Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSplit Computing and Early Exiting for Deep Learning Applications: Survey and Research Challenges
Mobile devices such as smartphones and autonomous vehicles increasingly rely on deep neural networks (DNNs) to execute complex inference tasks such as image classification and speech recognition, among others. However, continuously executing the entire DNN on mobile devices can quickly deplete their battery. Although task offloading to cloud/edge servers may decrease the mobile device's computational burden, erratic patterns in channel quality, network, and edge server load can lead to a significant delay in task execution. Recently, approaches based on split computing (SC) have been proposed, where the DNN is split into a head and a tail model, executed respectively on the mobile device and on the edge server. Ultimately, this may reduce bandwidth usage as well as energy consumption. Another approach, called early exiting (EE), trains models to embed multiple "exits" earlier in the architecture, each providing increasingly higher target accuracy. Therefore, the trade-off between accuracy and delay can be tuned according to the current conditions or application demands. In this paper, we provide a comprehensive survey of the state of the art in SC and EE strategies by presenting a comparison of the most relevant approaches. We conclude the paper by providing a set of compelling research challenges.
NetDistiller: Empowering Tiny Deep Learning via In-Situ Distillation
Boosting the task accuracy of tiny neural networks (TNNs) has become a fundamental challenge for enabling the deployments of TNNs on edge devices which are constrained by strict limitations in terms of memory, computation, bandwidth, and power supply. To this end, we propose a framework called NetDistiller to boost the achievable accuracy of TNNs by treating them as sub-networks of a weight-sharing teacher constructed by expanding the number of channels of the TNN. Specifically, the target TNN model is jointly trained with the weight-sharing teacher model via (1) gradient surgery to tackle the gradient conflicts between them and (2) uncertainty-aware distillation to mitigate the overfitting of the teacher model. Extensive experiments across diverse tasks validate NetDistiller's effectiveness in boosting TNNs' achievable accuracy over state-of-the-art methods. Our code is available at https://github.com/GATECH-EIC/NetDistiller.
MoE-Infinity: Activation-Aware Expert Offloading for Efficient MoE Serving
This paper presents MoE-Infinity, a cost-efficient mixture-of-expert (MoE) serving system that realizes activation-aware expert offloading. MoE-Infinity features sequence-level expert activation tracing, a new approach adept at identifying sparse activations and capturing the temporal locality of MoE inference. By analyzing these traces, MoE-Infinity performs novel activation-aware expert prefetching and caching, substantially reducing the latency overheads usually associated with offloading experts for improved cost performance. Extensive experiments in a cluster show that MoE-Infinity outperforms numerous existing systems and approaches, reducing latency by 4 - 20X and decreasing deployment costs by over 8X for various MoEs. MoE-Infinity's source code is publicly available at https://github.com/TorchMoE/MoE-Infinity
Neural Compression and Filtering for Edge-assisted Real-time Object Detection in Challenged Networks
The edge computing paradigm places compute-capable devices - edge servers - at the network edge to assist mobile devices in executing data analysis tasks. Intuitively, offloading compute-intense tasks to edge servers can reduce their execution time. However, poor conditions of the wireless channel connecting the mobile devices to the edge servers may degrade the overall capture-to-output delay achieved by edge offloading. Herein, we focus on edge computing supporting remote object detection by means of Deep Neural Networks (DNNs), and develop a framework to reduce the amount of data transmitted over the wireless link. The core idea we propose builds on recent approaches splitting DNNs into sections - namely head and tail models - executed by the mobile device and edge server, respectively. The wireless link, then, is used to transport the output of the last layer of the head model to the edge server, instead of the DNN input. Most prior work focuses on classification tasks and leaves the DNN structure unaltered. Herein, our focus is on DNNs for three different object detection tasks, which present a much more convoluted structure, and modify the architecture of the network to: (i) achieve in-network compression by introducing a bottleneck layer in the early layers on the head model, and (ii) prefilter pictures that do not contain objects of interest using a convolutional neural network. Results show that the proposed technique represents an effective intermediate option between local and edge computing in a parameter region where these extreme point solutions fail to provide satisfactory performance. The code and trained models are available at https://github.com/yoshitomo-matsubara/hnd-ghnd-object-detectors .
Com-DDPG: A Multiagent Reinforcement Learning-based Offloading Strategy for Mobile Edge Computing
The development of mobile services has impacted a variety of computation-intensive and time-sensitive applications, such as recommendation systems and daily payment methods. However, computing task competition involving limited resources increases the task processing latency and energy consumption of mobile devices, as well as time constraints. Mobile edge computing (MEC) has been widely used to address these problems. However, there are limitations to existing methods used during computation offloading. On the one hand, they focus on independent tasks rather than dependent tasks. The challenges of task dependency in the real world, especially task segmentation and integration, remain to be addressed. On the other hand, the multiuser scenarios related to resource allocation and the mutex access problem must be considered. In this paper, we propose a novel offloading approach, Com-DDPG, for MEC using multiagent reinforcement learning to enhance the offloading performance. First, we discuss the task dependency model, task priority model, energy consumption model, and average latency from the perspective of server clusters and multidependence on mobile tasks. Our method based on these models is introduced to formalize communication behavior among multiple agents; then, reinforcement learning is executed as an offloading strategy to obtain the results. Because of the incomplete state information, long short-term memory (LSTM) is employed as a decision-making tool to assess the internal state. Moreover, to optimize and support effective action, we consider using a bidirectional recurrent neural network (BRNN) to learn and enhance features obtained from agents' communication. Finally, we simulate experiments on the Alibaba cluster dataset. The results show that our method is better than other baselines in terms of energy consumption, load status and latency.
ONNX-Net: Towards Universal Representations and Instant Performance Prediction for Neural Architectures
Neural architecture search (NAS) automates the design process of high-performing architectures, but remains bottlenecked by expensive performance evaluation. Most existing studies that achieve faster evaluation are mostly tied to cell-based search spaces and graph encodings tailored to those individual search spaces, limiting their flexibility and scalability when applied to more expressive search spaces. In this work, we aim to close the gap of individual search space restrictions and search space dependent network representations. We present ONNX-Bench, a benchmark consisting of a collection of neural networks in a unified format based on ONNX files. ONNX-Bench includes all open-source NAS-bench-based neural networks, resulting in a total size of more than 600k {architecture, accuracy} pairs. This benchmark allows creating a shared neural network representation, ONNX-Net, able to represent any neural architecture using natural language descriptions acting as an input to a performance predictor. This text-based encoding can accommodate arbitrary layer types, operation parameters, and heterogeneous topologies, enabling a single surrogate to generalise across all neural architectures rather than being confined to cell-based search spaces. Experiments show strong zero-shot performance across disparate search spaces using only a small amount of pretraining samples, enabling the unprecedented ability to evaluate any neural network architecture instantly.
HyGen: Efficient LLM Serving via Elastic Online-Offline Request Co-location
Large language models (LLMs) have facilitated a wide range of applications with distinct service-level objectives (SLOs), from latency-sensitive online tasks like interactive chatbots to throughput-oriented offline workloads like document summarization. The existing deployment model, which dedicates machines to each workload, simplifies SLO management but often leads to poor resource utilization. This paper introduces HyGen, an interference-aware LLM serving system that enables efficient co-location of online and offline workloads while preserving latency requirements. HyGen incorporates two key innovations: (1) performance control mechanisms, including a latency predictor to estimate batch execution time and an SLO-aware profiler to quantify latency interference, and (2) SLO-aware offline scheduling policies that maximize serving throughput and prevent starvation, without compromising online serving latency. Our evaluation on production workloads shows that HyGen achieves up to 3.87x overall throughput and 5.84x offline throughput gains over online and hybrid serving baselines, respectively, while strictly satisfying latency SLOs.
ExpertFlow: Optimized Expert Activation and Token Allocation for Efficient Mixture-of-Experts Inference
Sparse Mixture of Experts (MoE) models, while outperforming dense Large Language Models (LLMs) in terms of performance, face significant deployment challenges during inference due to their high memory demands. Existing offloading techniques, which involve swapping activated and idle experts between the GPU and CPU, often suffer from rigid expert caching mechanisms. These mechanisms fail to adapt to dynamic routing, leading to inefficient cache utilization, or incur prohibitive costs for prediction training. To tackle these inference-specific challenges, we introduce ExpertFlow, a comprehensive system specifically designed to enhance inference efficiency by accommodating flexible routing and enabling efficient expert scheduling between CPU and GPU. This reduces overhead and boosts system performance. Central to our approach is a predictive routing path-based offloading mechanism that utilizes a lightweight predictor to accurately forecast routing paths before computation begins. This proactive strategy allows for real-time error correction in expert caching, significantly increasing cache hit ratios and reducing the frequency of expert transfers, thereby minimizing I/O overhead. Additionally, we implement a dynamic token scheduling strategy that optimizes MoE inference by rearranging input tokens across different batches. This method not only reduces the number of activated experts per batch but also improves computational efficiency. Our extensive experiments demonstrate that ExpertFlow achieves up to 93.72\% GPU memory savings and enhances inference speed by 2 to 10 times compared to baseline methods, highlighting its effectiveness and utility as a robust solution for resource-constrained inference scenarios.
Cambricon-LLM: A Chiplet-Based Hybrid Architecture for On-Device Inference of 70B LLM
Deploying advanced large language models on edge devices, such as smartphones and robotics, is a growing trend that enhances user data privacy and network connectivity resilience while preserving intelligent capabilities. However, such a task exhibits single-batch computing with incredibly low arithmetic intensity, which poses the significant challenges of huge memory footprint and bandwidth demands on limited edge resources. To address these issues, we introduce Cambricon-LLM, a chiplet-based hybrid architecture with NPU and a dedicated NAND flash chip to enable efficient on-device inference of 70B LLMs. Such a hybrid architecture utilizes both the high computing capability of NPU and the data capacity of the NAND flash chip, with the proposed hardware-tiling strategy that minimizes the data movement overhead between NPU and NAND flash chip. Specifically, the NAND flash chip, enhanced by our innovative in-flash computing and on-die ECC techniques, excels at performing precise lightweight on-die processing. Simultaneously, the NPU collaborates with the flash chip for matrix operations and handles special function computations beyond the flash's on-die processing capabilities. Overall, Cambricon-LLM enables the on-device inference of 70B LLMs at a speed of 3.44 token/s, and 7B LLMs at a speed of 36.34 token/s, which is over 22X to 45X faster than existing flash-offloading technologies, showing the potentiality of deploying powerful LLMs in edge devices.
