new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 1

Constructing Ophthalmic MLLM for Positioning-diagnosis Collaboration Through Clinical Cognitive Chain Reasoning

Multimodal large language models (MLLMs) demonstrate significant potential in the field of medical diagnosis. However, they face critical challenges in specialized domains such as ophthalmology, particularly the fragmentation of annotation granularity and inconsistencies in clinical reasoning logic, which hinder precise cross-modal understanding. This paper introduces FundusExpert, an ophthalmology-specific MLLM with integrated positioning-diagnosis reasoning capabilities, along with FundusGen, a dataset constructed through the intelligent Fundus-Engine system. Fundus-Engine automates localization and leverages MLLM-based semantic expansion to integrate global disease classification, local object detection, and fine-grained feature analysis within a single fundus image. Additionally, by constructing a clinically aligned cognitive chain, it guides the model to generate interpretable reasoning paths. FundusExpert, fine-tuned with instruction data from FundusGen, achieves the best performance in ophthalmic question-answering tasks, surpassing the average accuracy of the 40B MedRegA by 26.6%. It also excels in zero-shot report generation tasks, achieving a clinical consistency of 77.0%, significantly outperforming GPT-4o's 47.6%. Furthermore, we reveal a scaling law between data quality and model capability (L propto N^{0.068}), demonstrating that the cognitive alignment annotations in FundusGen enhance data utilization efficiency. By integrating region-level localization with diagnostic reasoning chains, our work develops a scalable, clinically-aligned MLLM and explores a pathway toward bridging the visual-language gap in specific MLLMs. Our project can be found at https://github.com/MeteorElf/FundusExpert.

  • 2 authors
·
Jul 23, 2025

Uncovering the Computational Ingredients of Human-Like Representations in LLMs

The ability to translate diverse patterns of inputs into structured patterns of behavior has been thought to rest on both humans' and machines' ability to learn robust representations of relevant concepts. The rapid advancement of transformer-based large language models (LLMs) has led to a diversity of computational ingredients -- architectures, fine tuning methods, and training datasets among others -- but it remains unclear which of these ingredients are most crucial for building models that develop human-like representations. Further, most current LLM benchmarks are not suited to measuring representational alignment between humans and models, making benchmark scores unreliable for assessing if current LLMs are making progress towards becoming useful cognitive models. We address these limitations by first evaluating a set of over 70 models that widely vary in their computational ingredients on a triplet similarity task, a method well established in the cognitive sciences for measuring human conceptual representations, using concepts from the THINGS database. Comparing human and model representations, we find that models that undergo instruction-finetuning and which have larger dimensionality of attention heads are among the most human aligned, while multimodal pretraining and parameter size have limited bearing on alignment. Correlations between alignment scores and scores on existing benchmarks reveal that while some benchmarks (e.g., MMLU) are better suited than others (e.g., MUSR) for capturing representational alignment, no existing benchmark is capable of fully accounting for the variance of alignment scores, demonstrating their insufficiency in capturing human-AI alignment. Taken together, our findings help highlight the computational ingredients most essential for advancing LLMs towards models of human conceptual representation and address a key benchmarking gap in LLM evaluation.

  • 4 authors
·
Oct 1, 2025 2

Aligning Multimodal LLM with Human Preference: A Survey

Large language models (LLMs) can handle a wide variety of general tasks with simple prompts, without the need for task-specific training. Multimodal Large Language Models (MLLMs), built upon LLMs, have demonstrated impressive potential in tackling complex tasks involving visual, auditory, and textual data. However, critical issues related to truthfulness, safety, o1-like reasoning, and alignment with human preference remain insufficiently addressed. This gap has spurred the emergence of various alignment algorithms, each targeting different application scenarios and optimization goals. Recent studies have shown that alignment algorithms are a powerful approach to resolving the aforementioned challenges. In this paper, we aim to provide a comprehensive and systematic review of alignment algorithms for MLLMs. Specifically, we explore four key aspects: (1) the application scenarios covered by alignment algorithms, including general image understanding, multi-image, video, and audio, and extended multimodal applications; (2) the core factors in constructing alignment datasets, including data sources, model responses, and preference annotations; (3) the benchmarks used to evaluate alignment algorithms; and (4) a discussion of potential future directions for the development of alignment algorithms. This work seeks to help researchers organize current advancements in the field and inspire better alignment methods. The project page of this paper is available at https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models/tree/Alignment.

  • 17 authors
·
Mar 18, 2025 3

Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions

Recent advancements in general-purpose AI have highlighted the importance of guiding AI systems towards the intended goals, ethical principles, and values of individuals and groups, a concept broadly recognized as alignment. However, the lack of clarified definitions and scopes of human-AI alignment poses a significant obstacle, hampering collaborative efforts across research domains to achieve this alignment. In particular, ML- and philosophy-oriented alignment research often views AI alignment as a static, unidirectional process (i.e., aiming to ensure that AI systems' objectives match humans) rather than an ongoing, mutual alignment problem [429]. This perspective largely neglects the long-term interaction and dynamic changes of alignment. To understand these gaps, we introduce a systematic review of over 400 papers published between 2019 and January 2024, spanning multiple domains such as Human-Computer Interaction (HCI), Natural Language Processing (NLP), Machine Learning (ML), and others. We characterize, define and scope human-AI alignment. From this, we present a conceptual framework of "Bidirectional Human-AI Alignment" to organize the literature from a human-centered perspective. This framework encompasses both 1) conventional studies of aligning AI to humans that ensures AI produces the intended outcomes determined by humans, and 2) a proposed concept of aligning humans to AI, which aims to help individuals and society adjust to AI advancements both cognitively and behaviorally. Additionally, we articulate the key findings derived from literature analysis, including discussions about human values, interaction techniques, and evaluations. To pave the way for future studies, we envision three key challenges for future directions and propose examples of potential future solutions.

  • 24 authors
·
Jun 13, 2024

Turing Representational Similarity Analysis (RSA): A Flexible Method for Measuring Alignment Between Human and Artificial Intelligence

As we consider entrusting Large Language Models (LLMs) with key societal and decision-making roles, measuring their alignment with human cognition becomes critical. This requires methods that can assess how these systems represent information and facilitate comparisons to human understanding across diverse tasks. To meet this need, we developed Turing Representational Similarity Analysis (RSA), a method that uses pairwise similarity ratings to quantify alignment between AIs and humans. We tested this approach on semantic alignment across text and image modalities, measuring how different Large Language and Vision Language Model (LLM and VLM) similarity judgments aligned with human responses at both group and individual levels. GPT-4o showed the strongest alignment with human performance among the models we tested, particularly when leveraging its text processing capabilities rather than image processing, regardless of the input modality. However, no model we studied adequately captured the inter-individual variability observed among human participants. This method helped uncover certain hyperparameters and prompts that could steer model behavior to have more or less human-like qualities at an inter-individual or group level. Turing RSA enables the efficient and flexible quantification of human-AI alignment and complements existing accuracy-based benchmark tasks. We demonstrate its utility across multiple modalities (words, sentences, images) for understanding how LLMs encode knowledge and for examining representational alignment with human cognition.

  • 5 authors
·
Nov 30, 2024

From Instructions to Intrinsic Human Values -- A Survey of Alignment Goals for Big Models

Big models, exemplified by Large Language Models (LLMs), are models typically pre-trained on massive data and comprised of enormous parameters, which not only obtain significantly improved performance across diverse tasks but also present emergent capabilities absent in smaller models. However, the growing intertwining of big models with everyday human lives poses potential risks and might cause serious social harm. Therefore, many efforts have been made to align LLMs with humans to make them better follow user instructions and satisfy human preferences. Nevertheless, `what to align with' has not been fully discussed, and inappropriate alignment goals might even backfire. In this paper, we conduct a comprehensive survey of different alignment goals in existing work and trace their evolution paths to help identify the most essential goal. Particularly, we investigate related works from two perspectives: the definition of alignment goals and alignment evaluation. Our analysis encompasses three distinct levels of alignment goals and reveals a goal transformation from fundamental abilities to value orientation, indicating the potential of intrinsic human values as the alignment goal for enhanced LLMs. Based on such results, we further discuss the challenges of achieving such intrinsic value alignment and provide a collection of available resources for future research on the alignment of big models.

