questions, our Socratic-Solver-8B achieves an average gain of +20.2 percentage points over prior data synthesis methods across seven mathematical reasoning benchmarks (AMC23, AIME24-25, Olympiad, MATH-500, Minerva, and GSM8K), with consistent gains on both Qwen3 and GLM4 series models. Even more surprisingly, synthetic data from Socratic-Generator-32B enables student LLMs to achieve superior performance compared to other state-of-the-art (SOTA) commercial LLMs on these benchmarks, including Qwen3-235B-A22B, DeepSeek-V3.1-671B, GPT-5, Gemini-2.5-Pro, Grok-4, and Claude-4.1-Opus.

alibaba-inc alibaba-inc
·
Sep 29 1

Fine-tuning Large Language Models with Human-inspired Learning Strategies in Medical Question Answering

Training Large Language Models (LLMs) incurs substantial data-related costs, motivating the development of data-efficient training methods through optimised data ordering and selection. Human-inspired learning strategies, such as curriculum learning, offer possibilities for efficient training by organising data according to common human learning practices. Despite evidence that fine-tuning with curriculum learning improves the performance of LLMs for natural language understanding tasks, its effectiveness is typically assessed using a single model. In this work, we extend previous research by evaluating both curriculum-based and non-curriculum-based learning strategies across multiple LLMs, using human-defined and automated data labels for medical question answering. Our results indicate a moderate impact of using human-inspired learning strategies for fine-tuning LLMs, with maximum accuracy gains of 1.77% per model and 1.81% per dataset. Crucially, we demonstrate that the effectiveness of these strategies varies significantly across different model-dataset combinations, emphasising that the benefits of a specific human-inspired strategy for fine-tuning LLMs do not generalise. Additionally, we find evidence that curriculum learning using LLM-defined question difficulty outperforms human-defined difficulty, highlighting the potential of using model-generated measures for optimal curriculum design.

  • 4 authors
·
Aug 14, 2024 2