MELTing point: Mobile Evaluation of Language Transformers
Transformers have revolutionized the machine learning landscape, gradually making their way into everyday tasks and equipping our computers with "sparks of intelligence". However, their runtime requirements have prevented them from being broadly deployed on mobile. As personal devices become increasingly powerful and prompt privacy becomes an ever more pressing issue, we explore the current state of mobile execution of Large Language Models (LLMs). To achieve this, we have created our own automation infrastructure, MELT, which supports the headless execution and benchmarking of LLMs on device, supporting different models, devices and frameworks, including Android, iOS and Nvidia Jetson devices. We evaluate popular instruction fine-tuned LLMs and leverage different frameworks to measure their end-to-end and granular performance, tracing their memory and energy requirements along the way. Our analysis is the first systematic study of on-device LLM execution, quantifying performance, energy efficiency and accuracy across various state-of-the-art models and showcases the state of on-device intelligence in the era of hyperscale models. Results highlight the performance heterogeneity across targets and corroborates that LLM inference is largely memory-bound. Quantization drastically reduces memory requirements and renders execution viable, but at a non-negligible accuracy cost. Drawing from its energy footprint and thermal behavior, the continuous execution of LLMs remains elusive, as both factors negatively affect user experience. Last, our experience shows that the ecosystem is still in its infancy, and algorithmic as well as hardware breakthroughs can significantly shift the execution cost. We expect NPU acceleration, and framework-hardware co-design to be the biggest bet towards efficient standalone execution, with the alternative of offloading tailored towards edge deployments.
Endor: Hardware-Friendly Sparse Format for Offloaded LLM Inference
The increasing size of large language models (LLMs) challenges their usage on resource-constrained platforms. For example, memory on modern GPUs is insufficient to hold LLMs that are hundreds of Gigabytes in size. Offloading is a popular method to escape this constraint by storing weights of an LLM model to host CPU memory and SSD, then loading each weight to GPU before every use. In our case study of offloaded inference, we found that due to the low bandwidth between storage devices and GPU, the latency of transferring large model weights from its offloaded location to GPU memory becomes the critical bottleneck with actual compute taking nearly 0% of runtime. To effectively reduce the weight transfer latency, we propose a novel sparse format that compresses the unstructured sparse pattern of pruned LLM weights to non-zero values with high compression ratio and low decompression overhead. Endor achieves this by expressing the positions of non-zero elements with a bitmap. Compared to offloaded inference using the popular Huggingface Accelerate, applying Endor accelerates OPT-66B by 1.70x and Llama2-70B by 1.78x. When direct weight transfer from SSD to GPU is leveraged, Endor achieves 2.25x speedup on OPT-66B and 2.37x speedup on Llama2-70B.
PipeOffload: Improving Scalability of Pipeline Parallelism with Memory Optimization
Pipeline parallelism (PP) is widely used for training large language models (LLMs), yet its scalability is often constrained by high activation memory consumption as the number of in-flight microbatches grows with the degree of PP. In this paper, we focus on addressing this challenge by leveraging the under-explored memory offload strategy in PP. With empirical study, we discover that in the majority of standard configurations, at least half, and potentially all, of the activations can be offloaded with negligible overhead. In the cases where full overload is not possible, we introduce a novel selective offload strategy that decreases peak activation memory in a better-than-linear manner. Furthermore, we integrate memory offload with other techniques to jointly consider overall throughput and memory limitation. Our experiments proves that the per-device activation memory effectively reduces with the total number of stages, making PP a stronger alternative than TP, offering up to a 19\% acceleration with even lower memory consumption. The implementation is open-sourced at https://github.com/sail-sg/zero-bubble-pipeline-parallelism{this url}.
FlexInfer: Breaking Memory Constraint via Flexible and Efficient Offloading for On-Device LLM Inference
Large Language Models (LLMs) face challenges for on-device inference due to high memory demands. Traditional methods to reduce memory usage often compromise performance and lack adaptability. We propose FlexInfer, an optimized offloading framework for on-device inference, addressing these issues with techniques like asynchronous prefetching, balanced memory locking, and flexible tensor preservation. These strategies enhance memory efficiency and mitigate I/O bottlenecks, ensuring high performance within user-specified resource constraints. Experiments demonstrate that FlexInfer significantly improves throughput under limited resources, achieving up to 12.5 times better performance than existing methods and facilitating the deployment of large models on resource-constrained devices.
Cold-RL: Learning Cache Eviction with Offline Reinforcement Learning for NGINX
Web proxies such as NGINX commonly rely on least-recently-used (LRU) eviction, which is size agnostic and can thrash under periodic bursts and mixed object sizes. We introduce Cold-RL, a learned eviction policy for NGINX that replaces LRU's forced-expire path with a dueling Deep Q-Network served by an ONNX sidecar within a strict microsecond budget. On each eviction, Cold-RL samples the K least-recently-used objects, extracts six lightweight features (age, size, hit count, inter-arrival time, remaining TTL, and last origin RTT), and requests a bitmask of victims; a hard timeout of 500 microseconds triggers immediate fallback to native LRU. Policies are trained offline by replaying NGINX access logs through a cache simulator with a simple reward: a retained object earns one point if it is hit again before TTL expiry. We compare against LRU, LFU, size-based, adaptive LRU, and a hybrid baseline on two adversarial workloads. With a 25 MB cache, Cold-RL raises hit ratio from 0.1436 to 0.3538, a 146 percent improvement over the best classical baseline; at 100 MB, from 0.7530 to 0.8675, a 15 percent gain; and at 400 MB it matches classical methods (about 0.918). Inference adds less than 2 percent CPU overhead and keeps 95th percentile eviction latency within budget. To our knowledge, this is the first reinforcement learning eviction policy integrated into NGINX with strict SLOs.
Past-Future Scheduler for LLM Serving under SLA Guarantees
The exploration and application of Large Language Models (LLMs) is thriving. To reduce deployment costs, continuous batching has become an essential feature in current service frameworks. The effectiveness of continuous batching relies on an accurate estimate of the memory requirements of requests. However, due to the diversity in request output lengths, existing frameworks tend to adopt aggressive or conservative schedulers, which often result in significant overestimation or underestimation of memory consumption. Consequently, they suffer from harmful request evictions or prolonged queuing times, failing to achieve satisfactory throughput under strict Service Level Agreement (SLA) guarantees (a.k.a. goodput), across various LLM application scenarios with differing input-output length distributions. To address this issue, we propose a novel Past-Future scheduler that precisely estimates the peak memory resources required by the running batch via considering the historical distribution of request output lengths and calculating memory occupancy at each future time point. It adapts to applications with all types of input-output length distributions, balancing the trade-off between request queuing and harmful evictions, thereby consistently achieving better goodput. Furthermore, to validate the effectiveness of the proposed scheduler, we developed a high-performance LLM serving framework, LightLLM, that implements the Past-Future scheduler. Compared to existing aggressive or conservative schedulers, LightLLM demonstrates superior goodput, achieving up to 2-3times higher goodput than other schedulers under heavy loads. LightLLM is open source to boost the research in such direction (https://github.com/ModelTC/lightllm).
ZeRO-Offload: Democratizing Billion-Scale Model Training
Large-scale model training has been a playing ground for a limited few requiring complex model refactoring and access to prohibitively expensive GPU clusters. ZeRO-Offload changes the large model training landscape by making large model training accessible to nearly everyone. It can train models with over 13 billion parameters on a single GPU, a 10x increase in size compared to popular framework such as PyTorch, and it does so without requiring any model change from the data scientists or sacrificing computational efficiency. ZeRO-Offload enables large model training by offloading data and compute to CPU. To preserve compute efficiency, it is designed to minimize the data movement to/from GPU, and reduce CPU compute time while maximizing memory savings on GPU. As a result, ZeRO-Offload can achieve 40 TFlops/GPU on a single NVIDIA V100 GPU for 10B parameter model compared to 30TF using PyTorch alone for a 1.4B parameter model, the largest that can be trained without running out of memory. ZeRO-Offload is also designed to scale on multiple-GPUs when available, offering near linear speedup on up to 128 GPUs. Additionally, it can work together with model parallelism to train models with over 70 billion parameters on a single DGX-2 box, a 4.5x increase in model size compared to using model parallelism alone. By combining compute and memory efficiency with ease-of-use, ZeRO-Offload democratizes large-scale model training making it accessible to even data scientists with access to just a single GPU.
An AI-driven Malfunction Detection Concept for NFV Instances in 5G
Efficient network management is one of the key challenges of the constantly growing and increasingly complex wide area networks (WAN). The paradigm shift towards virtualized (NFV) and software defined networks (SDN) in the next generation of mobile networks (5G), as well as the latest scientific insights in the field of Artificial Intelligence (AI) enable the transition from manually managed networks nowadays to fully autonomic and dynamic self-organized networks (SON). This helps to meet the KPIs and reduce at the same time operational costs (OPEX). In this paper, an AI driven concept is presented for the malfunction detection in NFV applications with the help of semi-supervised learning. For this purpose, a profile of the application under test is created. This profile then is used as a reference to detect abnormal behaviour. For example, if there is a bug in the updated version of the app, it is now possible to react autonomously and roll-back the NFV app to a previous version in order to avoid network outages.
BottleFit: Learning Compressed Representations in Deep Neural Networks for Effective and Efficient Split Computing
Although mission-critical applications require the use of deep neural networks (DNNs), their continuous execution at mobile devices results in a significant increase in energy consumption. While edge offloading can decrease energy consumption, erratic patterns in channel quality, network and edge server load can lead to severe disruption of the system's key operations. An alternative approach, called split computing, generates compressed representations within the model (called "bottlenecks"), to reduce bandwidth usage and energy consumption. Prior work has proposed approaches that introduce additional layers, to the detriment of energy consumption and latency. For this reason, we propose a new framework called BottleFit, which, in addition to targeted DNN architecture modifications, includes a novel training strategy to achieve high accuracy even with strong compression rates. We apply BottleFit on cutting-edge DNN models in image classification, and show that BottleFit achieves 77.1% data compression with up to 0.6% accuracy loss on ImageNet dataset, while state of the art such as SPINN loses up to 6% in accuracy. We experimentally measure the power consumption and latency of an image classification application running on an NVIDIA Jetson Nano board (GPU-based) and a Raspberry PI board (GPU-less). We show that BottleFit decreases power consumption and latency respectively by up to 49% and 89% with respect to (w.r.t.) local computing and by 37% and 55% w.r.t. edge offloading. We also compare BottleFit with state-of-the-art autoencoders-based approaches, and show that (i) BottleFit reduces power consumption and execution time respectively by up to 54% and 44% on the Jetson and 40% and 62% on Raspberry PI; (ii) the size of the head model executed on the mobile device is 83 times smaller. We publish the code repository for reproducibility of the results in this study.
LiGNN: Graph Neural Networks at LinkedIn
In this paper, we present LiGNN, a deployed large-scale Graph Neural Networks (GNNs) Framework. We share our insight on developing and deployment of GNNs at large scale at LinkedIn. We present a set of algorithmic improvements to the quality of GNN representation learning including temporal graph architectures with long term losses, effective cold start solutions via graph densification, ID embeddings and multi-hop neighbor sampling. We explain how we built and sped up by 7x our large-scale training on LinkedIn graphs with adaptive sampling of neighbors, grouping and slicing of training data batches, specialized shared-memory queue and local gradient optimization. We summarize our deployment lessons and learnings gathered from A/B test experiments. The techniques presented in this work have contributed to an approximate relative improvements of 1% of Job application hearing back rate, 2% Ads CTR lift, 0.5% of Feed engaged daily active users, 0.2% session lift and 0.1% weekly active user lift from people recommendation. We believe that this work can provide practical solutions and insights for engineers who are interested in applying Graph neural networks at large scale.
