new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 5

A SARS-CoV-2 Interaction Dataset and VHH Sequence Corpus for Antibody Language Models

Antibodies are crucial proteins produced by the immune system to eliminate harmful foreign substances and have become pivotal therapeutic agents for treating human diseases. To accelerate the discovery of antibody therapeutics, there is growing interest in constructing language models using antibody sequences. However, the applicability of pre-trained language models for antibody discovery has not been thoroughly evaluated due to the scarcity of labeled datasets. To overcome these limitations, we introduce AVIDa-SARS-CoV-2, a dataset featuring the antigen-variable domain of heavy chain of heavy chain antibody (VHH) interactions obtained from two alpacas immunized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike proteins. AVIDa-SARS-CoV-2 includes binary labels indicating the binding or non-binding of diverse VHH sequences to 12 SARS-CoV-2 mutants, such as the Delta and Omicron variants. Furthermore, we release VHHCorpus-2M, a pre-training dataset for antibody language models, containing over two million VHH sequences. We report benchmark results for predicting SARS-CoV-2-VHH binding using VHHBERT pre-trained on VHHCorpus-2M and existing general protein and antibody-specific pre-trained language models. These results confirm that AVIDa-SARS-CoV-2 provides valuable benchmarks for evaluating the representation capabilities of antibody language models for binding prediction, thereby facilitating the development of AI-driven antibody discovery. The datasets are available at https://datasets.cognanous.com.

  • 5 authors
·
May 29, 2024

Gaining Insight into SARS-CoV-2 Infection and COVID-19 Severity Using Self-supervised Edge Features and Graph Neural Networks

A molecular and cellular understanding of how SARS-CoV-2 variably infects and causes severe COVID-19 remains a bottleneck in developing interventions to end the pandemic. We sought to use deep learning to study the biology of SARS-CoV-2 infection and COVID-19 severity by identifying transcriptomic patterns and cell types associated with SARS-CoV-2 infection and COVID-19 severity. To do this, we developed a new approach to generating self-supervised edge features. We propose a model that builds on Graph Attention Networks (GAT), creates edge features using self-supervised learning, and ingests these edge features via a Set Transformer. This model achieves significant improvements in predicting the disease state of individual cells, given their transcriptome. We apply our model to single-cell RNA sequencing datasets of SARS-CoV-2 infected lung organoids and bronchoalveolar lavage fluid samples of patients with COVID-19, achieving state-of-the-art performance on both datasets with our model. We then borrow from the field of explainable AI (XAI) to identify the features (genes) and cell types that discriminate bystander vs. infected cells across time and moderate vs. severe COVID-19 disease. To the best of our knowledge, this represents the first application of deep learning to identifying the molecular and cellular determinants of SARS-CoV-2 infection and COVID-19 severity using single-cell omics data.

  • 3 authors
·
Jun 23, 2020

PaccMann$^{RL}$ on SARS-CoV-2: Designing antiviral candidates with conditional generative models

With the fast development of COVID-19 into a global pandemic, scientists around the globe are desperately searching for effective antiviral therapeutic agents. Bridging systems biology and drug discovery, we propose a deep learning framework for conditional de novo design of antiviral candidate drugs tailored against given protein targets. First, we train a multimodal ligand--protein binding affinity model on predicting affinities of antiviral compounds to target proteins and couple this model with pharmacological toxicity predictors. Exploiting this multi-objective as a reward function of a conditional molecular generator (consisting of two VAEs), we showcase a framework that navigates the chemical space toward regions with more antiviral molecules. Specifically, we explore a challenging setting of generating ligands against unseen protein targets by performing a leave-one-out-cross-validation on 41 SARS-CoV-2-related target proteins. Using deep RL, it is demonstrated that in 35 out of 41 cases, the generation is biased towards sampling more binding ligands, with an average increase of 83% comparing to an unbiased VAE. We present a case-study on a potential Envelope-protein inhibitor and perform a synthetic accessibility assessment of the best generated molecules is performed that resembles a viable roadmap towards a rapid in-vitro evaluation of potential SARS-CoV-2 inhibitors.

  • 7 authors
·
May 27, 2020

Learning Geometrically Disentangled Representations of Protein Folding Simulations

Massive molecular simulations of drug-target proteins have been used as a tool to understand disease mechanism and develop therapeutics. This work focuses on learning a generative neural network on a structural ensemble of a drug-target protein, e.g. SARS-CoV-2 Spike protein, obtained from computationally expensive molecular simulations. Model tasks involve characterizing the distinct structural fluctuations of the protein bound to various drug molecules, as well as efficient generation of protein conformations that can serve as an complement of a molecular simulation engine. Specifically, we present a geometric autoencoder framework to learn separate latent space encodings of the intrinsic and extrinsic geometries of the protein structure. For this purpose, the proposed Protein Geometric AutoEncoder (ProGAE) model is trained on the protein contact map and the orientation of the backbone bonds of the protein. Using ProGAE latent embeddings, we reconstruct and generate the conformational ensemble of a protein at or near the experimental resolution, while gaining better interpretability and controllability in term of protein structure generation from the learned latent space. Additionally, ProGAE models are transferable to a different state of the same protein or to a new protein of different size, where only the dense layer decoding from the latent representation needs to be retrained. Results show that our geometric learning-based method enjoys both accuracy and efficiency for generating complex structural variations, charting the path toward scalable and improved approaches for analyzing and enhancing high-cost simulations of drug-target proteins.