  • 5 authors
·
Aug 23, 2023

Aligning Large Language Models with Human: A Survey

Large Language Models (LLMs) trained on extensive textual corpora have emerged as leading solutions for a broad array of Natural Language Processing (NLP) tasks. Despite their notable performance, these models are prone to certain limitations such as misunderstanding human instructions, generating potentially biased content, or factually incorrect (hallucinated) information. Hence, aligning LLMs with human expectations has become an active area of interest within the research community. This survey presents a comprehensive overview of these alignment technologies, including the following aspects. (1) Data collection: the methods for effectively collecting high-quality instructions for LLM alignment, including the use of NLP benchmarks, human annotations, and leveraging strong LLMs. (2) Training methodologies: a detailed review of the prevailing training methods employed for LLM alignment. Our exploration encompasses Supervised Fine-tuning, both Online and Offline human preference training, along with parameter-efficient training mechanisms. (3) Model Evaluation: the methods for evaluating the effectiveness of these human-aligned LLMs, presenting a multifaceted approach towards their assessment. In conclusion, we collate and distill our findings, shedding light on several promising future research avenues in the field. This survey, therefore, serves as a valuable resource for anyone invested in understanding and advancing the alignment of LLMs to better suit human-oriented tasks and expectations. An associated GitHub link collecting the latest papers is available at https://github.com/GaryYufei/AlignLLMHumanSurvey.

  • 9 authors
·
Jul 24, 2023

Alignment and Safety in Large Language Models: Safety Mechanisms, Training Paradigms, and Emerging Challenges

Due to the remarkable capabilities and growing impact of large language models (LLMs), they have been deeply integrated into many aspects of society. Thus, ensuring their alignment with human values and intentions has emerged as a critical challenge. This survey provides a comprehensive overview of practical alignment techniques, training protocols, and empirical findings in LLM alignment. We analyze the development of alignment methods across diverse paradigms, characterizing the fundamental trade-offs between core alignment objectives. Our analysis shows that while supervised fine-tuning enables basic instruction-following, preference-based methods offer more flexibility for aligning with nuanced human intent. We discuss state-of-the-art techniques, including Direct Preference Optimization (DPO), Constitutional AI, brain-inspired methods, and alignment uncertainty quantification (AUQ), highlighting their approaches to balancing quality and efficiency. We review existing evaluation frameworks and benchmarking datasets, emphasizing limitations such as reward misspecification, distributional robustness, and scalable oversight. We summarize strategies adopted by leading AI labs to illustrate the current state of practice. We conclude by outlining open problems in oversight, value pluralism, robustness, and continuous alignment. This survey aims to inform both researchers and practitioners navigating the evolving landscape of LLM alignment.

  • 50 authors
·
Jul 25, 2025

Extended Inductive Reasoning for Personalized Preference Inference from Behavioral Signals

Large language models (LLMs) have demonstrated significant success in complex reasoning tasks such as math and coding. In contrast to these tasks where deductive reasoning predominates, inductive reasoning-the ability to derive general rules from incomplete evidence, remains underexplored. This paper investigates extended inductive reasoning in LLMs through the lens of personalized preference inference, a critical challenge in LLM alignment where current approaches struggle to capture diverse user preferences. The task demands strong inductive reasoning capabilities as user preferences are typically embedded implicitly across various interaction forms, requiring models to synthesize consistent preference patterns from scattered signals. We propose AlignXplore, a model that leverages extended reasoning chains to enable systematic preference inference from behavioral signals in users' interaction histories. Such explicit preference articulation enables efficient streaming inference: when new behavioral signals emerge, the model can directly build upon previously inferred preference descriptions rather than reprocessing historical signals from scratch, while also supporting iterative refinement to the inferred preferences. We develop AlignXplore by combining cold-start training based on synthetic data with subsequent online reinforcement learning. Through extensive experiments, we demonstrate that AlignXplore achieves substantial improvements over the backbone model by an average of 15.49\% on in-domain and out-of-domain benchmarks, while maintaining strong generalization ability across different input formats and downstream models. Further analyses establish best practices for preference inference learning through systematic comparison of reward modeling strategies, while revealing the emergence of human-like inductive reasoning patterns during training.

  • 4 authors
·
May 23, 2025

Large Language Model Alignment: A Survey

Recent years have witnessed remarkable progress made in large language models (LLMs). Such advancements, while garnering significant attention, have concurrently elicited various concerns. The potential of these models is undeniably vast; however, they may yield texts that are imprecise, misleading, or even detrimental. Consequently, it becomes paramount to employ alignment techniques to ensure these models to exhibit behaviors consistent with human values. This survey endeavors to furnish an extensive exploration of alignment methodologies designed for LLMs, in conjunction with the extant capability research in this domain. Adopting the lens of AI alignment, we categorize the prevailing methods and emergent proposals for the alignment of LLMs into outer and inner alignment. We also probe into salient issues including the models' interpretability, and potential vulnerabilities to adversarial attacks. To assess LLM alignment, we present a wide variety of benchmarks and evaluation methodologies. After discussing the state of alignment research for LLMs, we finally cast a vision toward the future, contemplating the promising avenues of research that lie ahead. Our aspiration for this survey extends beyond merely spurring research interests in this realm. We also envision bridging the gap between the AI alignment research community and the researchers engrossed in the capability exploration of LLMs for both capable and safe LLMs.

  • 9 authors
·
Sep 26, 2023

Instruction-tuning Aligns LLMs to the Human Brain

Instruction-tuning is a widely adopted method of finetuning that enables large language models (LLMs) to generate output that more closely resembles human responses to natural language queries, in many cases leading to human-level performance on diverse testbeds. However, it remains unclear whether instruction-tuning truly makes LLMs more similar to how humans process language. We investigate the effect of instruction-tuning on LLM-human similarity in two ways: (1) brain alignment, the similarity of LLM internal representations to neural activity in the human language system, and (2) behavioral alignment, the similarity of LLM and human behavior on a reading task. We assess 25 vanilla and instruction-tuned LLMs across three datasets involving humans reading naturalistic stories and sentences. We discover that instruction-tuning generally enhances brain alignment by an average of 6%, but does not have a similar effect on behavioral alignment. To identify the factors underlying LLM-brain alignment, we compute correlations between the brain alignment of LLMs and various model properties, such as model size, various problem-solving abilities, and performance on tasks requiring world knowledge spanning various domains. Notably, we find a strong positive correlation between brain alignment and model size (r = 0.95), as well as performance on tasks requiring world knowledge (r = 0.81). Our results demonstrate that instruction-tuning LLMs improves both world knowledge representations and brain alignment, suggesting that mechanisms that encode world knowledge in LLMs also improve representational alignment to the human brain.

  • 5 authors
·
Dec 1, 2023 4

NLPositionality: Characterizing Design Biases of Datasets and Models

Design biases in NLP systems, such as performance differences for different populations, often stem from their creator's positionality, i.e., views and lived experiences shaped by identity and background. Despite the prevalence and risks of design biases, they are hard to quantify because researcher, system, and dataset positionality is often unobserved. We introduce NLPositionality, a framework for characterizing design biases and quantifying the positionality of NLP datasets and models. Our framework continuously collects annotations from a diverse pool of volunteer participants on LabintheWild, and statistically quantifies alignment with dataset labels and model predictions. We apply NLPositionality to existing datasets and models for two tasks -- social acceptability and hate speech detection. To date, we have collected 16,299 annotations in over a year for 600 instances from 1,096 annotators across 87 countries. We find that datasets and models align predominantly with Western, White, college-educated, and younger populations. Additionally, certain groups, such as non-binary people and non-native English speakers, are further marginalized by datasets and models as they rank least in alignment across all tasks. Finally, we draw from prior literature to discuss how researchers can examine their own positionality and that of their datasets and models, opening the door for more inclusive NLP systems.