BlendServe: Optimizing Offline Inference for Auto-regressive Large Models with Resource-aware Batching
Offline batch inference, which leverages the flexibility of request batching to achieve higher throughput and lower costs, is becoming more popular for latency-insensitive applications. Meanwhile, recent progress in model capability and modality makes requests more diverse in compute and memory demands, creating unique opportunities for throughput improvement by resource overlapping. However, a request schedule that maximizes resource overlapping can conflict with the schedule that maximizes prefix sharing, a widely-used performance optimization, causing sub-optimal inference throughput. We present BlendServe, a system that maximizes resource utilization of offline batch inference by combining the benefits of resource overlapping and prefix sharing using a resource-aware prefix tree. BlendServe exploits the relaxed latency requirements in offline batch inference to reorder and overlap requests with varied resource demands while ensuring high prefix sharing. We evaluate BlendServe on a variety of synthetic multi-modal workloads and show that it provides up to 1.44times throughput boost compared to widely-used industry standards, vLLM and SGLang.
LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning
Federated Learning (FL) typically involves a large-scale, distributed system with individual user devices/servers training models locally and then aggregating their model updates on a trusted central server. Existing systems for FL often use an always-on server for model aggregation, which can be inefficient in terms of resource utilization. They may also be inelastic in their resource management. This is particularly exacerbated when aggregating model updates at scale in a highly dynamic environment with varying numbers of heterogeneous user devices/servers. We present LIFL, a lightweight and elastic serverless cloud platform with fine-grained resource management for efficient FL aggregation at scale. LIFL is enhanced by a streamlined, event-driven serverless design that eliminates the individual heavy-weight message broker and replaces inefficient container-based sidecars with lightweight eBPF-based proxies. We leverage shared memory processing to achieve high-performance communication for hierarchical aggregation, which is commonly adopted to speed up FL aggregation at scale. We further introduce locality-aware placement in LIFL to maximize the benefits of shared memory processing. LIFL precisely scales and carefully reuses the resources for hierarchical aggregation to achieve the highest degree of parallelism while minimizing the aggregation time and resource consumption. Our experimental results show that LIFL achieves significant improvement in resource efficiency and aggregation speed for supporting FL at scale, compared to existing serverful and serverless FL systems.
In or Out? Fixing ImageNet Out-of-Distribution Detection Evaluation
Out-of-distribution (OOD) detection is the problem of identifying inputs which are unrelated to the in-distribution task. The OOD detection performance when the in-distribution (ID) is ImageNet-1K is commonly being tested on a small range of test OOD datasets. We find that most of the currently used test OOD datasets, including datasets from the open set recognition (OSR) literature, have severe issues: In some cases more than 50% of the dataset contains objects belonging to one of the ID classes. These erroneous samples heavily distort the evaluation of OOD detectors. As a solution, we introduce with NINCO a novel test OOD dataset, each sample checked to be ID free, which with its fine-grained range of OOD classes allows for a detailed analysis of an OOD detector's strengths and failure modes, particularly when paired with a number of synthetic "OOD unit-tests". We provide detailed evaluations across a large set of architectures and OOD detection methods on NINCO and the unit-tests, revealing new insights about model weaknesses and the effects of pretraining on OOD detection performance. We provide code and data at https://github.com/j-cb/NINCO.
SPPO:Efficient Long-sequence LLM Training via Adaptive Sequence Pipeline Parallel Offloading
In recent years, Large Language Models (LLMs) have exhibited remarkable capabilities, driving advancements in real-world applications. However, training LLMs on increasingly long input sequences imposes significant challenges due to high GPU memory and computational demands. Existing solutions face two key limitations: (1) memory reduction techniques, such as activation recomputation and CPU offloading, compromise training efficiency; (2) distributed parallelism strategies require excessive GPU resources, limiting the scalability of input sequence length. To address these gaps, we propose Adaptive Sequence Pipeline Parallel Offloading (SPPO), a novel LLM training framework that optimizes memory and computational resource efficiency for long-sequence training. SPPO introduces adaptive offloading, leveraging sequence-aware offloading, and two-level activation management to reduce GPU memory consumption without degrading the training efficiency. Additionally, SPPO develops an adaptive pipeline scheduling approach with a heuristic solver and multiplexed sequence partitioning to improve computational resource efficiency. Experimental results demonstrate that SPPO achieves up to 3.38x throughput improvement over Megatron-LM and DeepSpeed, realizing efficient training of a 7B LLM with sequence lengths of up to 4M tokens on only 128 A100 GPUs.
ProMoE: Fast MoE-based LLM Serving using Proactive Caching
The promising applications of large language models are often limited by the constrained GPU memory capacity available on edge devices. Mixture-of-Experts (MoE) models help address this issue by activating only a subset of the model's parameters during computation. This approach allows the unused parameters to be offloaded to host memory, thereby reducing the overall GPU memory demand. However, existing cache-based offloading solutions handle cache misses reactively, which significantly impacts system performance. In this paper, we introduce ProMoE, a novel proactive caching system that utilizes intermediate results to predict subsequent expert usage. By proactively fetching experts in advance, ProMoE eliminates passive cache misses, removes loading time from the critical path, and reduces the performance overhead associated with offloading. Our evaluations demonstrate that ProMoE achieves an average speedup of 2.20x (up to 3.21x) and 2.07x (up to 5.02x) in the prefill and decode stages, respectively, compared to existing offloading solutions.
Llumnix: Dynamic Scheduling for Large Language Model Serving
Inference serving for large language models (LLMs) is the key to unleashing their potential in people's daily lives. However, efficient LLM serving remains challenging today because the requests are inherently heterogeneous and unpredictable in terms of resource and latency requirements, as a result of the diverse applications and the dynamic execution nature of LLMs. Existing systems are fundamentally limited in handling these characteristics and cause problems such as severe queuing delays, poor tail latencies, and SLO violations. We introduce Llumnix, an LLM serving system that reacts to such heterogeneous and unpredictable requests by runtime rescheduling across multiple model instances. Similar to context switching across CPU cores in modern operating systems, Llumnix reschedules requests to improve load balancing and isolation, mitigate resource fragmentation, and differentiate request priorities and SLOs. Llumnix implements the rescheduling with an efficient and scalable live migration mechanism for requests and their in-memory states, and exploits it in a dynamic scheduling policy that unifies the multiple rescheduling scenarios elegantly. Our evaluations show that Llumnix improves tail latencies by an order of magnitude, accelerates high-priority requests by up to 1.5x, and delivers up to 36% cost savings while achieving similar tail latencies, compared against state-of-the-art LLM serving systems. Llumnix is publicly available at https://github.com/AlibabaPAI/llumnix.
Device to Device Pairs Sharding based on Distance
In the conventional cellular system, devices are not allowed to communicate directly with each other in the licensed cellular bandwidth and all communications take place through the base stations. The users requirements has led the technology to become fast and faster. Multimedia rich data exchange, fast service, high quality voice calls, newer and more demanding applications, information at fingertips, everything requires technology and communication between devices. A constant need to increase network capacity for meeting the users growing demands has led to the growth of cellular communication networks from the first generation(1G) to the fifth generation(5G). There will be crores of connected devices in the coming future . A large number of connections are going to be heterogeneous, demanding lesser delays, higher data rates, superior throughput and enhanced system capacity. The available spectrum resources are limited and has to be flexibly used by mobile network operators to cope with the rising demands. An emerging facilitator of the upcoming high data rate demanding next-generation networks are device-to-device(D2D) communication. This paper has developed a model that establishes Device-to-Device (D2D) communication between two end-users without involving the eNB (evolved Node B). We have sharded the UEs and CUs based on the criteria of DISTANCE. To do so, we used the K-means clustering method.
End-to-end codesign of Hessian-aware quantized neural networks for FPGAs and ASICs
We develop an end-to-end workflow for the training and implementation of co-designed neural networks (NNs) for efficient field-programmable gate array (FPGA) and application-specific integrated circuit (ASIC) hardware. Our approach leverages Hessian-aware quantization (HAWQ) of NNs, the Quantized Open Neural Network Exchange (QONNX) intermediate representation, and the hls4ml tool flow for transpiling NNs into FPGA and ASIC firmware. This makes efficient NN implementations in hardware accessible to nonexperts, in a single open-sourced workflow that can be deployed for real-time machine learning applications in a wide range of scientific and industrial settings. We demonstrate the workflow in a particle physics application involving trigger decisions that must operate at the 40 MHz collision rate of the CERN Large Hadron Collider (LHC). Given the high collision rate, all data processing must be implemented on custom ASIC and FPGA hardware within a strict area and latency. Based on these constraints, we implement an optimized mixed-precision NN classifier for high-momentum particle jets in simulated LHC proton-proton collisions.
NanoFlow: Towards Optimal Large Language Model Serving Throughput
The increasing usage of Large Language Models (LLMs) has resulted in a surging demand for planet-scale serving systems, where tens of thousands of GPUs continuously serve hundreds of millions of users. Consequently, throughput (under reasonable latency constraints) has emerged as a key metric that determines serving systems' performance. To boost throughput, various methods of inter-device parallelism (e.g., data, tensor, pipeline) have been explored. However, existing methods do not consider overlapping the utilization of different resources within a single device, leading to underutilization and sub-optimal performance. We propose NanoFlow, a novel serving framework that exploits intra-device parallelism, which overlaps the usage of resources including compute, memory, and network within a single device through operation co-scheduling. To exploit intra-device parallelism, NanoFlow introduces two key innovations: First, NanoFlow splits requests into nano-batches at the granularity of operations, which breaks the dependency of sequential operations in LLM inference and enables overlapping; then, to get benefit from overlapping, NanoFlow uses an operation-level pipeline with execution unit scheduling, which partitions the device's functional units and simultaneously executes different operations in each unit. NanoFlow automates the pipeline setup using a parameter search algorithm, which enables easily porting NanoFlow to different models. We implement NanoFlow on NVIDIA GPUs and evaluate end-to-end serving throughput on several popular models such as LLaMA-2-70B, Mixtral 8x7B, LLaMA-3-8B, etc.. With practical workloads, NanoFlow provides 1.91x throughput boost compared to state-of-the-art serving systems achieving 59% to 72% of optimal throughput across ported models.
SANA-Sprint: One-Step Diffusion with Continuous-Time Consistency Distillation
This paper presents SANA-Sprint, an efficient diffusion model for ultra-fast text-to-image (T2I) generation. SANA-Sprint is built on a pre-trained foundation model and augmented with hybrid distillation, dramatically reducing inference steps from 20 to 1-4. We introduce three key innovations: (1) We propose a training-free approach that transforms a pre-trained flow-matching model for continuous-time consistency distillation (sCM), eliminating costly training from scratch and achieving high training efficiency. Our hybrid distillation strategy combines sCM with latent adversarial distillation (LADD): sCM ensures alignment with the teacher model, while LADD enhances single-step generation fidelity. (2) SANA-Sprint is a unified step-adaptive model that achieves high-quality generation in 1-4 steps, eliminating step-specific training and improving efficiency. (3) We integrate ControlNet with SANA-Sprint for real-time interactive image generation, enabling instant visual feedback for user interaction. SANA-Sprint establishes a new Pareto frontier in speed-quality tradeoffs, achieving state-of-the-art performance with 7.59 FID and 0.74 GenEval in only 1 step - outperforming FLUX-schnell (7.94 FID / 0.71 GenEval) while being 10x faster (0.1s vs 1.1s on H100). It also achieves 0.1s (T2I) and 0.25s (ControlNet) latency for 1024 x 1024 images on H100, and 0.31s (T2I) on an RTX 4090, showcasing its exceptional efficiency and potential for AI-powered consumer applications (AIPC). Code and pre-trained models will be open-sourced.