  • 5 authors
·
May 20, 2022

Coping with Information Loss and the Use of Auxiliary Sources of Data: A Report from the NISS Ingram Olkin Forum Series on Unplanned Clinical Trial Disruptions

Clinical trials disruption has always represented a non negligible part of the ending of interventional studies. While the SARS-CoV-2 (COVID-19) pandemic has led to an impressive and unprecedented initiation of clinical research, it has also led to considerable disruption of clinical trials in other disease areas, with around 80% of non-COVID-19 trials stopped or interrupted during the pandemic. In many cases the disrupted trials will not have the planned statistical power necessary to yield interpretable results. This paper describes methods to compensate for the information loss arising from trial disruptions by incorporating additional information available from auxiliary data sources. The methods described include the use of auxiliary data on baseline and early outcome data available from the trial itself and frequentist and Bayesian approaches for the incorporation of information from external data sources. The methods are illustrated by application to the analysis of artificial data based on the Primary care pediatrics Learning Activity Nutrition (PLAN) study, a clinical trial assessing a diet and exercise intervention for overweight children, that was affected by the COVID-19 pandemic. We show how all of the methods proposed lead to an increase in precision relative to use of complete case data only.

  • 12 authors
·
Jun 22, 2022

A Misclassification Network-Based Method for Comparative Genomic Analysis

Classifying genome sequences based on metadata has been an active area of research in comparative genomics for decades with many important applications across the life sciences. Established methods for classifying genomes can be broadly grouped into sequence alignment-based and alignment-free models. Conventional alignment-based models rely on genome similarity measures calculated based on local sequence alignments or consistent ordering among sequences. However, such methods are computationally expensive when dealing with large ensembles of even moderately sized genomes. In contrast, alignment-free (AF) approaches measure genome similarity based on summary statistics in an unsupervised setting and are efficient enough to analyze large datasets. However, both alignment-based and AF methods typically assume fixed scoring rubrics that lack the flexibility to assign varying importance to different parts of the sequences based on prior knowledge. In this study, we integrate AI and network science approaches to develop a comparative genomic analysis framework that addresses these limitations. Our approach, termed the Genome Misclassification Network Analysis (GMNA), simultaneously leverages misclassified instances, a learned scoring rubric, and label information to classify genomes based on associated metadata and better understand potential drivers of misclassification. We evaluate the utility of the GMNA using Naive Bayes and convolutional neural network models, supplemented by additional experiments with transformer-based models, to construct SARS-CoV-2 sampling location classifiers using over 500,000 viral genome sequences and study the resulting network of misclassifications. We demonstrate the global health potential of the GMNA by leveraging the SARS-CoV-2 genome misclassification networks to investigate the role human mobility played in structuring geographic clustering of SARS-CoV-2.

  • 3 authors
·
Dec 9, 2024

Interpretable RNA Foundation Model from Unannotated Data for Highly Accurate RNA Structure and Function Predictions

Non-coding RNA structure and function are essential to understanding various biological processes, such as cell signaling, gene expression, and post-transcriptional regulations. These are all among the core problems in the RNA field. With the rapid growth of sequencing technology, we have accumulated a massive amount of unannotated RNA sequences. On the other hand, expensive experimental observatory results in only limited numbers of annotated data and 3D structures. Hence, it is still challenging to design computational methods for predicting their structures and functions. The lack of annotated data and systematic study causes inferior performance. To resolve the issue, we propose a novel RNA foundation model (RNA-FM) to take advantage of all the 23 million non-coding RNA sequences through self-supervised learning. Within this approach, we discover that the pre-trained RNA-FM could infer sequential and evolutionary information of non-coding RNAs without using any labels. Furthermore, we demonstrate RNA-FM's effectiveness by applying it to the downstream secondary/3D structure prediction, SARS-CoV-2 genome structure and evolution prediction, protein-RNA binding preference modeling, and gene expression regulation modeling. The comprehensive experiments show that the proposed method improves the RNA structural and functional modelling results significantly and consistently. Despite only being trained with unlabelled data, RNA-FM can serve as the foundational model for the field.

  • 12 authors
·
Apr 1, 2022