  • 5 authors
·
Jun 2, 2023

AlignRAG: An Adaptable Framework for Resolving Misalignments in Retrieval-Aware Reasoning of RAG

Retrieval-augmented generation (RAG) has emerged as a foundational paradigm for knowledge-grounded text generation. However, existing RAG pipelines often fail to ensure that the reasoning trajectories align with the evidential constraints imposed by retrieved content. In this paper, we reframe RAG as a problem of retrieval-aware reasoning and identify a core challenge: reasoning misalignment-the mismatch between a model's reasoning trajectory and the retrieved evidence. To address this challenge, we propose AlignRAG, a novel test-time framework that mitigates reasoning misalignment through iterative Critique-Driven Alignment (CDA) steps. In contrast to prior approaches that rely on static training or post-hoc selection, AlignRAG actively refines reasoning trajectories during inference by enforcing fine-grained alignment with evidence. Our framework introduces a new paradigm for retrieval-aware reasoning by: (1) constructing context-rich training corpora; (2) generating contrastive critiques from preference-aware reasoning trajectories; (3) training a dedicated Critic Language Model (CLM) to identify reasoning misalignments; and (4) applying CDA steps to optimize reasoning trajectories iteratively. Empirical results demonstrate that AlignRAG consistently outperforms all baselines and could integrate as a plug-and-play module into existing RAG pipelines without further changes. By reconceptualizing RAG as a structured reasoning trajectory and establishing the test-time framework for correcting reasoning misalignments in RAG, AlignRAG provides practical advancements for retrieval-aware generation.

  • 9 authors
·
Apr 21, 2025

Revisiting Text-to-Image Evaluation with Gecko: On Metrics, Prompts, and Human Ratings

While text-to-image (T2I) generative models have become ubiquitous, they do not necessarily generate images that align with a given prompt. While previous work has evaluated T2I alignment by proposing metrics, benchmarks, and templates for collecting human judgements, the quality of these components is not systematically measured. Human-rated prompt sets are generally small and the reliability of the ratings -- and thereby the prompt set used to compare models -- is not evaluated. We address this gap by performing an extensive study evaluating auto-eval metrics and human templates. We provide three main contributions: (1) We introduce a comprehensive skills-based benchmark that can discriminate models across different human templates. This skills-based benchmark categorises prompts into sub-skills, allowing a practitioner to pinpoint not only which skills are challenging, but at what level of complexity a skill becomes challenging. (2) We gather human ratings across four templates and four T2I models for a total of >100K annotations. This allows us to understand where differences arise due to inherent ambiguity in the prompt and where they arise due to differences in metric and model quality. (3) Finally, we introduce a new QA-based auto-eval metric that is better correlated with human ratings than existing metrics for our new dataset, across different human templates, and on TIFA160.

  • 11 authors
·
Apr 25, 2024 2

WildFeedback: Aligning LLMs With In-situ User Interactions And Feedback

As large language models (LLMs) continue to advance, aligning these models with human preferences has emerged as a critical challenge. Traditional alignment methods, relying on human or LLM annotated datasets, are limited by their resource-intensive nature, inherent subjectivity, and the risk of feedback loops that amplify model biases. To overcome these limitations, we introduce WildFeedback, a novel framework that leverages real-time, in-situ user interactions to create preference datasets that more accurately reflect authentic human values. WildFeedback operates through a three-step process: feedback signal identification, preference data construction, and user-guided evaluation. We applied this framework to a large corpus of user-LLM conversations, resulting in a rich preference dataset that reflects genuine user preferences. This dataset captures the nuances of user preferences by identifying and classifying feedback signals within natural conversations, thereby enabling the construction of more representative and context-sensitive alignment data. Our extensive experiments demonstrate that LLMs fine-tuned on WildFeedback exhibit significantly improved alignment with user preferences, as evidenced by both traditional benchmarks and our proposed user-guided evaluation. By incorporating real-time feedback from actual users, WildFeedback addresses the scalability, subjectivity, and bias challenges that plague existing approaches, marking a significant step toward developing LLMs that are more responsive to the diverse and evolving needs of their users. In summary, WildFeedback offers a robust, scalable solution for aligning LLMs with true human values, setting a new standard for the development and evaluation of user-centric language models.

  • 11 authors
·
Aug 28, 2024

Binary Classifier Optimization for Large Language Model Alignment

Aligning Large Language Models (LLMs) to human preferences through preference optimization has been crucial but labor-intensive, necessitating for each prompt a comparison of both a chosen and a rejected text completion by evaluators. Recently, Kahneman-Tversky Optimization (KTO) has demonstrated that LLMs can be aligned using merely binary "thumbs-up" or "thumbs-down" signals on each prompt-completion pair. In this paper, we present theoretical foundations to explain the successful alignment achieved through these binary signals. Our analysis uncovers a new perspective: optimizing a binary classifier, whose logit is a reward, implicitly induces minimizing the Direct Preference Optimization (DPO) loss. In the process of this discovery, we identified two techniques for effective alignment: reward shift and underlying distribution matching. Consequently, we propose a new algorithm, Binary Classifier Optimization, that integrates the techniques. We validate our methodology in two settings: first, on a paired preference dataset, where our method performs on par with DPO and KTO; and second, on binary signal datasets simulating real-world conditions with divergent underlying distributions between thumbs-up and thumbs-down data. Our model consistently demonstrates effective and robust alignment across two base LLMs and three different binary signal datasets, showcasing the strength of our approach to learning from binary feedback.

  • 4 authors
·
Apr 6, 2024

From Instructions to Constraints: Language Model Alignment with Automatic Constraint Verification

User alignment is crucial for adapting general-purpose language models (LMs) to downstream tasks, but human annotations are often not available for all types of instructions, especially those with customized constraints. We observe that user instructions typically contain constraints. While assessing response quality in terms of the whole instruction is often costly, efficiently evaluating the satisfaction rate of constraints is feasible. We investigate common constraints in NLP tasks, categorize them into three classes based on the types of their arguments, and propose a unified framework, ACT (Aligning to ConsTraints), to automatically produce supervision signals for user alignment with constraints. Specifically, ACT uses constraint verifiers, which are typically easy to implement in practice, to compute constraint satisfaction rate (CSR) of each response. It samples multiple responses for each prompt and collect preference labels based on their CSR automatically. Subsequently, ACT adapts the LM to the target task through a ranking-based learning process. Experiments on fine-grained entity typing, abstractive summarization, and temporal question answering show that ACT is able to enhance LMs' capability to adhere to different classes of constraints, thereby improving task performance. Further experiments show that the constraint-following capabilities are transferable.

  • 9 authors
·
Mar 10, 2024

Cognitive Foundations for Reasoning and Their Manifestation in LLMs

Large language models (LLMs) solve complex problems yet fail on simpler variants, suggesting they achieve correct outputs through mechanisms fundamentally different from human reasoning. To understand this gap, we synthesize cognitive science research into a taxonomy of 28 cognitive elements spanning reasoning invariants, meta-cognitive controls, representations for organizing reasoning & knowledge, and transformation operations. We introduce a fine-grained evaluation framework and conduct the first large-scale empirical analysis of 192K traces from 18 models across text, vision, and audio, complemented by 54 human think-aloud traces, which we make publicly available. We find that models under-utilize cognitive elements correlated with success, narrowing to rigid sequential processing on ill-structured problems where diverse representations and meta-cognitive monitoring are critical. Human traces show more abstraction and conceptual processing, while models default to surface-level enumeration. Meta-analysis of 1.6K LLM reasoning papers reveals the research community concentrates on easily quantifiable elements (sequential organization: 55%, decomposition: 60%) but neglecting meta-cognitive controls (self-awareness: 16%) that correlate with success. Models possess behavioral repertoires associated with success but fail to deploy them spontaneously. Leveraging these patterns, we develop test-time reasoning guidance that automatically scaffold successful structures, improving performance by up to 66.7% on complex problems. By establishing a shared vocabulary between cognitive science and LLM research, our framework enables systematic diagnosis of reasoning failures and principled development of models that reason through robust cognitive mechanisms rather than spurious shortcuts, while providing tools to test theories of human cognition at scale.

  • 12 authors
·
Nov 20, 2025 3

Can Linguistic Knowledge Improve Multimodal Alignment in Vision-Language Pretraining?

