Commit
·
ecd1674
1
Parent(s):
df1f2c8
first commit
Browse files- README.md +50 -0
- bsq.py +227 -0
- config.json +66 -0
- configuration_qlip.py +566 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- modeling_qlip.py +1481 -0
- preprocessor_config.json +19 -0
- rope.py +118 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- vocab.json +0 -0
README.md
CHANGED
|
@@ -1,3 +1,53 @@
|
|
| 1 |
---
|
| 2 |
license: cc-by-nc-4.0
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: cc-by-nc-4.0
|
| 3 |
---
|
| 4 |
+
|
| 5 |
+
# QLIP
|
| 6 |
+
|
| 7 |
+
[\[📂 GitHub\]](https://github.com/NVlabs/QLIP)
|
| 8 |
+
[\[📃 QLIP Tech Report\]](http://arxiv.org/abs/2502.yyyyy)
|
| 9 |
+
[\[🔗 Project Page\]](http://nvlabs.github.io/QLIP/)
|
| 10 |
+
[\[🤗 HF Model\]](https://huggingface.co/NVIDIA/QLIP-B-16-256)
|
| 11 |
+
|
| 12 |
+
## Introduction
|
| 13 |
+
We introduce Quantized Language-Image Pretraining (**QLIP**), a visual tokenization method that combines state-of-the-art reconstruction quality with state-of-the-art zero-shot image understanding.
|
| 14 |
+
QLIP trains a binary-spherical-quantization-based autoencoder with reconstruction and language-image alignment objectives.
|
| 15 |
+
We are the first to show that the two objectives do not need to be at odds.
|
| 16 |
+
We balance the two loss terms dynamically during training and show that a two-stage training pipeline effectively mixes the large-batch requirements of image-language pre-training with the memory bottleneck imposed by the reconstruction objective.
|
| 17 |
+
We validate the effectiveness of QLIP for multimodal understanding and text-conditioned image generation with a single model.
|
| 18 |
+
Specifically, QLIP serves as a drop-in replacement for the visual encoder for LLaVA and the image tokenizer for LlamaGen with comparable or even better performance.
|
| 19 |
+
Finally, we demonstrate that QLIP enables a unified mixed-modality auto-regressive model for understanding and generation.
|
| 20 |
+
|
| 21 |
+
## Model Zoo
|
| 22 |
+
We provide the following models:
|
| 23 |
+
| model name | #bits | CR<sub>↑<sub> | 0-shot<sub>↑<sub> | rFID<sub>↓<sub> | HF Link |
|
| 24 |
+
| ------------- | ------ | ----- | ------ | ---- | ------- |
|
| 25 |
+
| QLIP-B-16-256 | 28 | 219.4 | 74.3 | 3.21 | [🤗 link](https://huggingface.co/NVIDIA/QLIP-B-16-256) |
|
| 26 |
+
| QLIP-B-8-256 | 28 | 54.8 | 75.6 | 0.70 | [🤗 link](https://huggingface.co/NVIDIA/QLIP-B-8-256) |
|
| 27 |
+
| QLIP-L-14-392 | 28 | 168 | 79.1 | 1.46 | [🤗 link](https://huggingface.co/NVIDIA/QLIP-L-14-392) |
|
| 28 |
+
|
| 29 |
+
Note:
|
| 30 |
+
- **CR**: compression ratio = 24/(#bits)*patch_size^2;
|
| 31 |
+
- **0-shot**: zero-shot classification accuracy on IN-1k-val;
|
| 32 |
+
- **rFID**: reconstruction FID on IN-1k-val.
|
| 33 |
+
|
| 34 |
+
## Citing QLIP
|
| 35 |
+
|
| 36 |
+
```bibtex
|
| 37 |
+
@article{zhao2025qlip,
|
| 38 |
+
title={QLIP: Text-Aligned Visual Tokenization Unifies Auto-Regressive Multimodal Understanding and Generation},
|
| 39 |
+
author={Zhao, Yue and Xue, Fuzhao and Reed, Scott and Fan, Linxi and Zhu, Yuke and Kautz, Jan and Yu, Zhiding and Krähenbühl, Philipp and Huang, De-An},
|
| 40 |
+
journal={arXiv preprint arXiv:2502.yyyyy},
|
| 41 |
+
year={2025}
|
| 42 |
+
}
|
| 43 |
+
```
|
| 44 |
+
|
| 45 |
+
## Acknowledgement
|
| 46 |
+
The project builds upon the following open-source efforts:
|
| 47 |
+
- [EVA-CLIP](https://github.com/baaivision/EVA/tree/master/EVA-CLIP/rei): We use EVA-CLIP as initialization which significantly speeds up the training convergence.