AgileCoder: Dynamic Collaborative Agents for Software Development based on Agile Methodology
Software agents have emerged as promising tools for addressing complex software engineering tasks. However, existing works oversimplify software development workflows by following the waterfall model. Thus, we propose AgileCoder, a multi-agent system that integrates Agile Methodology (AM) into the framework. This system assigns specific AM roles such as Product Manager, Developer, and Tester to different agents, who then collaboratively develop software based on user inputs. AgileCoder enhances development efficiency by organizing work into sprints, focusing on incrementally developing software through sprints. Additionally, we introduce Dynamic Code Graph Generator, a module that creates a Code Dependency Graph dynamically as updates are made to the codebase. This allows agents to better comprehend the codebase, leading to more precise code generation and modifications throughout the software development process. AgileCoder surpasses existing benchmarks, like ChatDev and MetaGPT, establishing a new standard and showcasing the capabilities of multi-agent systems in advanced software engineering environments. Our source code can be found at https://github.com/FSoft-AI4Code/AgileCoder.
Generalizable Pareto-Optimal Offloading with Reinforcement Learning in Mobile Edge Computing
Mobile edge computing (MEC) is essential for next-generation mobile network applications that prioritize various performance metrics, including delays and energy efficiency. However, conventional single-objective scheduling solutions cannot be directly applied to practical systems in which the preferences (i.e., the weights of different objectives) are often unknown or challenging to specify in advance. In this study, we formulate a multi-objective offloading problem for MEC with multiple edges to minimize the sum of expected long-term energy consumption and delay while considering unknown preferences. To address the challenge of unknown preferences and the potentially diverse MEC systems, we propose a generalizable multi-objective (deep) reinforcement learning (GMORL)-based tasks offloading framework, which employs the Discrete Soft Actor-Critic (Discrete-SAC) method. Our method uses a single policy model to efficiently schedule tasks based on varying preferences and adapt to heterogeneous MEC systems with different CPU frequencies and server quantities. Under the proposed framework, we introduce a histogram-based state encoding method for constructing features for multiple edges in MEC systems, a sophisticated reward function for accurately computing the utilities of delay and energy consumption, and a novel neural network architecture for improving generalization. Simulation results demonstrate that our proposed GMORL scheme enhances the hypervolume of the Pareto front by up to 121.0% compared to benchmarks. Our code are avavilable at https://github.com/gracefulning/Generalizable-Pareto-Optimal-Offloading-with-Reinforcement-Learning-in-Mobile-Edge-Computing
MobileNetV4 -- Universal Models for the Mobile Ecosystem
We present the latest generation of MobileNets, known as MobileNetV4 (MNv4), featuring universally efficient architecture designs for mobile devices. At its core, we introduce the Universal Inverted Bottleneck (UIB) search block, a unified and flexible structure that merges Inverted Bottleneck (IB), ConvNext, Feed Forward Network (FFN), and a novel Extra Depthwise (ExtraDW) variant. Alongside UIB, we present Mobile MQA, an attention block tailored for mobile accelerators, delivering a significant 39% speedup. An optimized neural architecture search (NAS) recipe is also introduced which improves MNv4 search effectiveness. The integration of UIB, Mobile MQA and the refined NAS recipe results in a new suite of MNv4 models that are mostly Pareto optimal across mobile CPUs, DSPs, GPUs, as well as specialized accelerators like Apple Neural Engine and Google Pixel EdgeTPU - a characteristic not found in any other models tested. Finally, to further boost accuracy, we introduce a novel distillation technique. Enhanced by this technique, our MNv4-Hybrid-Large model delivers 87% ImageNet-1K accuracy, with a Pixel 8 EdgeTPU runtime of just 3.8ms.
DeepFlow: Serverless Large Language Model Serving at Scale
This paper introduces DeepFlow, a scalable and serverless AI platform designed to efficiently serve large language models (LLMs) at scale in cloud environments. DeepFlow addresses key challenges such as resource allocation, serving efficiency, and cold start latencies through four main design components. First, it uses a simple serverless abstraction called the request-job-task model, which helps manage AI workloads across post-training and model serving tasks. Second, it builds an in-house serving engine FlowServe using a microkernel-inspired design, NPU-centric execution, and SPMD-based parallelism to optimize LLM serving. The system also includes novel scheduling policies tailored for both PD-disaggregated and PD-colocated configurations. With optimizations like pre-warmed pods, DRAM pre-loading, and NPU-fork, DeepFlow can scale up to 64 instances in seconds. DeepFlow has been in production for over a year, operating on a large Ascend NPU cluster and providing industrystandard APIs for fine-tuning, agent serving, and model serving to our customers.
All you need for horizontal slicing in 5G network
The telecommunication field has seen unprecedented growth in the last decade that has led to the release of several generations that have been committed to satisfy users by increasing the data rate and reducing the latency, especially in the 5G network. With fully commercialized 5G networks that is already launched in many country, Software-defined network (SDN) and network function virtualization (NFV) will facilitate the implementation of NS. SDN and NFV will serve as the basis for NS, allowing efficient use of both physical and virtual resources. This paper makes it possible to analyze, propose an efficient model, and utilize all of the available resources of the 5G network.
Adaptive Machine Learning for Resource-Constrained Environments
The Internet of Things is an example domain where data is perpetually generated in ever-increasing quantities, reflecting the proliferation of connected devices and the formation of continuous data streams over time. Consequently, the demand for ad-hoc, cost-effective machine learning solutions must adapt to this evolving data influx. This study tackles the task of offloading in small gateways, exacerbated by their dynamic availability over time. An approach leveraging CPU utilization metrics using online and continual machine learning techniques is proposed to predict gateway availability. These methods are compared to popular machine learning algorithms and a recent time-series foundation model, Lag-Llama, for fine-tuned and zero-shot setups. Their performance is benchmarked on a dataset of CPU utilization measurements over time from an IoT gateway and focuses on model metrics such as prediction errors, training and inference times, and memory consumption. Our primary objective is to study new efficient ways to predict CPU performance in IoT environments. Across various scenarios, our findings highlight that ensemble and online methods offer promising results for this task in terms of accuracy while maintaining a low resource footprint.
ElasticMoE: An Efficient Auto Scaling Method for Mixture-of-Experts Models
Mixture-of-Experts (MoE) models promise efficient scaling of large language models (LLMs) by activating only a small subset of experts per token, but their parallelized inference pipelines make elastic serving challenging. Existing strategies fall short: horizontal scaling provisions entire replicas of the current configuration, often tens to hundreds of accelerators, leading to coarse granularity, long provisioning delays, and costly overprovisioning. Vertical scaling offers finer adjustments but typically requires instance restarts, incurring downtime. These limitations make current approaches ill-suited for the bursty, short-lived traffic patterns common in cloud deployments. We present ElasticMoE, an elastic scaling framework for MoE LLMs that achieves fine-grained, low-latency, and zero-downtime scaling. ElasticMoE decouples inference execution from memory operations, enabling scaling steps to proceed concurrently with serving. An HBM Management Module (HMM) reuses weights and KV caches via zero-copy remapping, while high-bandwidth peer-to-peer transfers bring newly added accelerators online without interrupting service. A virtual memory based expert redistribution mechanism migrates MoE experts without costly buffer reallocations, reducing peak memory usage during expert parallelism reconfiguration. Our evaluation on Ascend NPUs with three popular MoE LLMs shows that ElasticMoE achieves up to 9x lower scale-up latency, up to 2x better throughput during scaling, and significantly improves SLO attainment compared to baselines. By enabling fine-grained, concurrent scaling with minimal disruption, ElasticMoE advances the practicality of deploying massive MoE LLMs in dynamic cloud environments.
Neural Architecture Search: Two Constant Shared Weights Initialisations
In the last decade, zero-cost metrics have gained prominence in neural architecture search (NAS) due to their ability to evaluate architectures without training. These metrics are significantly faster and less computationally expensive than traditional NAS methods and provide insights into neural architectures' internal workings. This paper introduces epsinas, a novel zero-cost NAS metric that assesses architecture potential using two constant shared weight initialisations and the statistics of their outputs. We show that the dispersion of raw outputs, normalised by their average magnitude, strongly correlates with trained accuracy. This effect holds across image classification and language tasks on NAS-Bench-101, NAS-Bench-201, and NAS-Bench-NLP. Our method requires no data labels, operates on a single minibatch, and eliminates the need for gradient computation, making it independent of training hyperparameters, loss metrics, and human annotations. It evaluates a network in a fraction of a GPU second and integrates seamlessly into existing NAS frameworks. The code supporting this study can be found on GitHub at https://github.com/egracheva/epsinas.
HeteGen: Heterogeneous Parallel Inference for Large Language Models on Resource-Constrained Devices
In recent times, the emergence of Large Language Models (LLMs) has resulted in increasingly larger model size, posing challenges for inference on low-resource devices. Prior approaches have explored offloading to facilitate low-memory inference but often suffer from efficiency due to I/O bottlenecks. To achieve low-latency LLMs inference on resource-constrained devices, we introduce HeteGen, a novel approach that presents a principled framework for heterogeneous parallel computing using CPUs and GPUs. Based on this framework, HeteGen further employs heterogeneous parallel computing and asynchronous overlap for LLMs to mitigate I/O bottlenecks. Our experiments demonstrate a substantial improvement in inference speed, surpassing state-of-the-art methods by over 317% at most.
Analysis and Optimized CXL-Attached Memory Allocation for Long-Context LLM Fine-Tuning
The growing prevalence of Large Language Models (LLMs) and their substantial memory requirements have prompted renewed interest in CPU offloading as a method to compensate for limited GPU memory. In particular, when CPU memory is leveraged to temporarily store intermediate states of LLMs, CPU memory becomes a new bottleneck and soon reaches the capacity limitation of commodity CPUs. In this work, we investigate the effectiveness of Compute Express Link (CXL) add-in card (AIC) memory as an extension to CPU memory, enabling larger model sizes and longer context lengths during fine-tuning. Through extensive benchmarking, this study quantifies the performance overhead introduced by transferring data between CXL memory, CPU, and GPUs, focusing on how concurrency and data volume influence bandwidth utilization and latency. This study also compares CPUbased optimizer steps when model parameters, gradients, and optimizer states reside in local memory versus CXL memory, revealing that naive adoption of CXL often degrades performance during the optimizer phase. To overcome these challenges, this study proposes a CXL-aware allocation to strategically partition CPU offloading workloads across both local and CXL memory. This study further demonstrates that employing multiple AICs significantly reduces bandwidth contention, thus improving scalability. Experimental results show that these optimizations enable efficient long-context LLM fine-tuning, underscoring CXL as a promising avenue for unlocking the full potential of CPU offloading in long-context LLM fine-tuning.