The multimedia community has shown a significant interest in perceiving and representing the physical world with multimodal pretrained neural network models, and among them, the visual-language pertaining (VLP) is, currently, the most captivating topic. However, there have been few endeavors dedicated to the exploration of 1) whether essential linguistic knowledge (e.g., semantics and syntax) can be extracted during VLP, and 2) how such linguistic knowledge impact or enhance the multimodal alignment. In response, here we aim to elucidate the impact of comprehensive linguistic knowledge, including semantic expression and syntactic structure, on multimodal alignment. Specifically, we design and release the SNARE, the first large-scale multimodal alignment probing benchmark, to detect the vital linguistic components, e.g., lexical, semantic, and syntax knowledge, containing four tasks: Semantic structure, Negation logic, Attribute ownership, and Relationship composition. Based on our proposed probing benchmarks, our holistic analyses of five advanced VLP models illustrate that the VLP model: i) shows insensitivity towards complex syntax structures and relies on content words for sentence comprehension; ii) demonstrates limited comprehension of combinations between sentences and negations; iii) faces challenges in determining the presence of actions or spatial relationships within visual information and struggles with verifying the correctness of triple combinations. We make our benchmark and code available at https://github.com/WangFei-2019/SNARE/.

  • 6 authors
·
Aug 24, 2023

Self-Specialization: Uncovering Latent Expertise within Large Language Models

Recent works have demonstrated the effectiveness of self-alignment in which a large language model is, by itself, aligned to follow general instructions through the automatic generation of instructional data using a handful of human-written seeds. Instead of general alignment, in this work, we focus on self-alignment for expert domain specialization (e.g., biomedicine), discovering it to be very effective for improving zero-shot and few-shot performance in target domains of interest. As a preliminary, we first present the benchmark results of existing aligned models within a specialized domain, which reveals the marginal effect that "generic" instruction-following training has on downstream expert domains' performance. To remedy this, we explore self-specialization that leverages domain-specific unlabelled data and a few labeled seeds for the self-alignment process. When augmented with retrieval to reduce hallucination and enhance concurrency of the alignment, self-specialization offers an effective (and efficient) way of "carving out" an expert model out of a "generalist", pre-trained LLM where different domains of expertise are originally combined in a form of "superposition". Our experimental results on a biomedical domain show that our self-specialized model (30B) outperforms its base model, MPT-30B by a large margin and even surpasses larger popular models based on LLaMA-65B, highlighting its potential and practicality for specialization, especially considering its efficiency in terms of data and parameters.

  • 8 authors
·
Sep 29, 2023

Dialectical Alignment: Resolving the Tension of 3H and Security Threats of LLMs

With the rise of large language models (LLMs), ensuring they embody the principles of being helpful, honest, and harmless (3H), known as Human Alignment, becomes crucial. While existing alignment methods like RLHF, DPO, etc., effectively fine-tune LLMs to match preferences in the preference dataset, they often lead LLMs to highly receptive human input and external evidence, even when this information is poisoned. This leads to a tendency for LLMs to be Adaptive Chameleons when external evidence conflicts with their parametric memory. This exacerbates the risk of LLM being attacked by external poisoned data, which poses a significant security risk to LLM system applications such as Retrieval-augmented generation (RAG). To address the challenge, we propose a novel framework: Dialectical Alignment (DA), which (1) utilizes AI feedback to identify optimal strategies for LLMs to navigate inter-context conflicts and context-memory conflicts with different external evidence in context window (i.e., different ratios of poisoned factual contexts); (2) constructs the SFT dataset as well as the preference dataset based on the AI feedback and strategies above; (3) uses the above datasets for LLM alignment to defense poisoned context attack while preserving the effectiveness of in-context knowledge editing. Our experiments show that the dialectical alignment model improves poisoned data attack defense by 20 and does not require any additional prompt engineering or prior declaration of ``you may be attacked`` to the LLMs' context window.

  • 8 authors
·
Mar 30, 2024

Mixing Mechanisms: How Language Models Retrieve Bound Entities In-Context

A key component of in-context reasoning is the ability of language models (LMs) to bind entities for later retrieval. For example, an LM might represent "Ann loves pie" by binding "Ann" to "pie", allowing it to later retrieve "Ann" when asked "Who loves pie?" Prior research on short lists of bound entities found strong evidence that LMs implement such retrieval via a positional mechanism, where "Ann" is retrieved based on its position in context. In this work, we find that this mechanism generalizes poorly to more complex settings; as the number of bound entities in context increases, the positional mechanism becomes noisy and unreliable in middle positions. To compensate for this, we find that LMs supplement the positional mechanism with a lexical mechanism (retrieving "Ann" using its bound counterpart "pie") and a reflexive mechanism (retrieving "Ann" through a direct pointer). Through extensive experiments on nine models and ten binding tasks, we uncover a consistent pattern in how LMs mix these mechanisms to drive model behavior. We leverage these insights to develop a causal model combining all three mechanisms that estimates next token distributions with 95% agreement. Finally, we show that our model generalizes to substantially longer inputs of open-ended text interleaved with entity groups, further demonstrating the robustness of our findings in more natural settings. Overall, our study establishes a more complete picture of how LMs bind and retrieve entities in-context.

tau Tel Aviv University
·
Oct 7, 2025 2

CycleAlign: Iterative Distillation from Black-box LLM to White-box Models for Better Human Alignment

Language models trained on large-scale corpus often generate content that is harmful, toxic, or contrary to human preferences, making their alignment with human values a critical concern. Reinforcement learning from human feedback (RLHF) with algorithms like PPO is a prevalent approach for alignment but is often complex, unstable, and resource-intensive. Recently, ranking-based alignment methods have emerged, offering stability and effectiveness by replacing the RL framework with supervised fine-tuning, but they are costly due to the need for annotated data. Considering that existing large language models (LLMs) like ChatGPT are already relatively well-aligned and cost-friendly, researchers have begun to align the language model with human preference from AI feedback. The common practices, which unidirectionally distill the instruction-following responses from LLMs, are constrained by their bottleneck. Thus we introduce CycleAlign to distill alignment capabilities from parameter-invisible LLMs (black-box) to a parameter-visible model (white-box) in an iterative manner. With in-context learning (ICL) as the core of the cycle, the black-box models are able to rank the model-generated responses guided by human-craft instruction and demonstrations about their preferences. During iterative interaction, the white-box models also have a judgment about responses generated by them. Consequently, the agreement ranking could be viewed as a pseudo label to dynamically update the in-context demonstrations and improve the preference ranking ability of black-box models. Through multiple interactions, the CycleAlign framework could align the white-box model with the black-box model effectively in a low-resource way. Empirical results illustrate that the model fine-tuned by CycleAlign remarkably exceeds existing methods, and achieves the state-of-the-art performance in alignment with human value.

  • 6 authors
·
Oct 24, 2023 1

TRACEALIGN -- Tracing the Drift: Attributing Alignment Failures to Training-Time Belief Sources in LLMs

Large Language Models (LLMs) fine-tuned to align with human values often exhibit alignment drift, producing unsafe or policy-violating completions when exposed to adversarial prompts, decoding perturbations, or paraphrased jailbreaks. While prior work has behaviorally characterized alignment failure, little is known about the training-time belief sources underlying these failures. We introduce TraceAlign, a unified framework for tracing unsafe completions back to their root causes in the model's training corpus. Central to our approach is the Belief Conflict Index (BCI), which quantifies semantic inconsistency between generated spans and aligned policies, based on retrieved training documents using suffix-array matching. We propose three complementary interventions: (i) TraceShield, an inference-time safety filter that refuses completions with high-BCI spans, (ii) Contrastive Belief Deconfliction Loss, a contrastive fine-tuning objective penalizing high-BCI continuations during DPO, and (iii) Prov-Decode, a provenance-aware decoding strategy that vetoes beam expansions predicted to yield high-BCI spans. Together, these defenses reduce alignment drift by up to 85% on our curated Alignment Drift Benchmark (ADB) while preserving utility on standard tasks, with delta less than 0.2 and improved refusal quality. We further derive a theoretical upper bound on drift likelihood via suffix-array span statistics, linking memorization frequency and length to adversarial reactivation risk. TraceAlign thus provides the first scalable, traceable, and grounded toolkit for understanding and mitigating alignment failures at source. To encourage further exploration and development, we open-source our implementation at: https://anonymous.4open.science/r/tracealign-2DA7

  • 3 authors
·
Aug 4, 2025 2

Reasons to Reject? Aligning Language Models with Judgments

As humans, we consistently engage in interactions with our peers and receive feedback in the form of natural language. This language feedback allows us to reflect on our actions, maintain appropriate behavior, and rectify our errors. The question arises naturally: can we use language feedback to align large language models (LLMs)? In contrast to previous research that aligns LLMs with reward or preference data, we present the first systematic exploration of alignment through the lens of language feedback (i.e., judgment). We commence with an in-depth investigation of potential methods that can be adapted for aligning LLMs with judgments, revealing that these methods are unable to fully capitalize on the judgments. To facilitate more effective utilization of judgments, we propose a novel framework, Contrastive Unlikelihood Training (CUT), that allows for fine-grained inappropriate content detection and correction based on judgments. Our offline alignment results show that, with merely 1317 off-the-shelf judgment data, CUT (LLaMA2-13b) can beat the 175B DaVinci003 and surpass the best baseline by 52.34 points on AlpacaEval. The online alignment results demonstrate that CUT can align LLMs (LLaMA2-chat-13b) in an iterative fashion using model-specific judgment data, with a steady performance improvement from 81.09 to 91.36 points on AlpacaEval. Our analysis further suggests that judgments exhibit greater potential than rewards for LLM alignment and warrant future research.