|
| 48 |
+
|
| 49 |
+
- [LLaVA](https://github.com/haotian-liu/LLaVA): We use LLaVA to evaluate the multimodal understanding performance.
|
| 50 |
+
|
| 51 |
+
- [LlamaGen](https://github.com/FoundationVision/LlamaGen): We build the text-to-image generation evaluation on top of LlamaGen.
|
| 52 |
+
|
| 53 |
+
- [Lingua](https://github.com/facebookresearch/lingua): We build the unified multimodal model on top of Lingua.
|
bsq.py
ADDED
|
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024, NVIDIA Corporation & Affiliates. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# This work is made available under the Nvidia Source Code License-NC.
|
| 4 |
+
# To view a copy of this license, visit
|
| 5 |
+
# https://github.com/NVlabs/QLIP/blob/main/LICENSE
|
| 6 |
+
|
| 7 |
+
# MIT License
|
| 8 |
+
# Based on https://github.com/zhaoyue-zephyrus/bsq-vit/blob/main/transcoder/models/quantizer/bsq.py
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
import torch.nn as nn
|
| 12 |
+
from einops import rearrange, reduce
|
| 13 |
+
|
| 14 |
+
_EPS = 1e-8
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class DifferentiableEntropyFunction(torch.autograd.Function):
|
| 18 |
+
@staticmethod
|
| 19 |
+
def forward(ctx, zq, basis, K, eps):
|
| 20 |
+
zb = (zq + 1) / 2
|
| 21 |
+
zi = ((zb * basis).sum(-1)).to(torch.int64)
|
| 22 |
+
cnt = torch.scatter_reduce(
|
| 23 |
+
torch.zeros(2**K, device=zq.device, dtype=zq.dtype),
|
| 24 |
+
0,
|
| 25 |
+
zi.flatten(),
|
| 26 |
+
torch.ones_like(zi.flatten()).to(zq.dtype),
|
| 27 |
+
"sum",
|
| 28 |
+
)
|
| 29 |
+
prob = (cnt + eps) / (cnt + eps).sum()
|
| 30 |
+
H = torch.special.entr(prob).sum()
|
| 31 |
+
ctx.save_for_backward(zq, zi, prob)
|
| 32 |
+
ctx.K = K
|
| 33 |
+
return H
|
| 34 |
+
|
| 35 |
+
@staticmethod
|
| 36 |
+
def backward(ctx, grad_output):
|
| 37 |
+
zq, zi, prob = ctx.saved_tensors
|
| 38 |
+
grad_array = -grad_output * (torch.log(prob) + 1) / zi.numel() / ctx.K
|
| 39 |
+
reord_grad = grad_array[zi.flatten()].reshape(zi.shape)
|
| 40 |
+
grad_input = reord_grad.unsqueeze(-1) * zq
|
| 41 |
+
return grad_input, None, None, None, None
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def codebook_entropy(zq, basis, K, eps=1e-8):
|
| 45 |
+
return DifferentiableEntropyFunction.apply(zq, basis, K, eps)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
class BinarySphericalQuantizer(nn.Module):
|
| 49 |
+
def __init__(
|
| 50 |
+
self,
|
| 51 |
+
embed_dim: int = 18,
|
| 52 |
+
group_size: int = 9,
|
| 53 |
+
soft_entropy: bool = True,
|
| 54 |
+
beta: float = 0.0, # commit loss
|
| 55 |
+
gamma_0: float = 1.0, # entropy loss (E[H(q)])
|
| 56 |
+
gamma_1: float = 1.0, # entropy loss (H[E[q]])
|
| 57 |
+
input_format: str = "bchw",
|
| 58 |
+
persample_entropy_compute: str = "group",
|
| 59 |
+
l2_norm: bool = True,
|
| 60 |
+
inv_temperature: float = 100.0,
|
| 61 |
+
):
|
| 62 |
+
super().__init__()
|
| 63 |
+