Agile-Quant: Activation-Guided Quantization for Faster Inference of LLMs on the Edge
Large Language Models (LLMs) stand out for their impressive performance in intricate language modeling tasks. However, their demanding computational and memory needs pose obstacles for broad use on edge devices. Quantization is then introduced to boost LLMs' on-device efficiency. Recent works show that 8-bit or lower weight quantization is feasible with minimal impact on end-to-end task performance, while the activation is still not quantized. On the other hand, mainstream commodity edge devices still struggle to execute these sub-8-bit quantized networks effectively. In this paper, we propose Agile-Quant, an activation-guided quantization framework for popular Large Language Models (LLMs), and implement an end-to-end accelerator on multiple edge devices for faster inference. Considering the hardware profiling and activation analysis, we first introduce a basic activation quantization strategy to balance the trade-off of task performance and real inference speed. Then we leverage the activation-aware token pruning technique to reduce the outliers and the adverse impact on attentivity. Ultimately, we utilize the SIMD-based 4-bit multiplier and our efficient TRIP matrix multiplication to implement the accelerator for LLMs on the edge. We apply our framework on different scales of LLMs including LLaMA, OPT, and BLOOM with 4-bit or 8-bit for the activation and 4-bit for the weight quantization. Experiments show that Agile-Quant achieves simultaneous quantization of model weights and activations while maintaining task performance comparable to existing weight-only quantization methods. Moreover, in the 8- and 4-bit scenario, Agile-Quant achieves an on-device speedup of up to 2.55x compared to its FP16 counterparts across multiple edge devices, marking a pioneering advancement in this domain.
Flextron: Many-in-One Flexible Large Language Model
Training modern LLMs is extremely resource intensive, and customizing them for various deployment scenarios characterized by limited compute and memory resources through repeated training is impractical. In this paper, we introduce Flextron, a network architecture and post-training model optimization framework supporting flexible model deployment. The Flextron architecture utilizes a nested elastic structure to rapidly adapt to specific user-defined latency and accuracy targets during inference with no additional fine-tuning required. It is also input-adaptive, and can automatically route tokens through its sub-networks for improved performance and efficiency. We present a sample-efficient training method and associated routing algorithms for systematically transforming an existing trained LLM into a Flextron model. We evaluate Flextron on the GPT-3 and LLama-2 family of LLMs, and demonstrate superior performance over multiple end-to-end trained variants and other state-of-the-art elastic networks, all with a single pretraining run that consumes a mere 7.63% tokens compared to original pretraining.
UFO^3: Weaving the Digital Agent Galaxy
Large language model (LLM)-powered agents are transforming digital devices from passive tools into proactive intelligent collaborators. However, most existing frameworks remain confined to a single OS or device, making cross-device workflows brittle and largely manual. We present UFO^3, a system that unifies heterogeneous endpoints, desktops, servers, mobile devices, and edge, into a single orchestration fabric. UFO^3 models each user request as a mutable TaskConstellation: a distributed DAG of atomic subtasks (TaskStars) with explicit control and data dependencies (TaskStarLines). The TaskConstellation continuously evolves as results stream in from distributed devices, enabling asynchronous execution, adaptive recovery, and dynamic optimization. A Constellation Orchestrator} executes tasks safely and asynchronously while applying dynamic DAG updates, and the Agent Interaction Protocol (AIP) provides persistent, low-latency channels for reliable task dispatch and result streaming. These designs dissolve the traditional boundaries between devices and platforms, allowing agents to collaborate seamlessly and amplify their collective intelligence. We evaluate UFO^3 on NebulaBench, a benchmark of 55 cross-device tasks across 5 machines and 10 categories. UFO^3 achieves 83.3% subtask completion, 70.9% task success, exposes parallelism with an average width of 1.72, and reduces end-to-end latency by 31% relative to a sequential baseline. Fault-injection experiments demonstrate graceful degradation and recovery under transient and permanent agent failures. These results show that UFO^3 achieves accurate, efficient, and resilient task orchestration across heterogeneous devices, uniting isolated agents into a coherent, adaptive computing fabric that extends across the landscape of ubiquitous computing.
MemAscend: System Memory Optimization for SSD-Offloaded LLM Fine-Tuning
Owing to the huge success of generative artificial intelligence (AI), large language models (LLMs) have emerged as a core subclass, underpinning applications such as question answering, text generation, and code completion. While fine-tuning these models on domain-specific data can yield significant performance gains, it also poses daunting computational challenges, especially for researchers and small organizations with limited hardware resources. Although SSD offloading (i.e., ZeRO-Infinity) has emerged as a viable strategy to overcome the GPU memory barrier via leveraging both system memory (i.e., CPU DRAM) and storage space (i.e., solid-state devices, SSDs), its design primarily targets model-centric performance issues. As a result, key system-level issues, including system memory fragmentation, inefficient pinned buffer allocation, peak CPU usage spikes, and file system overhead, remain unaddressed, stifling scalability and inflating costs. Such an observation motivates this paper to introduce MemAscend, a framework that systematically tackles the underexplored system memory bottlenecks in SSD-offloaded LLM training, with a focus on resource-constrained environments. By streamlining pinned-memory allocation, eradicating fragmentation, and mitigating peak overhead, MemAscend reclaims a substantial system memory budget, enabling larger models, longer context windows, and higher batch sizes without exceeding modest hardware limits. Across diverse LLM benchmarks, MemAscend reduces peak system-memory consumption by an average of 55.7% compared with standard SSD offloading techniques, lowering the hardware barrier for fine-tuning and unlocking new possibilities for cost-effective large-scale training on limited-resource machines.
DiskGNN: Bridging I/O Efficiency and Model Accuracy for Out-of-Core GNN Training
Graph neural networks (GNNs) are machine learning models specialized for graph data and widely used in many applications. To train GNNs on large graphs that exceed CPU memory, several systems store data on disk and conduct out-of-core processing. However, these systems suffer from either read amplification when reading node features that are usually smaller than a disk page or degraded model accuracy by treating the graph as disconnected partitions. To close this gap, we build a system called DiskGNN, which achieves high I/O efficiency and thus fast training without hurting model accuracy. The key technique used by DiskGNN is offline sampling, which helps decouple graph sampling from model computation. In particular, by conducting graph sampling beforehand, DiskGNN acquires the node features that will be accessed by model computation, and such information is utilized to pack the target node features contiguously on disk to avoid read amplification. Besides, also adopts designs including four-level feature store to fully utilize the memory hierarchy to cache node features and reduce disk access, batched packing to accelerate the feature packing process, and pipelined training to overlap disk access with other operations. We compare DiskGNN with Ginex and MariusGNN, which are state-of-the-art systems for out-of-core GNN training. The results show that DiskGNN can speed up the baselines by over 8x while matching their best model accuracy.
NetPress: Dynamically Generated LLM Benchmarks for Network Applications
Despite growing interest in domain-specific benchmarking of large language models (LLMs) and agents, current evaluations remain limited to static, small-scale datasets, especially in high-stakes tasks like network operations that demand reliability for deployments. We present NetPress, an automated benchmark generation framework for evaluating LLM agents in network applications. NetPress introduces a unified abstraction with state and action, enabling dynamic generation of diverse query sets along with corresponding ground truths. At runtime, users can specify benchmark configurations to generate millions of queries on the fly. In addition to dynamic benchmark construction, NetPress integrates with network emulators to provide realistic environment feedback, supporting comprehensive evaluation across correctness, safety, and latency. We instantiate NetPress on three representative applications, revealing interesting fine-grained differences in agent behavior that static, correctness-only benchmarks often miss. NetPress moves LLM evaluation toward realistic, scalable testing in infrastructure-centric domains, helping close the gap between benchmark performance and real-world deployment readiness. Code is available at https://github.com/Froot-NetSys/NetPress.
PIPO: Pipelined Offloading for Efficient Inference on Consumer Devices
The high memory and computation demand of large language models (LLMs) makes them challenging to be deployed on consumer devices due to limited GPU memory. Offloading can mitigate the memory constraint but often suffers from low GPU utilization, leading to low inference efficiency. In this work, we propose a novel framework, called pipelined offloading (PIPO), for efficient inference on consumer devices. PIPO designs a fine-grained offloading pipeline, complemented with optimized data transfer and computation, to achieve high concurrency and efficient scheduling for inference. Experimental results show that compared with state-of-the-art baseline, PIPO increases GPU utilization from below 40% to over 90% and achieves up to 3.1times higher throughput, running on a laptop equipped with a RTX3060 GPU of 6GB memory.
BurstGPT: A Real-world Workload Dataset to Optimize LLM Serving Systems
Serving systems for Large Language Models (LLMs) are often optimized to improve quality of service (QoS) and throughput. However, due to the lack of open-source LLM serving workloads, these systems are frequently evaluated under unrealistic workload assumptions. Consequently, performance may degrade when systems are deployed in real-world scenarios. This work presents BurstGPT, an LLM serving workload with 10.31 million traces from regional Azure OpenAI GPT services over 213 days. BurstGPT captures LLM serving characteristics from user, model and system perspectives: (1) User request concurrency: burstiness variations of requests in Azure OpenAI GPT services, revealing diversified concurrency patterns in different services and model types. (2) User conversation patterns: counts and intervals within conversations for service optimizations. (3) Model response lengths: auto-regressive serving processes of GPT models, showing statistical relations between requests and their responses. (4) System response failures: failures of conversation and API services, showing intensive resource needs and limited availability of LLM services in Azure. The details of the characteristics can serve multiple purposes in LLM serving optimizations, such as system evaluation and trace provisioning. In our demo evaluation with BurstGPT, frequent variations in BurstGPT reveal declines in efficiency, stability, or reliability in realistic LLM serving. We identify that the generalization of KV cache management, scheduling and disaggregation optimizations can be improved under realistic workload evaluations. BurstGPT is publicly available now at https://github.com/HPMLL/BurstGPT and is widely used to develop prototypes of LLM serving frameworks in the industry.
BlockLLM: Multi-tenant Finer-grained Serving for Large Language Models
The growing demand for Large Language Models (LLMs) across diverse applications has prompted a paradigm shift in the design of deep learning serving systems. Deploying LLMs, especially in multi-tenant environments, presents considerable challenges due to their high computational and memory demands. We present BlockLLM, a serving system that exploits the potential of sharing components among fine-tuned LLM models to offer an efficient and flexible solution for LLM workloads. BlockLLM partitions the models into finer-grained blocks to enable the reuse of model components and independent provisioning to improve the computation efficiency. BlockLLM consists of an offline block zoo, for storing the blocks, and an online system to serve the requests through chains of blocks. It offers multi-fold flexibility: (1) Adaptive assembly of block chains on-the-fly is achieved with the help of equivalence evaluation among blocks in the zoo. (2) We enable per-block batch size and configure best-effort KV cache coordination at individual block level. (3) We adopt speculative execution and locality-aware block placement to mitigate the communication costs from dynamic block resource allocation. Our evaluation demonstrates that BlockLLM reduces memory and storage footprints and improves computation efficiency, outperforming existing serving approach in 95\%ile latency and GPU utilization by 33.5\% and 20.1\%, respectively.