  • 5 authors
·
Dec 22, 2023 1

Personality Alignment of Large Language Models

Current methods for aligning large language models (LLMs) typically aim to reflect general human values and behaviors, but they often fail to capture the unique characteristics and preferences of individual users. To address this gap, we introduce the concept of Personality Alignment. This approach tailors LLMs' responses and decisions to match the specific preferences of individual users or closely related groups. Inspired by psychometrics, we created the Personality Alignment with Personality Inventories (PAPI) dataset, which includes data from 300,000 real subjects, each providing behavioral preferences based on the Big Five Personality Factors. This dataset allows us to quantitatively evaluate the extent to which LLMs can align with each subject's behavioral patterns. Recognizing the challenges of personality alignments: such as limited personal data, diverse preferences, and scalability requirements: we developed an activation intervention optimization method. This method enhances LLMs' ability to efficiently align with individual behavioral preferences using minimal data and computational resources. Remarkably, our method, PAS, achieves superior performance while requiring only 1/5 of the optimization time compared to DPO, offering practical value for personality alignment. Our work paves the way for future AI systems to make decisions and reason in truly personality ways, enhancing the relevance and meaning of AI interactions for each user and advancing human-centered artificial intelligence.The code has released in https://github.com/zhu-minjun/PAlign.

  • 3 authors
·
Aug 21, 2024

Simultaneous Multi-objective Alignment Across Verifiable and Non-verifiable Rewards

Aligning large language models to human preferences is inherently multidimensional, yet most pipelines collapse heterogeneous signals into a single optimizeable objective. We seek to answer what it would take to simultaneously align a model across various domains spanning those with: verifiable rewards (mathematical accuracy), non-verifiable subjective preferences (human values), and complex interactive scenarios (multi-turn AI tutoring dialogues). Such multi-objective reinforcement learning setups are often plagued by the individual objectives being at odds with each other, resulting in inefficient training and little user control during inference. We propose a unified framework that: (i) standardizes {process reward model} (PRM) training across both verifiable and non-verifiable settings to better supervise models' chain-of-thought reasoning; (ii) performs {multi-objective alignment} by training the LLM with our Multi-Action-Head DPO (MAH-DPO) and a vectorized reward where the dimensions of the vector correspond to the various objectives instead of a single scalar; and (iii) demonstrates how such a system provides fine-grained inference-time user control. Experiments across math reasoning, value alignment, and multi-turn dialogue show that our framework improves performance across multiple objectives simultaneously, while minimizing cross-objective trade-offs and enabling flexible inference time user control. The code can be found at https://github.com/pearls-lab/multiobj-align.

  • 4 authors
·
Oct 1, 2025

Align Anything: Training All-Modality Models to Follow Instructions with Language Feedback

Reinforcement learning from human feedback (RLHF) has proven effective in enhancing the instruction-following capabilities of large language models; however, it remains underexplored in the cross-modality domain. As the number of modalities increases, aligning all-modality models with human intentions -- such as instruction following -- becomes a pressing challenge. In this work, we make the first attempt to fine-tune all-modality models (i.e. input and output with any modality, also named any-to-any models) using human preference data across all modalities (including text, image, audio, and video), ensuring its behavior aligns with human intentions. This endeavor presents several challenges. First, there is no large-scale all-modality human preference data in existing open-source resources, as most datasets are limited to specific modalities, predominantly text and image. Secondly, the effectiveness of binary preferences in RLHF for post-training alignment in complex all-modality scenarios remains an unexplored area. Finally, there is a lack of a systematic framework to evaluate the capabilities of all-modality models, particularly regarding modality selection and synergy. To address these challenges, we propose the align-anything framework, which includes meticulously annotated 200k all-modality human preference data. Then, we introduce an alignment method that learns from unified language feedback, effectively capturing complex modality-specific human preferences and enhancing the model's instruction-following capabilities. Furthermore, to assess performance improvements in all-modality models after post-training alignment, we construct a challenging all-modality capability evaluation framework -- eval-anything. All data, models, and code frameworks have been open-sourced for the community. For more details, please refer to https://github.com/PKU-Alignment/align-anything.

  • 19 authors
·
Dec 20, 2024

RAG-RewardBench: Benchmarking Reward Models in Retrieval Augmented Generation for Preference Alignment

Despite the significant progress made by existing retrieval augmented language models (RALMs) in providing trustworthy responses and grounding in reliable sources, they often overlook effective alignment with human preferences. In the alignment process, reward models (RMs) act as a crucial proxy for human values to guide optimization. However, it remains unclear how to evaluate and select a reliable RM for preference alignment in RALMs. To this end, we propose RAG-RewardBench, the first benchmark for evaluating RMs in RAG settings. First, we design four crucial and challenging RAG-specific scenarios to assess RMs, including multi-hop reasoning, fine-grained citation, appropriate abstain, and conflict robustness. Then, we incorporate 18 RAG subsets, six retrievers, and 24 RALMs to increase the diversity of data sources. Finally, we adopt an LLM-as-a-judge approach to improve preference annotation efficiency and effectiveness, exhibiting a strong correlation with human annotations. Based on the RAG-RewardBench, we conduct a comprehensive evaluation of 45 RMs and uncover their limitations in RAG scenarios. Additionally, we also reveal that existing trained RALMs show almost no improvement in preference alignment, highlighting the need for a shift towards preference-aligned training.We release our benchmark and code publicly at https://huggingface.co/datasets/jinzhuoran/RAG-RewardBench/ for future work.

  • 7 authors
·
Dec 18, 2024 2

TencentLLMEval: A Hierarchical Evaluation of Real-World Capabilities for Human-Aligned LLMs

Large language models (LLMs) have shown impressive capabilities across various natural language tasks. However, evaluating their alignment with human preferences remains a challenge. To this end, we propose a comprehensive human evaluation framework to assess LLMs' proficiency in following instructions on diverse real-world tasks. We construct a hierarchical task tree encompassing 7 major areas covering over 200 categories and over 800 tasks, which covers diverse capabilities such as question answering, reasoning, multiturn dialogue, and text generation, to evaluate LLMs in a comprehensive and in-depth manner. We also design detailed evaluation standards and processes to facilitate consistent, unbiased judgments from human evaluators. A test set of over 3,000 instances is released, spanning different difficulty levels and knowledge domains. Our work provides a standardized methodology to evaluate human alignment in LLMs for both English and Chinese. We also analyze the feasibility of automating parts of evaluation with a strong LLM (GPT-4). Our framework supports a thorough assessment of LLMs as they are integrated into real-world applications. We have made publicly available the task tree, TencentLLMEval dataset, and evaluation methodology which have been demonstrated as effective in assessing the performance of Tencent Hunyuan LLMs. By doing so, we aim to facilitate the benchmarking of advances in the development of safe and human-aligned LLMs.