self.embed_dim = embed_dim
|
| 64 |
+
self.group_size = group_size
|
| 65 |
+
assert embed_dim % group_size == 0, "embed_dim must be divisible by group_size"
|
| 66 |
+
self.soft_entropy = soft_entropy
|
| 67 |
+
self.beta = beta
|
| 68 |
+
self.gamma_0 = gamma_0
|
| 69 |
+
self.gamma_1 = gamma_1
|
| 70 |
+
assert input_format in ["bchw", "blc"]
|
| 71 |
+
self.input_format = input_format
|
| 72 |
+
assert persample_entropy_compute in [
|
| 73 |
+
"group",
|
| 74 |
+
"analytical",
|
| 75 |
+
], "persample_entropy_compute must be either 'group' or 'analytical'"
|
| 76 |
+
self.persample_entropy_compute = persample_entropy_compute
|
| 77 |
+
self.l2_norm = l2_norm
|
| 78 |
+
self.inv_temperature = inv_temperature
|
| 79 |
+
|
| 80 |
+
self.register_buffer("basis", 2 ** torch.arange(embed_dim - 1, -1, -1), persistent=False)
|
| 81 |
+
self.register_buffer(
|
| 82 |
+
"group_basis", 2 ** torch.arange(group_size - 1, -1, -1), persistent=False
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
group_codes = torch.arange(2**self.group_size)
|
| 86 |
+
group_codebook = self.indexes_to_codes(group_codes).float()[:, -group_size:]
|
| 87 |
+
self.register_buffer("group_codebook", group_codebook, persistent=False)
|
| 88 |
+
|
| 89 |
+
def quantize(self, z):
|
| 90 |
+
assert (
|
| 91 |
+
z.shape[-1] == self.embed_dim
|
| 92 |
+
), f"Expected {self.embed_dim} dimensions, got {z.shape[-1]}"
|
| 93 |
+
zhat = torch.where(z > 0, torch.ones_like(z), -torch.ones_like(z))
|
| 94 |
+
return z + (zhat - z).detach()
|
| 95 |
+
|
| 96 |
+
def forward(self, z):
|
| 97 |
+
if self.input_format == "bchw":
|
| 98 |
+
z = rearrange(z, "b c h w -> b h w c")
|
| 99 |
+
zq = self.quantize(z)
|
| 100 |
+
|
| 101 |
+
indices = self.codes_to_indexes(zq.detach())
|
| 102 |
+
group_indices = self.codes_to_group_indexes(zq.detach())
|
| 103 |
+
|
| 104 |
+
if not self.training:
|
| 105 |
+
used_codes = torch.unique(indices, return_counts=False)
|
| 106 |
+
else:
|
| 107 |
+
used_codes = None
|
| 108 |
+
|
| 109 |
+
if self.soft_entropy:
|
| 110 |
+
persample_entropy, cb_entropy = self.soft_entropy_loss(z)
|
| 111 |
+
else:
|
| 112 |
+
persample_entropy, cb_entropy = self.hard_entropy_loss(z)
|
| 113 |
+
entropy_penalty = self.gamma_0 * persample_entropy - self.gamma_1 * cb_entropy
|
| 114 |
+
|
| 115 |
+
q_scale = 1.0 / (self.embed_dim**0.5) if self.l2_norm else 1.0
|
| 116 |
+
zq = zq * q_scale
|
| 117 |
+
commit_loss = self.beta * torch.mean(((zq.detach() - z) ** 2).sum(dim=-1))
|
| 118 |
+
|
| 119 |
+
if self.input_format == "bchw":
|
| 120 |
+
zq = rearrange(zq, "b h w c -> b c h w")
|
| 121 |
+
|
| 122 |
+
return (
|
| 123 |
+
zq,
|
| 124 |
+
commit_loss + entropy_penalty / self.inv_temperature,
|
| 125 |
+
{
|
| 126 |
+
"H": cb_entropy,
|
| 127 |
+
"used_codes": used_codes,
|
| 128 |
+
"indices": indices,
|
| 129 |
+
"group_indices": group_indices,
|
| 130 |
+
},
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