EnvBench: A Benchmark for Automated Environment Setup
Recent advances in Large Language Models (LLMs) have enabled researchers to focus on practical repository-level tasks in software engineering domain. In this work, we consider a cornerstone task for automating work with software repositories-environment setup, i.e., a task of configuring a repository-specific development environment on a system. Existing studies on environment setup introduce innovative agentic strategies, but their evaluation is often based on small datasets that may not capture the full range of configuration challenges encountered in practice. To address this gap, we introduce a comprehensive environment setup benchmark EnvBench. It encompasses 329 Python and 665 JVM-based (Java, Kotlin) repositories, with a focus on repositories that present genuine configuration challenges, excluding projects that can be fully configured by simple deterministic scripts. To enable further benchmark extension and usage for model tuning, we implement two automatic metrics: a static analysis check for missing imports in Python and a compilation check for JVM languages. We demonstrate the applicability of our benchmark by evaluating three environment setup approaches, including a simple zero-shot baseline and two agentic workflows, that we test with two powerful LLM backbones, GPT-4o and GPT-4o-mini. The best approach manages to successfully configure 6.69% repositories for Python and 29.47% repositories for JVM, suggesting that EnvBench remains challenging for current approaches. Our benchmark suite is publicly available at https://github.com/JetBrains-Research/EnvBench. The dataset and experiment trajectories are available at https://jb.gg/envbench.
OneFlow: Redesign the Distributed Deep Learning Framework from Scratch
Deep learning frameworks such as TensorFlow and PyTorch provide a productive interface for expressing and training a deep neural network (DNN) model on a single device or using data parallelism. Still, they may not be flexible or efficient enough in training emerging large models on distributed devices, which require more sophisticated parallelism beyond data parallelism. Plugins or wrappers have been developed to strengthen these frameworks for model or pipeline parallelism, but they complicate the usage and implementation of distributed deep learning. Aiming at a simple, neat redesign of distributed deep learning frameworks for various parallelism paradigms, we present OneFlow, a novel distributed training framework based on an SBP (split, broadcast and partial-value) abstraction and the actor model. SBP enables much easier programming of data parallelism and model parallelism than existing frameworks, and the actor model provides a succinct runtime mechanism to manage the complex dependencies imposed by resource constraints, data movement and computation in distributed deep learning. We demonstrate the general applicability and efficiency of OneFlow for training various large DNN models with case studies and extensive experiments. The results show that OneFlow outperforms many well-known customized libraries built on top of the state-of-the-art frameworks. The code of OneFlow is available at: https://github.com/Oneflow-Inc/oneflow.
SPRINT: An Assistant for Issue Report Management
Managing issue reports is essential for the evolution and maintenance of software systems. However, manual issue management tasks such as triaging, prioritizing, localizing, and resolving issues are highly resource-intensive for projects with large codebases and users. To address this challenge, we present SPRINT, a GitHub application that utilizes state-of-the-art deep learning techniques to streamline issue management tasks. SPRINT assists developers by: (i) identifying existing issues similar to newly reported ones, (ii) predicting issue severity, and (iii) suggesting code files that likely require modification to solve the issues. We evaluated SPRINT using existing datasets and methodologies, measuring its predictive performance, and conducted a user study with five professional developers to assess its usability and usefulness. The results show that SPRINT is accurate, usable, and useful, providing evidence of its effectiveness in assisting developers in managing issue reports. SPRINT is an open-source tool available at https://github.com/sea-lab-wm/sprint_issue_report_assistant_tool.
VPU-EM: An Event-based Modeling Framework to Evaluate NPU Performance and Power Efficiency at Scale
State-of-art NPUs are typically architected as a self-contained sub-system with multiple heterogeneous hardware computing modules, and a dataflow-driven programming model. There lacks well-established methodology and tools in the industry to evaluate and compare the performance of NPUs from different architectures. We present an event-based performance modeling framework, VPU-EM, targeting scalable performance evaluation of modern NPUs across diversified AI workloads. The framework adopts high-level event-based system-simulation methodology to abstract away design details for speed, while maintaining hardware pipelining, concurrency and interaction with software task scheduling. It is natively developed in Python and built to interface directly with AI frameworks such as Tensorflow, PyTorch, ONNX and OpenVINO, linking various in-house NPU graph compilers to achieve optimized full model performance. Furthermore, VPU-EM also provides the capability to model power characteristics of NPU in Power-EM mode to enable joint performance/power analysis. Using VPU-EM, we conduct performance/power analysis of models from representative neural network architecture. We demonstrate that even though this framework is developed for Intel VPU, an Intel in-house NPU IP technology, the methodology can be generalized for analysis of modern NPUs.
Hermes: A Large Language Model Framework on the Journey to Autonomous Networks
The drive toward automating cellular network operations has grown with the increasing complexity of these systems. Despite advancements, full autonomy currently remains out of reach due to reliance on human intervention for modeling network behaviors and defining policies to meet target requirements. Network Digital Twins (NDTs) have shown promise in enhancing network intelligence, but the successful implementation of this technology is constrained by use case-specific architectures, limiting its role in advancing network autonomy. A more capable network intelligence, or "telecommunications brain", is needed to enable seamless, autonomous management of cellular network. Large Language Models (LLMs) have emerged as potential enablers for this vision but face challenges in network modeling, especially in reasoning and handling diverse data types. To address these gaps, we introduce Hermes, a chain of LLM agents that uses "blueprints" for constructing NDT instances through structured and explainable logical steps. Hermes allows automatic, reliable, and accurate network modeling of diverse use cases and configurations, thus marking progress toward fully autonomous network operations.
Self-Evolving Multi-Agent Collaboration Networks for Software Development
LLM-driven multi-agent collaboration (MAC) systems have demonstrated impressive capabilities in automatic software development at the function level. However, their heavy reliance on human design limits their adaptability to the diverse demands of real-world software development. To address this limitation, we introduce EvoMAC, a novel self-evolving paradigm for MAC networks. Inspired by traditional neural network training, EvoMAC obtains text-based environmental feedback by verifying the MAC network's output against a target proxy and leverages a novel textual backpropagation to update the network. To extend coding capabilities beyond function-level tasks to more challenging software-level development, we further propose rSDE-Bench, a requirement-oriented software development benchmark, which features complex and diverse software requirements along with automatic evaluation of requirement correctness. Our experiments show that: i) The automatic requirement-aware evaluation in rSDE-Bench closely aligns with human evaluations, validating its reliability as a software-level coding benchmark. ii) EvoMAC outperforms previous SOTA methods on both the software-level rSDE-Bench and the function-level HumanEval benchmarks, reflecting its superior coding capabilities. The benchmark can be downloaded at https://yuzhu-cai.github.io/rSDE-Bench/.
Expert-as-a-Service: Towards Efficient, Scalable, and Robust Large-scale MoE Serving
Mixture-of-Experts (MoE) models challenge serving infrastructures with dynamic, sparse expert utilization, causing instability on conventional systems designed for dense architectures. We propose EaaS, a novel serving system to enable efficient, scalable, and robust MoE deployment. Our system disaggregates MoE modules into independent, stateless services. This design enables fine-grained resource scaling and provides inherent fault tolerance by decoupling compute units. The architecture is powered by a high-performance, CPU-free peer-to-peer communication library that ensures minimal overhead and high throughput. Experiments confirm EaaS's scalability and efficiency, achieving performance comparable to monolithic systems while providing robust fault tolerance and strong scalability. EaaS incurs less than a 2% throughput reduction under simulated hardware failures that would otherwise halt monolithic architectures. It further saves up to 37.5% of computing resources through dynamic fine-grained adaptation to serving traffic, demonstrating strong resilience for large-scale MoE deployment in production.
Federated Learning over 5G, WiFi, and Ethernet: Measurements and Evaluation
Federated Learning (FL) deployments using IoT devices is an area that is poised to significantly benefit from advances in NextG wireless. In this paper, we deploy a FL application using a 5G-NR Standalone (SA) testbed with open-source and Commercial Off-the-Shelf (COTS) components. The 5G testbed architecture consists of a network of resource-constrained edge devices, namely Raspberry Pi's, and a central server equipped with a Software Defined Radio (SDR) and running O-RAN software. Our testbed allows edge devices to communicate with the server using WiFi and Ethernet, instead of 5G. FL is deployed using the Flower FL framework, for which we developed a comprehensive instrumentation tool to collect and analyze diverse communications and machine learning performance metrics including: model aggregation time, downlink transmission time, training time, and uplink transmission time. Leveraging these measurements, we perform a comparative analysis of the FL application across three network interfaces: 5G, WiFi, and Ethernet. Our experimental results suggest that, on 5G, the uplink model transfer time is a significant factor in convergence time of FL. In particular, we find that the 5G uplink contributes to roughly 23% of the duration of one average communication round when using all edge devices in our testbed. When comparing the uplink time of the 5G testbed, we find that it is 33.3x higher than Ethernet and 17.8x higher than WiFi. Our results also suggest that 5G exacerbates the well-known straggler effect. For reproducibility, we have open-sourced our FL application, instrumentation tools, and testbed configuration.
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond
The Non-Local Network (NLNet) presents a pioneering approach for capturing long-range dependencies, via aggregating query-specific global context to each query position. However, through a rigorous empirical analysis, we have found that the global contexts modeled by non-local network are almost the same for different query positions within an image. In this paper, we take advantage of this finding to create a simplified network based on a query-independent formulation, which maintains the accuracy of NLNet but with significantly less computation. We further observe that this simplified design shares similar structure with Squeeze-Excitation Network (SENet). Hence we unify them into a three-step general framework for global context modeling. Within the general framework, we design a better instantiation, called the global context (GC) block, which is lightweight and can effectively model the global context. The lightweight property allows us to apply it for multiple layers in a backbone network to construct a global context network (GCNet), which generally outperforms both simplified NLNet and SENet on major benchmarks for various recognition tasks. The code and configurations are released at https://github.com/xvjiarui/GCNet.
Challenging the Need for Packet Spraying in Large-Scale Distributed Training
Large-scale distributed training in production datacenters constitutes a challenging workload bottlenecked by network communication. In response, both major industry players (e.g., Ultra Ethernet Consortium) and parts of academia have surprisingly, and almost unanimously, agreed that packet spraying is necessary to improve the performance of large-scale distributed training workloads. In this paper, we challenge this prevailing belief and pose the question: How close can a singlepath transport approach an optimal multipath transport? We demonstrate that singlepath transport (from a NIC's perspective) is sufficient and can perform nearly as well as an ideal multipath transport with packet spraying, particularly in the context of distributed training in leaf-spine topologies. Our assertion is based on four key observations about workloads driven by collective communication patterns: (i) flows within a collective start almost simultaneously, (ii) flow sizes are nearly equal, (iii) the completion time of a collective is more crucial than individual flow completion times, and (iv) flows can be split upon arrival. We analytically prove that singlepath transport, using minimal flow splitting (at the application layer), is equivalent to an ideal multipath transport with packet spraying in terms of maximum congestion. Our preliminary evaluations support our claims. This paper suggests an alternative agenda for developing next-generation transport protocols tailored for large-scale distributed training.