  • 14 authors
·
Nov 9, 2023

The Necessity of Imperfection:Reversing Model Collapse via Simulating Cognitive Boundedness

Although synthetic data is widely promoted as a remedy, its prevailing production paradigm -- one optimizing for statistical smoothness -- systematically removes the long-tail, cognitively grounded irregularities that characterize human text. Prolonged training on such statistically optimal but cognitively impoverished data accelerates model collapse. This paper proposes a paradigm shift: instead of imitating the surface properties of data, we simulate the cognitive processes that generate human text. We introduce the Prompt-driven Cognitive Computing Framework (PMCSF), whose core consists of a Cognitive State Decoder (CSD) that reverse-engineers unstructured text into structured cognitive vectors, and a Cognitive Text Encoder (CTE) that re-materializes these states into text enriched with human-typical imperfections via mathematically defined Cognitive Perturbation Operators. The framework is validated through a two-stage objective evaluation pipeline. First, in cognitive codec verification, CTE text yields a Jensen-Shannon divergence of 0.0614 from human text (vs. 0.4431 for standard LLM output), passes double-blind professional media review, and achieves an intraclass correlation coefficient ICC > 0.9 for cognitive profile alignment across heterogeneous models. Second, in functional gain evaluation, isomorphic stress tests in the A-share market show that strategies incorporating CTE-generated data reduce maximum drawdown by 47.4% during the 2015 crash and deliver 8.6% Defensive Alpha, exceeding transaction costs by a factor of 33. Our findings demonstrate that modelling human cognitive limitations -- not copying surface data -- enables synthetic data with genuine functional gain, offering a viable technical pathway toward resolving the AI data-collapse crisis.

  • 1 authors
·
Dec 1, 2025

Inverse Reinforcement Learning Meets Large Language Model Post-Training: Basics, Advances, and Opportunities

In the era of Large Language Models (LLMs), alignment has emerged as a fundamental yet challenging problem in the pursuit of more reliable, controllable, and capable machine intelligence. The recent success of reasoning models and conversational AI systems has underscored the critical role of reinforcement learning (RL) in enhancing these systems, driving increased research interest at the intersection of RL and LLM alignment. This paper provides a comprehensive review of recent advances in LLM alignment through the lens of inverse reinforcement learning (IRL), emphasizing the distinctions between RL techniques employed in LLM alignment and those in conventional RL tasks. In particular, we highlight the necessity of constructing neural reward models from human data and discuss the formal and practical implications of this paradigm shift. We begin by introducing fundamental concepts in RL to provide a foundation for readers unfamiliar with the field. We then examine recent advances in this research agenda, discussing key challenges and opportunities in conducting IRL for LLM alignment. Beyond methodological considerations, we explore practical aspects, including datasets, benchmarks, evaluation metrics, infrastructure, and computationally efficient training and inference techniques. Finally, we draw insights from the literature on sparse-reward RL to identify open questions and potential research directions. By synthesizing findings from diverse studies, we aim to provide a structured and critical overview of the field, highlight unresolved challenges, and outline promising future directions for improving LLM alignment through RL and IRL techniques.

  • 2 authors
·
Jul 17, 2025 2

Making Large Language Models Better Reasoners with Alignment

Reasoning is a cognitive process of using evidence to reach a sound conclusion. The reasoning capability is essential for large language models (LLMs) to serve as the brain of the artificial general intelligence agent. Recent studies reveal that fine-tuning LLMs on data with the chain of thought (COT) reasoning process can significantly enhance their reasoning capabilities. However, we find that the fine-tuned LLMs suffer from an Assessment Misalignment problem, i.e., they frequently assign higher scores to subpar COTs, leading to potential limitations in their reasoning abilities. To address this problem, we introduce an Alignment Fine-Tuning (AFT) paradigm, which involves three steps: 1) fine-tuning LLMs with COT training data; 2) generating multiple COT responses for each question, and categorizing them into positive and negative ones based on whether they achieve the correct answer; 3) calibrating the scores of positive and negative responses given by LLMs with a novel constraint alignment loss. Specifically, the constraint alignment loss has two objectives: a) Alignment, which guarantees that positive scores surpass negative scores to encourage answers with high-quality COTs; b) Constraint, which keeps the negative scores confined to a reasonable range to prevent the model degradation. Beyond just the binary positive and negative feedback, the constraint alignment loss can be seamlessly adapted to the ranking situations when ranking feedback is accessible. Furthermore, we also delve deeply into recent ranking-based alignment methods, such as DPO, RRHF, and PRO, and discover that the constraint, which has been overlooked by these approaches, is also crucial for their performance. Extensive experiments on four reasoning benchmarks with both binary and ranking feedback demonstrate the effectiveness of AFT.

  • 8 authors
·
Sep 5, 2023

Item-Language Model for Conversational Recommendation

Large-language Models (LLMs) have been extremely successful at tasks like complex dialogue understanding, reasoning and coding due to their emergent abilities. These emergent abilities have been extended with multi-modality to include image, audio, and video capabilities. Recommender systems, on the other hand, have been critical for information seeking and item discovery needs. Recently, there have been attempts to apply LLMs for recommendations. One difficulty of current attempts is that the underlying LLM is usually not trained on the recommender system data, which largely contains user interaction signals and is often not publicly available. Another difficulty is user interaction signals often have a different pattern from natural language text, and it is currently unclear if the LLM training setup can learn more non-trivial knowledge from interaction signals compared with traditional recommender system methods. Finally, it is difficult to train multiple LLMs for different use-cases, and to retain the original language and reasoning abilities when learning from recommender system data. To address these three limitations, we propose an Item-Language Model (ILM), which is composed of an item encoder to produce text-aligned item representations that encode user interaction signals, and a frozen LLM that can understand those item representations with preserved pretrained knowledge. We conduct extensive experiments which demonstrate both the importance of the language-alignment and of user interaction knowledge in the item encoder.

  • 7 authors
·
Jun 4, 2024 1

Can Brain Signals Reveal Inner Alignment with Human Languages?

Brain Signals, such as Electroencephalography (EEG), and human languages have been widely explored independently for many downstream tasks, however, the connection between them has not been well explored. In this study, we explore the relationship and dependency between EEG and language. To study at the representation level, we introduced MTAM, a Multimodal Transformer Alignment Model, to observe coordinated representations between the two modalities. We used various relationship alignment-seeking techniques, such as Canonical Correlation Analysis and Wasserstein Distance, as loss functions to transfigure features. On downstream applications, sentiment analysis and relation detection, we achieved new state-of-the-art results on two datasets, ZuCo and K-EmoCon. Our method achieved an F1-score improvement of 1.7% on K-EmoCon and 9.3% on Zuco datasets for sentiment analysis, and 7.4% on ZuCo for relation detection. In addition, we provide interpretations of the performance improvement: (1) feature distribution shows the effectiveness of the alignment module for discovering and encoding the relationship between EEG and language; (2) alignment weights show the influence of different language semantics as well as EEG frequency features; (3) brain topographical maps provide an intuitive demonstration of the connectivity in the brain regions. Our code is available at https://github.com/Jason-Qiu/EEG_Language_Alignment.

  • 7 authors
·
Aug 10, 2022

Weak-to-Strong Generalization beyond Accuracy: a Pilot Study in Safety, Toxicity, and Legal Reasoning

As large language models (LLMs) continue to advance, ensuring their alignment with human values becomes increasingly critical. Traditional alignment methods heavily rely on human feedback to fine-tune models. With the emergence of superhuman models whose outputs may surpass human understanding, evaluating and aligning these models using human judgments poses significant challenges. To address the challenges, recent works use weak supervisors to elicit knowledge from much stronger models. However, there are important disanalogies between the empirical setup in the existing works and the genuine goal of alignment. We remark that existing works investigate the phenomenon of weak-to-strong generation in analogous setup (i.e., binary classification), rather than practical alignment-relevant tasks (e.g., safety). In this paper, we bridge this gap by extending weak-to-strong generation to the context of practical alignment. We empirically demonstrate the widespread phenomenon of weak-to-strong generation in three complicated alignment tasks: safety, toxicity, and legal reasoning}. Furthermore, we explore efficient strategies for improving alignment performance to enhance the quality of model outcomes. Lastly, we summarize and analyze the challenges and potential solutions in regard to specific alignment tasks, which we hope to catalyze the research progress on the topic of weak-to-strong generalization. Our code is released at https://github.com/yeruimeng/WTS.git.