def soft_entropy_loss(self, z):
|
| 134 |
+
group_codebook = self.group_codebook / (self.embed_dim**0.5 if self.l2_norm else 1)
|
| 135 |
+
divided_z = rearrange(z, "... (g c) -> ... g c", c=self.group_size)
|
| 136 |
+
|
| 137 |
+
if self.persample_entropy_compute == "group":
|
| 138 |
+
distance = -2 * torch.einsum("... g c, d c -> ... g d", divided_z, group_codebook)
|
| 139 |
+
prob = (-distance * self.inv_temperature).softmax(dim=-1)
|
| 140 |
+
persample_entropy = torch.special.entr(prob + _EPS).sum((-1, -2)).mean()
|
| 141 |
+
else:
|
| 142 |
+
p = torch.sigmoid(
|
| 143 |
+
-4 * z / (self.embed_dim**0.5 if self.l2_norm else 1) * self.inv_temperature
|
| 144 |
+
)
|
| 145 |
+
prob = torch.stack([p, 1 - p], dim=-1)
|
| 146 |
+
persample_entropy = torch.special.entr(prob + _EPS).sum((-1, -2)).mean()
|
| 147 |
+
|
| 148 |
+
# macro average of the probability of each subgroup
|
| 149 |
+
avg_prob = reduce(prob, "... g d -> g d", "mean")
|
| 150 |
+
cb_entropy = torch.special.entr(avg_prob + _EPS).sum()
|
| 151 |
+
|
| 152 |
+
return persample_entropy, cb_entropy
|
| 153 |
+
|
| 154 |
+
def hard_entropy_loss(self, z):
|
| 155 |
+
zb = ((z + 1) / 2).reshape(z.shape[0], -1, z.shape[-1]).to(torch.float32)
|
| 156 |
+
prob_per_dim = zb.sum(1) / zb.shape[1]
|
| 157 |
+
prob = torch.stack([prob_per_dim, 1 - prob_per_dim], dim=-1)
|
| 158 |
+
persample_entropy = torch.special.entr(prob + _EPS).sum((-1, -2)).mean()
|
| 159 |
+
cb_entropy = codebook_entropy(z, self.basis, self.embed_dim)
|
| 160 |
+
|
| 161 |
+
return persample_entropy, cb_entropy
|
| 162 |
+
|
| 163 |
+
def codes_to_indexes(self, zhat):
|
| 164 |
+
"""Converts a `code` to an index in the codebook.
|
| 165 |
+
Args:
|
| 166 |
+
zhat: A tensor of shape (B, ..., C) containing the codes. must be in {-1, 1}
|
| 167 |
+
"""
|
| 168 |
+
assert (
|
| 169 |
+
zhat.shape[-1] == self.embed_dim
|
| 170 |
+
), f"Expected {self.embed_dim} dimensions, got {zhat.shape[-1]}"
|
| 171 |
+
return ((zhat.int() + 1) / 2 * self.basis).sum(axis=-1).to(torch.int64)
|
| 172 |
+
|
| 173 |
+
def codes_to_group_indexes(self, zhat):
|
| 174 |
+
"""Converts a `code` to a list of indexes (in groups) in the codebook.
|
| 175 |
+
Args:
|
| 176 |
+
zhat: A tensor of shape (B, ..., C) containing the codes. must be in {-1, 1}
|
| 177 |
+
"""
|
| 178 |
+
zhat_in_group = rearrange(zhat, "b ... (g c) -> b ... g c", c=self.group_size)
|
| 179 |
+
return ((zhat_in_group.int() + 1) / 2 * self.group_basis).sum(axis=-1).to(torch.int64)
|
| 180 |
+
|
| 181 |
+
def indexes_to_codes(self, indices):
|
| 182 |
+
"""Inverse of `codes_to_indexes`."""
|
| 183 |
+
indices = indices.unsqueeze(-1)
|
| 184 |
+
codes_non_centered = torch.remainder(torch.floor_divide(indices, self.basis), 2)
|
| 185 |
+
return codes_non_centered * 2 - 1
|
| 186 |
+
|
| 187 |
+
def group_indexes_to_codes(self, group_indices):
|
| 188 |
+
"""Inverse of `codes_to_group_indexes`."""