ZipNN: Lossless Compression for AI Models
With the growth of model sizes and the scale of their deployment, their sheer size burdens the infrastructure requiring more network and more storage to accommodate these. While there is a vast model compression literature deleting parts of the model weights for faster inference, we investigate a more traditional type of compression - one that represents the model in a compact form and is coupled with a decompression algorithm that returns it to its original form and size - namely lossless compression. We present ZipNN a lossless compression tailored to neural networks. Somewhat surprisingly, we show that specific lossless compression can gain significant network and storage reduction on popular models, often saving 33% and at times reducing over 50% of the model size. We investigate the source of model compressibility and introduce specialized compression variants tailored for models that further increase the effectiveness of compression. On popular models (e.g. Llama 3) ZipNN shows space savings that are over 17% better than vanilla compression while also improving compression and decompression speeds by 62%. We estimate that these methods could save over an ExaByte per month of network traffic downloaded from a large model hub like Hugging Face.
Large Language Model Adaptation for Networking
Many networking tasks now employ deep learning (DL) to solve complex prediction and system optimization problems. However, current design philosophy of DL-based algorithms entails intensive engineering overhead due to the manual design of deep neural networks (DNNs) for different networking tasks. Besides, DNNs tend to achieve poor generalization performance on unseen data distributions/environments. Motivated by the recent success of large language models (LLMs), for the first time, this work studies the LLM adaptation for networking to explore a more sustainable design philosophy. With the massive pre-trained knowledge and powerful inference ability, LLM can serve as the foundation model, and is expected to achieve "one model for all" with even better performance and stronger generalization for various tasks. In this paper, we present NetLLM, the first LLM adaptation framework that efficiently adapts LLMs to solve networking problems. NetLLM addresses many practical challenges in LLM adaptation, from how to process task-specific information with LLMs, to how to improve the efficiency of answer generation and acquiring domain knowledge for networking. Across three networking-related use cases - viewport prediction (VP), adaptive bitrate streaming (ABR) and cluster job scheduling (CJS), we showcase the effectiveness of NetLLM in LLM adaptation for networking. Results show that the adapted LLM surpasses state-of-the-art algorithms by 10.1-36.6% for VP, 14.5-36.6% for ABR, 6.8-41.3% for CJS, and also achieves superior generalization performance.
StreamDiffusionV2: A Streaming System for Dynamic and Interactive Video Generation
Generative models are reshaping the live-streaming industry by redefining how content is created, styled, and delivered. Previous image-based streaming diffusion models have powered efficient and creative live streaming products but have hit limits on temporal consistency due to the foundation of image-based designs. Recent advances in video diffusion have markedly improved temporal consistency and sampling efficiency for offline generation. However, offline generation systems primarily optimize throughput by batching large workloads. In contrast, live online streaming operates under strict service-level objectives (SLOs): time-to-first-frame must be minimal, and every frame must meet a per-frame deadline with low jitter. Besides, scalable multi-GPU serving for real-time streams remains largely unresolved so far. To address this, we present StreamDiffusionV2, a training-free pipeline for interactive live streaming with video diffusion models. StreamDiffusionV2 integrates an SLO-aware batching scheduler and a block scheduler, together with a sink-token--guided rolling KV cache, a motion-aware noise controller, and other system-level optimizations. Moreover, we introduce a scalable pipeline orchestration that parallelizes the diffusion process across denoising steps and network layers, achieving near-linear FPS scaling without violating latency guarantees. The system scales seamlessly across heterogeneous GPU environments and supports flexible denoising steps (e.g., 1--4), enabling both ultra-low-latency and higher-quality modes. Without TensorRT or quantization, StreamDiffusionV2 renders the first frame within 0.5s and attains 58.28 FPS with a 14B-parameter model and 64.52 FPS with a 1.3B-parameter model on four H100 GPUs, making state-of-the-art generative live streaming practical and accessible--from individual creators to enterprise-scale platforms.
Block: Balancing Load in LLM Serving with Context, Knowledge and Predictive Scheduling
This paper presents Block, a distributed scheduling framework designed to optimize load balancing and auto-provisioning across instances in large language model serving frameworks by leveraging contextual information from incoming requests. Unlike popular model serving systems that rely on monolithic and heuristic task schedulers, Block operates as a fully distributed, stateless, and predictive scheduling system to achieve low overhead, reliability, and scalability. It leverages the deterministic and predictable characteristics of LLM inferences, such as host configurations, response lengths, and hardware performance, to make scheduling decisions based on accurately predicted metrics. Evaluation on a 12 GPUs cluster shows that Block significantly outperforms heuristic schedulers, boosting serving capacity by up to 16.7\% and reducing P99 tail latency by up to 49.5\%. These performance gains remain consistent across diverse models, workloads and configurations. Code and data are open-sourced.
Graph HyperNetworks for Neural Architecture Search
Neural architecture search (NAS) automatically finds the best task-specific neural network topology, outperforming many manual architecture designs. However, it can be prohibitively expensive as the search requires training thousands of different networks, while each can last for hours. In this work, we propose the Graph HyperNetwork (GHN) to amortize the search cost: given an architecture, it directly generates the weights by running inference on a graph neural network. GHNs model the topology of an architecture and therefore can predict network performance more accurately than regular hypernetworks and premature early stopping. To perform NAS, we randomly sample architectures and use the validation accuracy of networks with GHN generated weights as the surrogate search signal. GHNs are fast -- they can search nearly 10 times faster than other random search methods on CIFAR-10 and ImageNet. GHNs can be further extended to the anytime prediction setting, where they have found networks with better speed-accuracy tradeoff than the state-of-the-art manual designs.
TANKER: Distributed Architecture for Named Entity Recognition and Disambiguation
Named Entity Recognition and Disambiguation (NERD) systems have recently been widely researched to deal with the significant growth of the Web. NERD systems are crucial for several Natural Language Processing (NLP) tasks such as summarization, understanding, and machine translation. However, there is no standard interface specification, i.e. these systems may vary significantly either for exporting their outputs or for processing the inputs. Thus, when a given company desires to implement more than one NERD system, the process is quite exhaustive and prone to failure. In addition, industrial solutions demand critical requirements, e.g., large-scale processing, completeness, versatility, and licenses. Commonly, these requirements impose a limitation, making good NERD models to be ignored by companies. This paper presents TANKER, a distributed architecture which aims to overcome scalability, reliability and failure tolerance limitations related to industrial needs by combining NERD systems. To this end, TANKER relies on a micro-services oriented architecture, which enables agile development and delivery of complex enterprise applications. In addition, TANKER provides a standardized API which makes possible to combine several NERD systems at once.
Network Digital Twin for Open RAN: The Key Enablers, Standardization, and Use Cases
The open radio access network (O-RAN), with its disaggregated and open architecture, is poised to meet the demands of the next generation of wireless communication. However, to unlock the full potentials of O-RAN, real-time network modeling and optimization are essential. A promising solution for such requirement is the use of network digital twin (NDT). NDT provides a comprehensive view of a network, covering both physical and logical components, including infrastructure, protocols, and algorithms. NDT, as a real-time virtual representation of O-RAN facilitates a variety of operations, such as emulations, test, optimization, monitoring, and analysis of a new configuration in a risk-free environment, without requiring them to be implemented in real network. Such capability enables the vendors and network operators for a faster adoption of new solutions with frequent updates, while ensuring the resiliency of the existing services via planning ahead under various "what-if" scenarios. In this paper, we first describe what exactly NDT means in the context of O-RAN, as well as its key enablers. We then describe the NDT application within the O-RAN in both prior and post-deployment. Finally, we provide two practical uses cases, namely network energy efficiency and traffic steering, where the NDT can be leveraged effectively.
Parameter is Not All You Need: Starting from Non-Parametric Networks for 3D Point Cloud Analysis
We present a Non-parametric Network for 3D point cloud analysis, Point-NN, which consists of purely non-learnable components: farthest point sampling (FPS), k-nearest neighbors (k-NN), and pooling operations, with trigonometric functions. Surprisingly, it performs well on various 3D tasks, requiring no parameters or training, and even surpasses existing fully trained models. Starting from this basic non-parametric model, we propose two extensions. First, Point-NN can serve as a base architectural framework to construct Parametric Networks by simply inserting linear layers on top. Given the superior non-parametric foundation, the derived Point-PN exhibits a high performance-efficiency trade-off with only a few learnable parameters. Second, Point-NN can be regarded as a plug-and-play module for the already trained 3D models during inference. Point-NN captures the complementary geometric knowledge and enhances existing methods for different 3D benchmarks without re-training. We hope our work may cast a light on the community for understanding 3D point clouds with non-parametric methods. Code is available at https://github.com/ZrrSkywalker/Point-NN.
Accurate Expert Predictions in MoE Inference via Cross-Layer Gate
Large Language Models (LLMs) have demonstrated impressive performance across various tasks, and their application in edge scenarios has attracted significant attention. However, sparse-activated Mixture-of-Experts (MoE) models, which are well suited for edge scenarios, have received relatively little attention due to their high memory demands. Offload-based methods have been proposed to address this challenge, but they face difficulties with expert prediction. Inaccurate expert predictions can result in prolonged inference delays. To promote the application of MoE models in edge scenarios, we propose Fate, an offloading system designed for MoE models to enable efficient inference in resource-constrained environments. The key insight behind Fate is that gate inputs from adjacent layers can be effectively used for expert prefetching, achieving high prediction accuracy without additional GPU overhead. Furthermore, Fate employs a shallow-favoring expert caching strategy that increases the expert hit rate to 99\%. Additionally, Fate integrates tailored quantization strategies for cache optimization and IO efficiency. Experimental results show that, compared to Load on Demand and Expert Activation Path-based method, Fate achieves up to 4.5x and 1.9x speedups in prefill speed and up to 4.1x and 2.2x speedups in decoding speed, respectively, while maintaining inference quality. Moreover, Fate's performance improvements are scalable across different memory budgets.
MobileOne: An Improved One millisecond Mobile Backbone
Efficient neural network backbones for mobile devices are often optimized for metrics such as FLOPs or parameter count. However, these metrics may not correlate well with latency of the network when deployed on a mobile device. Therefore, we perform extensive analysis of different metrics by deploying several mobile-friendly networks on a mobile device. We identify and analyze architectural and optimization bottlenecks in recent efficient neural networks and provide ways to mitigate these bottlenecks. To this end, we design an efficient backbone MobileOne, with variants achieving an inference time under 1 ms on an iPhone12 with 75.9% top-1 accuracy on ImageNet. We show that MobileOne achieves state-of-the-art performance within the efficient architectures while being many times faster on mobile. Our best model obtains similar performance on ImageNet as MobileFormer while being 38x faster. Our model obtains 2.3% better top-1 accuracy on ImageNet than EfficientNet at similar latency. Furthermore, we show that our model generalizes to multiple tasks - image classification, object detection, and semantic segmentation with significant improvements in latency and accuracy as compared to existing efficient architectures when deployed on a mobile device. Code and models are available at https://github.com/apple/ml-mobileone
Slimmable Encoders for Flexible Split DNNs in Bandwidth and Resource Constrained IoT Systems
The execution of large deep neural networks (DNN) at mobile edge devices requires considerable consumption of critical resources, such as energy, while imposing demands on hardware capabilities. In approaches based on edge computing the execution of the models is offloaded to a compute-capable device positioned at the edge of 5G infrastructures. The main issue of the latter class of approaches is the need to transport information-rich signals over wireless links with limited and time-varying capacity. The recent split computing paradigm attempts to resolve this impasse by distributing the execution of DNN models across the layers of the systems to reduce the amount of data to be transmitted while imposing minimal computing load on mobile devices. In this context, we propose a novel split computing approach based on slimmable ensemble encoders. The key advantage of our design is the ability to adapt computational load and transmitted data size in real-time with minimal overhead and time. This is in contrast with existing approaches, where the same adaptation requires costly context switching and model loading. Moreover, our model outperforms existing solutions in terms of compression efficacy and execution time, especially in the context of weak mobile devices. We present a comprehensive comparison with the most advanced split computing solutions, as well as an experimental evaluation on GPU-less devices.