  • 3 authors
·
Oct 16, 2024

Hybrid Preferences: Learning to Route Instances for Human vs. AI Feedback

Learning from human feedback has enabled the alignment of language models (LMs) with human preferences. However, directly collecting human preferences can be expensive, time-consuming, and can have high variance. An appealing alternative is to distill preferences from LMs as a source of synthetic annotations as they are more consistent, cheaper, and scale better than human annotation; however, they are also prone to biases and errors. In this work, we introduce a routing framework that combines inputs from humans and LMs to achieve better annotation quality, while reducing the total cost of human annotation. The crux of our approach is to identify preference instances that will benefit from human annotations. We formulate this as an optimization problem: given a preference dataset and an evaluation metric, we train a performance prediction model to predict a reward model's performance on an arbitrary combination of human and LM annotations and employ a routing strategy that selects a combination that maximizes predicted performance. We train the performance prediction model on MultiPref, a new preference dataset with 10K instances paired with human and LM labels. We show that the selected hybrid mixture of LM and direct human preferences using our routing framework achieves better reward model performance compared to using either one exclusively. We simulate selective human preference collection on three other datasets and show that our method generalizes well to all three. We analyze features from the routing model to identify characteristics of instances that can benefit from human feedback, e.g., prompts with a moderate safety concern or moderate intent complexity. We release the dataset, annotation platform, and source code used in this study to foster more efficient and accurate preference collection in the future.

  • 9 authors
·
Oct 24, 2024 2

Implicit Multimodal Alignment: On the Generalization of Frozen LLMs to Multimodal Inputs

Large Language Models (LLMs) have demonstrated impressive performance on multimodal tasks, without any multimodal finetuning. They are the building block for Large Multimodal Models, yet, we still lack a proper understanding of their success. In this work, we expose frozen LLMs to image, video, audio and text inputs and analyse their internal representation aiming to understand their generalization beyond textual inputs. Findings. Perceptual tokens (1) are easily distinguishable from textual ones inside LLMs, with significantly different representations, and complete translation to textual tokens does not exist. Yet, (2) both perceptual and textual tokens activate similar LLM weights. Despite being different, (3) perceptual and textual tokens are implicitly aligned inside LLMs, we call this the implicit multimodal alignment (IMA), and argue that this is linked to architectural design, helping LLMs to generalize. This provide more evidence to believe that the generalization of LLMs to multimodal inputs is mainly due to their architecture. Implications. (1) We find a positive correlation between the implicit alignment score and the task performance, suggesting that this could act as a proxy metric for model evaluation and selection. (2) A negative correlation exists regarding hallucinations, revealing that this problem is mainly due to misalignment between the internal perceptual and textual representations. (3) Perceptual tokens change slightly throughout the model, thus, we propose different approaches to skip computations (e.g. in FFN layers), and significantly reduce the inference cost. (4) Due to the slowly changing embeddings across layers, and the high overlap between textual and multimodal activated weights, we compress LLMs by keeping only 1 subnetwork that works well across a wide range of multimodal tasks. Paper code: https://github.com/mshukor/ima-lmms.

  • 2 authors
·
May 26, 2024

Baichuan Alignment Technical Report

We introduce Baichuan Alignment, a detailed analysis of the alignment techniques employed in the Baichuan series of models. This represents the industry's first comprehensive account of alignment methodologies, offering valuable insights for advancing AI research. We investigate the critical components that enhance model performance during the alignment process, including optimization methods, data strategies, capability enhancements, and evaluation processes. The process spans three key stages: Prompt Augmentation System (PAS), Supervised Fine-Tuning (SFT), and Preference Alignment. The problems encountered, the solutions applied, and the improvements made are thoroughly recorded. Through comparisons across well-established benchmarks, we highlight the technological advancements enabled by Baichuan Alignment. Baichuan-Instruct is an internal model, while Qwen2-Nova-72B and Llama3-PBM-Nova-70B are instruct versions of the Qwen2-72B and Llama-3-70B base models, optimized through Baichuan Alignment. Baichuan-Instruct demonstrates significant improvements in core capabilities, with user experience gains ranging from 17% to 28%, and performs exceptionally well on specialized benchmarks. In open-source benchmark evaluations, both Qwen2-Nova-72B and Llama3-PBM-Nova-70B consistently outperform their respective official instruct versions across nearly all datasets. This report aims to clarify the key technologies behind the alignment process, fostering a deeper understanding within the community. Llama3-PBM-Nova-70B model is available at https://huggingface.co/PKU-Baichuan-MLSystemLab/Llama3-PBM-Nova-70B.

  • 25 authors
·
Oct 18, 2024 2

Psycholinguistic Word Features: a New Approach for the Evaluation of LLMs Alignment with Humans

The evaluation of LLMs has so far focused primarily on how well they can perform different tasks such as reasoning, question-answering, paraphrasing, or translating. For most of these tasks, performance can be measured with objective metrics, such as the number of correct answers. However, other language features are not easily quantified. For example, arousal, concreteness, or gender associated with a given word, as well as the extent to which we experience words with senses and relate them to a specific sense. Those features have been studied for many years by psycholinguistics, conducting large-scale experiments with humans to produce ratings for thousands of words. This opens an opportunity to evaluate how well LLMs align with human ratings on these word features, taking advantage of existing studies that cover many different language features in a large number of words. In this paper, we evaluate the alignment of a representative group of LLMs with human ratings on two psycholinguistic datasets: the Glasgow and Lancaster norms. These datasets cover thirteen features over thousands of words. The results show that alignment is black{generally} better in the Glasgow norms evaluated (arousal, valence, dominance, concreteness, imageability, familiarity, and gender) than on the Lancaster norms evaluated (introceptive, gustatory, olfactory, haptic, auditory, and visual). This suggests a potential limitation of current LLMs in aligning with human sensory associations for words, which may be due to their lack of embodied cognition present in humans and illustrates the usefulness of evaluating LLMs with psycholinguistic datasets.

  • 6 authors
·
May 29, 2025

Can Sound Replace Vision in LLaVA With Token Substitution?

What happens when we push audio-visual alignment to its absolute limits? To systematically investigate this question, we needed datasets with granular alignment quality annotations, but existing datasets treat alignment as binary, either synchronized or not. To address this limitation, we developed a comprehensive dataset featuring detailed alignment scores that reveal the hidden spectrum of audio-visual perceptual correspondence. Using these precise scores, we create "superaligned" representations by training exclusively on the most perfectly matched audio-visual pairs, then conduct our systematic investigation into how this extreme alignment transforms perceptual model behavior across retrieval and generation tasks. The encoders under study fall into two main groups consisting of image-centric encoders that were pretrained using visual modalities as intermediary hubs for connecting modalities, and text-centric encoders that were pretrained with direct audio-language alignment. We first measure the baseline performance of these encoders on two key tasks, namely cross-modal retrieval and text description generation in vision-language models. Subsequently, we realign all encoders with the CLIP space using highly coherent audio-visual data and observe the performance changes. Our findings reveal that the initial architectural type of the encoder determines how it responds to the alignment process. Image-centric encoders, which are inherently designed for alignment, demonstrate exceptional performance in cross-modal retrieval, but this intensive alignment causes compression of unique linguistic information and reduces the quality of their text description generation in vision-language models. In contrast, text-centric encoders, which possess stronger linguistic authenticity, are able to maintain a better balance between the two objectives.

  • 5 authors
·
Jun 12, 2025

Fine-Tuned Large Language Model for Visualization System: A Study on Self-Regulated Learning in Education

Large Language Models (LLMs) have shown great potential in intelligent visualization systems, especially for domain-specific applications. Integrating LLMs into visualization systems presents challenges, and we categorize these challenges into three alignments: domain problems with LLMs, visualization with LLMs, and interaction with LLMs. To achieve these alignments, we propose a framework and outline a workflow to guide the application of fine-tuned LLMs to enhance visual interactions for domain-specific tasks. These alignment challenges are critical in education because of the need for an intelligent visualization system to support beginners' self-regulated learning. Therefore, we apply the framework to education and introduce Tailor-Mind, an interactive visualization system designed to facilitate self-regulated learning for artificial intelligence beginners. Drawing on insights from a preliminary study, we identify self-regulated learning tasks and fine-tuning objectives to guide visualization design and tuning data construction. Our focus on aligning visualization with fine-tuned LLM makes Tailor-Mind more like a personalized tutor. Tailor-Mind also supports interactive recommendations to help beginners better achieve their learning goals. Model performance evaluations and user studies confirm that Tailor-Mind improves the self-regulated learning experience, effectively validating the proposed framework.