|
| 189 |
+
group_indices = group_indices.unsqueeze(-1)
|
| 190 |
+
codes_non_centered = torch.remainder(torch.floor_divide(group_indices, self.group_basis), 2)
|
| 191 |
+
codes_non_centered = rearrange(codes_non_centered, "b ... g c -> b ... (g c)")
|
| 192 |
+
return codes_non_centered * 2 - 1
|
| 193 |
+
|
| 194 |
+
def get_group_codebook_entry(self, group_indices, one_hot=False):
|
| 195 |
+
"""
|
| 196 |
+
Args:
|
| 197 |
+
group_indices: A tensor of shape (B, L, G, C) containing the group indices.
|
| 198 |
+
"""
|
| 199 |
+
if one_hot:
|
| 200 |
+
z_q = group_indices @ self.group_codebook
|
| 201 |
+
else:
|
| 202 |
+
z_q = self.group_indexes_to_codes(group_indices)
|
| 203 |
+
q_scale = 1.0 / (self.embed_dim**0.5) if self.l2_norm else 1.0
|
| 204 |
+
z_q = z_q * q_scale
|
| 205 |
+
if self.input_format == "bchw":
|
| 206 |
+
h, w = int(z_q.shape[1] ** 0.5)
|
| 207 |
+
assert h * w == z_q.shape[1], "Invalid sequence length"
|
| 208 |
+
z_q = rearrange(z_q, "b (h w) c -> b c h w", h=h)
|
| 209 |
+
return z_q
|
| 210 |
+
|
| 211 |
+
def get_codebook_entry(self, indices, one_hot=False):
|
| 212 |
+
"""
|
| 213 |
+
Args:
|
| 214 |
+
group_indices: A tensor of shape (B, L, C) containing the indices.
|
| 215 |
+
"""
|
| 216 |
+
if one_hot:
|
| 217 |
+
assert self.embed_dim == self.group_size, "one_hot is only supported for group_size == embed_dim"
|
| 218 |
+
z_q = indices @ self.group_codebook
|
| 219 |
+
else:
|
| 220 |
+
z_q = self.indexes_to_codes(indices)
|
| 221 |
+
q_scale = 1.0 / (self.embed_dim**0.5) if self.l2_norm else 1.0
|
| 222 |
+
z_q = z_q * q_scale
|
| 223 |
+
if self.input_format == "bchw":
|
| 224 |
+
h, w = int(z_q.shape[1] ** 0.5)
|
| 225 |
+
assert h * w == z_q.shape[1], "Invalid sequence length"
|
| 226 |
+
z_q = rearrange(z_q, "b (h w) c -> b c h w", h=h)
|
| 227 |
+
return z_q
|
config.json
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "EVA-BSQCLIP",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"QLIPModel"
|
| 5 |
+
],
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "configuration_evaclip.QLIPConfig",
|
| 8 |
+
"AutoModel": "modeling_evaclip.QLIPModel"
|
| 9 |
+
},
|
| 10 |
+
"decoder_config": {
|
| 11 |
+
"dropout": 0.0,
|
| 12 |
+
"image_size": 256,
|
| 13 |
+
"intermediate_size": 2048,
|
| 14 |
+
"k_bias": false,
|
| 15 |
+
"layer_norm_eps": 1e-06,
|
| 16 |
+
"model_type": "clip_decoder_model",
|
| 17 |
+
"patch_size": 16,
|
| 18 |
+
"rope": true,
|
| 19 |
+
"rope_shift": 0,
|
| 20 |
+
"subln": true,
|
| 21 |
+
"swiglu": true,
|
| 22 |
+
"use_bfloat16": true,
|
| 23 |
+
"use_rms_norm": true
|
| 24 |
+
},
|
| 25 |
+
"initializer_factor": 1.0,
|
| 26 |
+
"logit_scale_init_value": 2.6592,
|
| 27 |
+
"model_type": "clip",
|
| 28 |
+
"projection_dim": 512,
|
| 29 |
+
"text_config": {
|
| 30 |
+
"bos_token_id": 0,
|
| 31 |
+
"dropout": 0.0,
|
| 32 |
+
"eos_token_id": 2,
|
| 33 |
+
"model_type": "clip_text_model",
|
| 34 |
+
"use_bfloat16": true,
|
| 35 |
+
"use_rms_norm": false
|
| 36 |
+
},
|
| 37 |
+
"text_projection_bias": false,
|
| 38 |
+
"torch_dtype": "float32",
|
| 39 |
+
"transformers_version": "4.37.2",
|
| 40 |
+
"vision_config": {
|
| 41 |
+
"dropout": 0.0,
|
| 42 |
+
"image_size": 256,
|
| 43 |
+
"intermediate_size": 2048,
|
| 44 |
+
"k_bias": false,
|
| 45 |
+
"layer_norm_eps": 1e-06,
|
| 46 |
+
"model_type": "clip_vision_model",
|
| 47 |
+
"patch_size": 16,
|
| 48 |
+
"quantizer": "bsq",
|
| 49 |
+
"quantizer_cfg": {
|
| 50 |
+
"embed_dim": 28,
|
| 51 |
+
"group_size": 1,
|
| 52 |
+
"input_format": "blc",
|
| 53 |
+
"inv_temperature": 1.0,
|
| 54 |