SmallThinker: A Family of Efficient Large Language Models Natively Trained for Local Deployment
While frontier large language models (LLMs) continue to push capability boundaries, their deployment remains confined to GPU-powered cloud infrastructure. We challenge this paradigm with SmallThinker, a family of LLMs natively designed - not adapted - for the unique constraints of local devices: weak computational power, limited memory, and slow storage. Unlike traditional approaches that mainly compress existing models built for clouds, we architect SmallThinker from the ground up to thrive within these limitations. Our innovation lies in a deployment-aware architecture that transforms constraints into design principles. First, We introduce a two-level sparse structure combining fine-grained Mixture-of-Experts (MoE) with sparse feed-forward networks, drastically reducing computational demands without sacrificing model capacity. Second, to conquer the I/O bottleneck of slow storage, we design a pre-attention router that enables our co-designed inference engine to prefetch expert parameters from storage while computing attention, effectively hiding storage latency that would otherwise cripple on-device inference. Third, for memory efficiency, we utilize NoPE-RoPE hybrid sparse attention mechanism to slash KV cache requirements. We release SmallThinker-4B-A0.6B and SmallThinker-21B-A3B, which achieve state-of-the-art performance scores and even outperform larger LLMs. Remarkably, our co-designed system mostly eliminates the need for expensive GPU hardware: with Q4_0 quantization, both models exceed 20 tokens/s on ordinary consumer CPUs, while consuming only 1GB and 8GB of memory respectively. SmallThinker is publicly available at hf.co/PowerInfer/SmallThinker-4BA0.6B-Instruct and hf.co/PowerInfer/SmallThinker-21BA3B-Instruct.
ServeGen: Workload Characterization and Generation of Large Language Model Serving in Production
With the widespread adoption of Large Language Models (LLMs), serving LLM inference requests has become an increasingly important task, attracting active research advancements. Practical workloads play an essential role in this process: they are critical for motivating and benchmarking serving techniques and systems. However, the existing understanding of real-world LLM serving workloads is limited due to the lack of a comprehensive workload characterization. Prior analyses remain insufficient in scale and scope, thus failing to fully capture intricate workload characteristics. In this paper, we fill the gap with an in-depth characterization of LLM serving workloads collected from our worldwide cloud inference serving service, covering not only language models but also emerging multimodal and reasoning models, and unveiling important new findings in each case. Moreover, based on our findings, we propose ServeGen, a principled framework for generating realistic LLM serving workloads by composing them on a per-client basis. A practical use case in production validates that ServeGen avoids 50% under-provisioning compared to naive workload generation, demonstrating ServeGen's advantage in performance benchmarking. We will open-source ServeGen to foster future research.
ExpertWeave: Efficiently Serving Expert-Specialized Fine-Tuned Adapters at Scale
Expert-Specialized Fine-Tuning (ESFT) adapts Mixture-of-Experts (MoE) large language models to enhance their task-specific performance by selectively tuning the top-activated experts for the task. Serving these fine-tuned models at scale is challenging: deploying merged models in isolation is prohibitively resource-hungry, while existing multi-adapter serving systems with LoRA-style additive updates are incompatible with ESFT's expert-oriented paradigm. We present ExpertWeave, a system that serves multiple ESFT adapters concurrently over a single shared MoE base model, drastically reducing the memory footprint and improving resource utilization. To seamlessly integrate into existing inference pipelines for MoE models with non-intrusive modifications and minimal latency overhead, ExpertWeave introduces a virtual-memory-assisted expert weight manager that co-locates base-model and adapter experts without incurring memory overhead from fragmentation, and a fused kernel for batched rerouting to enable lightweight redirection of tokens to the appropriate experts at runtime. Our evaluations show that ExpertWeave can simultaneously serve multiple adapters of a 16B MoE model on a single accelerator where the baseline runs out of memory, or provides up to 94x more KV cache capacity and achieves up to 18% higher throughput while using comparable resources, all without compromising model accuracy. ExpertWeave maintains low overhead even when scaling to 20 adapters, with a 4-11% latency increase compared with serving the base model alone. Source code will be released soon.
Incentivizing Permissionless Distributed Learning of LLMs
We describe an incentive system for distributed deep learning of foundational models where peers are rewarded for contributions. The incentive system, Gauntlet, has been deployed on the bittensor blockchain and used to train a 1.2B LLM with completely permissionless contributions of pseudo-gradients: no control over the users that can register or their hardware. Gauntlet can be applied to any synchronous distributed training scheme that relies on aggregating updates or pseudo-gradients. We rely on a two-stage mechanism for fast filtering of peer uptime, reliability, and synchronization, combined with the core component that estimates the loss before and after individual pseudo-gradient contributions. We utilized an OpenSkill rating system to track competitiveness of pseudo-gradient scores across time. Finally, we introduce a novel mechanism to ensure peers on the network perform unique computations. Our live 1.2B run, which has paid out real-valued tokens to participants based on the value of their contributions, yielded a competitive (on a per-iteration basis) 1.2B model that demonstrates the utility of our incentive system.
Continuum: Efficient and Robust Multi-Turn LLM Agent Scheduling with KV Cache Time-to-Live
Agentic LLM applications interleave LLM generation requests with tool calls. These tool calls break the continuity of the workflow by creating pauses between LLM requests, bringing many challenges for the serving system, especially under multi-turn scenarios. Each pause potentially causes KV cache eviction and extra waiting time before entering the continuous batch for the following LLM request. Since these pauses happen for each call, this problem becomes increasingly severe as turn number grow for agentic programs. Previous works either fail to incorporate information from the tool call, evicting KV cache that leads to repetitive prefill or loading, or ignore the continuity of a multi-turn program, creating waiting time between turns that increases per-request latency. We present Continuum, a serving system to optimize job completion time for multi-turn agent workloads by combining tool-aware KV cache timeout with program-level scheduling. By predicting tool call durations in agentic workflows, Continuum selectively pins the KV cache in GPU memory with a time-to-live value based on total turn number. When combined with program-level first-come-first-serve, Continuum prevents scheduling bubbles, preserves multi-turn continuity, and optimizes for throughput for complex agentic workflows. By modeling the variability of tool call and agent program continuity, Continuum outperforms state-of-the-art baselines. Our evaluation on real-world agentic workloads (SWE-Bench and BFCL) with Llama-3.1 8B/70B models shows that Continuum significantly improves the average job completion times, and remains performant across different hardware setups and DRAM offloading schemes. Preview code is available at: https://github.com/Hanchenli/vllm-continuum
Enhancing Network Management Using Code Generated by Large Language Models
Analyzing network topologies and communication graphs plays a crucial role in contemporary network management. However, the absence of a cohesive approach leads to a challenging learning curve, heightened errors, and inefficiencies. In this paper, we introduce a novel approach to facilitate a natural-language-based network management experience, utilizing large language models (LLMs) to generate task-specific code from natural language queries. This method tackles the challenges of explainability, scalability, and privacy by allowing network operators to inspect the generated code, eliminating the need to share network data with LLMs, and concentrating on application-specific requests combined with general program synthesis techniques. We design and evaluate a prototype system using benchmark applications, showcasing high accuracy, cost-effectiveness, and the potential for further enhancements using complementary program synthesis techniques.
A Survey on Open-Source Edge Computing Simulators and Emulators: The Computing and Networking Convergence Perspective
Edge computing, with its low latency, dynamic scalability, and location awareness, along with the convergence of computing and communication paradigms, has been successfully applied in critical domains such as industrial IoT, smart healthcare, smart homes, and public safety. This paper provides a comprehensive survey of open-source edge computing simulators and emulators, presented in our GitHub repository (https://github.com/qijianpeng/awesome-edge-computing), emphasizing the convergence of computing and networking paradigms. By examining more than 40 tools, including CloudSim, NS-3, and others, we identify the strengths and limitations in simulating and emulating edge environments. This survey classifies these tools into three categories: packet-level, application-level, and emulators. Furthermore, we evaluate them across five dimensions, ranging from resource representation to resource utilization. The survey highlights the integration of different computing paradigms, packet processing capabilities, support for edge environments, user-defined metric interfaces, and scenario visualization. The findings aim to guide researchers in selecting appropriate tools for developing and validating advanced computing and networking technologies.
Efficient and Economic Large Language Model Inference with Attention Offloading
Transformer-based large language models (LLMs) exhibit impressive performance in generative tasks but introduce significant challenges in real-world serving due to inefficient use of the expensive, computation-optimized accelerators. This mismatch arises from the autoregressive nature of LLMs, where the generation phase comprises operators with varying resource demands. Specifically, the attention operator is memory-intensive, exhibiting a memory access pattern that clashes with the strengths of modern accelerators, especially as context length increases. To enhance the efficiency and cost-effectiveness of LLM serving, we introduce the concept of attention offloading. This approach leverages a collection of cheap, memory-optimized devices for the attention operator while still utilizing high-end accelerators for other parts of the model. This heterogeneous setup ensures that each component is tailored to its specific workload, maximizing overall performance and cost efficiency. Our comprehensive analysis and experiments confirm the viability of splitting the attention computation over multiple devices. Also, the communication bandwidth required between heterogeneous devices proves to be manageable with prevalent networking technologies. To further validate our theory, we develop Lamina, an LLM inference system that incorporates attention offloading. Experimental results indicate that Lamina can provide 1.48x-12.1x higher estimated throughput per dollar than homogeneous solutions.
FastCache: Optimizing Multimodal LLM Serving through Lightweight KV-Cache Compression Framework
Multi-modal Large Language Models (MLLMs) serving systems commonly employ KV-cache compression to reduce memory footprint. However, existing compression methods introduce significant processing overhead and queuing delays, particularly in concurrent serving scenarios. We present FastCache, a novel serving framework that effectively addresses these challenges through two key innovations: (1) a dynamic batching strategy that optimizes request scheduling across prefill, compression, and decode stages, and (2) an efficient KV-cache memory pool mechanism that eliminates memory fragmentation while maintaining high GPU utilization. Our comprehensive experiments on the GQA and MileBench datasets demonstrate that FastCache achieves up to 19.3times reduction in Time-To-First-Token (TTFT) and 12.1times improvement in throughput compared to state-of-the-art baselines. The system maintains stable performance under high-concurrency scenarios (up to 40 req/s) while reducing average memory consumption by 20\%. These results establish FastCache as an efficient solution for real-world LLM serving systems with KV-cache compression.