  • 10 authors
·
Jul 30, 2024

Context-Alignment: Activating and Enhancing LLM Capabilities in Time Series

Recently, leveraging pre-trained Large Language Models (LLMs) for time series (TS) tasks has gained increasing attention, which involves activating and enhancing LLMs' capabilities. Many methods aim to activate LLMs' capabilities based on token-level alignment but overlook LLMs' inherent strength on natural language processing -- their deep understanding of linguistic logic and structure rather than superficial embedding processing. We propose Context-Alignment, a new paradigm that aligns TS with a linguistic component in the language environments familiar to LLMs to enable LLMs to contextualize and comprehend TS data, thereby activating their capabilities. Specifically, such context-level alignment comprises structural alignment and logical alignment, which is achieved by a Dual-Scale Context-Alignment GNNs (DSCA-GNNs) applied to TS-language multimodal inputs. Structural alignment utilizes dual-scale nodes to describe hierarchical structure in TS-language, enabling LLMs treat long TS data as a whole linguistic component while preserving intrinsic token features. Logical alignment uses directed edges to guide logical relationships, ensuring coherence in the contextual semantics. Demonstration examples prompt are employed to construct Demonstration Examples based Context-Alignment (DECA) following DSCA-GNNs framework. DECA can be flexibly and repeatedly integrated into various layers of pre-trained LLMs to improve awareness of logic and structure, thereby enhancing performance. Extensive experiments show the effectiveness of DECA and the importance of Context-Alignment across tasks, particularly in few-shot and zero-shot forecasting, confirming that Context-Alignment provide powerful prior knowledge on context.

  • 5 authors
·
Jan 7, 2025

Uncovering Factor Level Preferences to Improve Human-Model Alignment

Despite advancements in Large Language Model (LLM) alignment, understanding the reasons behind LLM preferences remains crucial for bridging the gap between desired and actual behavior. LLMs often exhibit biases or tendencies that diverge from human preferences, such as favoring certain writing styles or producing overly verbose outputs. However, current methods for evaluating preference alignment often lack explainability, relying on coarse-grained comparisons. To address this, we introduce PROFILE (PRObing Factors of InfLuence for Explainability), a novel framework that uncovers and quantifies the influence of specific factors driving preferences. PROFILE's factor level analysis explains the 'why' behind human-model alignment and misalignment, offering insights into the direction of model improvement. We apply PROFILE to analyze human and LLM preferences across three tasks: summarization, helpful response generation, and document-based question-answering. Our factor level analysis reveals a substantial discrepancy between human and LLM preferences in generation tasks, whereas LLMs show strong alignment with human preferences in evaluation tasks. We demonstrate how leveraging factor level insights, including addressing misaligned factors or exploiting the generation-evaluation gap, can improve alignment with human preferences. This work underscores the importance of explainable preference analysis and highlights PROFILE's potential to provide valuable training signals, driving further improvements in human-model alignment.

  • 7 authors
·
Oct 9, 2024

Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations

Despite progress in perceptual tasks such as image classification, computers still perform poorly on cognitive tasks such as image description and question answering. Cognition is core to tasks that involve not just recognizing, but reasoning about our visual world. However, models used to tackle the rich content in images for cognitive tasks are still being trained using the same datasets designed for perceptual tasks. To achieve success at cognitive tasks, models need to understand the interactions and relationships between objects in an image. When asked "What vehicle is the person riding?", computers will need to identify the objects in an image as well as the relationships riding(man, carriage) and pulling(horse, carriage) in order to answer correctly that "the person is riding a horse-drawn carriage". In this paper, we present the Visual Genome dataset to enable the modeling of such relationships. We collect dense annotations of objects, attributes, and relationships within each image to learn these models. Specifically, our dataset contains over 100K images where each image has an average of 21 objects, 18 attributes, and 18 pairwise relationships between objects. We canonicalize the objects, attributes, relationships, and noun phrases in region descriptions and questions answer pairs to WordNet synsets. Together, these annotations represent the densest and largest dataset of image descriptions, objects, attributes, relationships, and question answers.

  • 12 authors
·
Feb 23, 2016

P-Aligner: Enabling Pre-Alignment of Language Models via Principled Instruction Synthesis

Large Language Models (LLMs) are expected to produce safe, helpful, and honest content during interaction with human users, but they frequently fail to align with such values when given flawed instructions, e.g., missing context, ambiguous directives, or inappropriate tone, leaving substantial room for improvement along multiple dimensions. A cost-effective yet high-impact way is to pre-align instructions before the model begins decoding. Existing approaches either rely on prohibitive test-time search costs or end-to-end model rewrite, which is powered by a customized training corpus with unclear objectives. In this work, we demonstrate that the goal of efficient and effective preference alignment can be achieved by P-Aligner, a lightweight module generating instructions that preserve the original intents while being expressed in a more human-preferred form. P-Aligner is trained on UltraPrompt, a new dataset synthesized via a proposed principle-guided pipeline using Monte-Carlo Tree Search, which systematically explores the space of candidate instructions that are closely tied to human preference. Experiments across different methods show that P-Aligner generally outperforms strong baselines across various models and benchmarks, including average win-rate gains of 28.35% and 8.69% on GPT-4-turbo and Gemma-2-SimPO, respectively. Further analyses validate its effectiveness and efficiency through multiple perspectives, including data quality, search strategies, iterative deployment, and time overhead.

  • 9 authors
·
Aug 6, 2025

InfiGUI-G1: Advancing GUI Grounding with Adaptive Exploration Policy Optimization

The emergence of Multimodal Large Language Models (MLLMs) has propelled the development of autonomous agents that operate on Graphical User Interfaces (GUIs) using pure visual input. A fundamental challenge is robustly grounding natural language instructions. This requires a precise spatial alignment, which accurately locates the coordinates of each element, and, more critically, a correct semantic alignment, which matches the instructions to the functionally appropriate UI element. Although Reinforcement Learning with Verifiable Rewards (RLVR) has proven to be effective at improving spatial alignment for these MLLMs, we find that inefficient exploration bottlenecks semantic alignment, which prevent models from learning difficult semantic associations. To address this exploration problem, we present Adaptive Exploration Policy Optimization (AEPO), a new policy optimization framework. AEPO employs a multi-answer generation strategy to enforce broader exploration, which is then guided by a theoretically grounded Adaptive Exploration Reward (AER) function derived from first principles of efficiency eta=U/C. Our AEPO-trained models, InfiGUI-G1-3B and InfiGUI-G1-7B, establish new state-of-the-art results across multiple challenging GUI grounding benchmarks, achieving significant relative improvements of up to 9.0% against the naive RLVR baseline on benchmarks designed to test generalization and semantic understanding. Resources are available at https://github.com/InfiXAI/InfiGUI-G1.

  • 13 authors
·
Aug 7, 2025 2

PAL: Pluralistic Alignment Framework for Learning from Heterogeneous Preferences

Large foundation models pretrained on raw web-scale data are not readily deployable without additional step of extensive alignment to human preferences. Such alignment is typically done by collecting large amounts of pairwise comparisons from humans ("Do you prefer output A or B?") and learning a reward model or a policy with the Bradley-Terry-Luce (BTL) model as a proxy for a human's underlying implicit preferences. These methods generally suffer from assuming a universal preference shared by all humans, which lacks the flexibility of adapting to plurality of opinions and preferences. In this work, we propose PAL, a framework to model human preference complementary to existing pretraining strategies, which incorporates plurality from the ground up. We propose using the ideal point model as a lens to view alignment using preference comparisons. Together with our novel reformulation and using mixture modeling, our framework captures the plurality of population preferences while simultaneously learning a common preference latent space across different preferences, which can few-shot generalize to new, unseen users. Our approach enables us to use the penultimate-layer representation of large foundation models and simple MLP layers to learn reward functions that are on-par with the existing large state-of-the-art reward models, thereby enhancing efficiency of reward modeling significantly. We show that PAL achieves competitive reward model accuracy compared to strong baselines on 1) Language models with Summary dataset ; 2) Image Generative models with Pick-a-Pic dataset ; 3) A new semisynthetic heterogeneous dataset generated using Anthropic Personas. Finally, our experiments also highlight the shortcoming of current preference datasets that are created using rigid rubrics which wash away heterogeneity, and call for more nuanced data collection approaches.

  • 4 authors
·
Jun 12, 2024