+
"l2_norm": true
|
| 55 |
+
},
|
| 56 |
+
"quantizer_embed_type": "mlp",
|
| 57 |
+
"quantizer_l2_norm": true,
|
| 58 |
+
"rope": true,
|
| 59 |
+
"rope_shift": 1,
|
| 60 |
+
"subln": true,
|
| 61 |
+
"swiglu": true,
|
| 62 |
+
"use_bfloat16": true,
|
| 63 |
+
"use_rms_norm": true
|
| 64 |
+
},
|
| 65 |
+
"vision_projection_bias": true
|
| 66 |
+
}
|
configuration_qlip.py
ADDED
|
@@ -0,0 +1,566 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024, NVIDIA Corporation & Affiliates. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# This work is made available under the Nvidia Source Code License-NC.
|
| 4 |
+
# To view a copy of this license, visit
|
| 5 |
+
# https://github.com/NVlabs/QLIP/blob/main/LICENSE
|
| 6 |
+
|
| 7 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
| 8 |
+
#
|
| 9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 10 |
+
# you may not use this file except in compliance with the License.
|
| 11 |
+
# You may obtain a copy of the License at
|
| 12 |
+
#
|
| 13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 14 |
+
#
|
| 15 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 18 |
+
# See the License for the specific language governing permissions and
|
| 19 |
+
# limitations under the License.
|
| 20 |
+
""" CLIP model configuration"""
|
| 21 |
+
|
| 22 |
+
import os
|
| 23 |
+
from collections import OrderedDict
|
| 24 |
+
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
if TYPE_CHECKING:
|
| 28 |
+
from transformers.processing_utils import ProcessorMixin
|
| 29 |
+
from transformers.utils import TensorType
|
| 30 |
+
|
| 31 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 32 |
+
from transformers.onnx import OnnxConfig
|
| 33 |
+
from transformers.utils import logging
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
logger = logging.get_logger(__name__)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class QLIPTextConfig(PretrainedConfig):
|
| 40 |
+
r"""
|
| 41 |
+
This is the configuration class to store the configuration of a [`CLIPTextModel`]. It is used to instantiate a CLIP
|
| 42 |
+
text encoder according to the specified arguments, defining the model architecture. Instantiating a configuration
|
| 43 |
+
with the defaults will yield a similar configuration to that of the text encoder of the CLIP
|
| 44 |
+
[openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture.
|
| 45 |
+
|
| 46 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 47 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 48 |
+
|
| 49 |
+
Args:
|
| 50 |
+
vocab_size (`int`, *optional*, defaults to 49408):
|
| 51 |
+
Vocabulary size of the CLIP text model. Defines the number of different tokens that can be represented by
|
| 52 |
+
the `inputs_ids` passed when calling [`CLIPModel`].
|
| 53 |
+
hidden_size (`int`, *optional*, defaults to 512):
|
| 54 |
+
Dimensionality of the encoder layers and the pooler layer.
|
| 55 |
+
intermediate_size (`int`, *optional*, defaults to 2048):
|
| 56 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
| 57 |
+
projection_dim (`int`, *optional*, defaults to 512):
|
| 58 |
+
Dimentionality of text and vision projection layers.
|
| 59 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
| 60 |
+
Number of hidden layers in the Transformer encoder.
|
| 61 |
+
num_attention_heads (`int`, *optional*, defaults to 8):
|
| 62 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 63 |
+
max_position_embeddings (`int`, *optional*, defaults to 77):
|
| 64 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
| 65 |
+
just in case (e.g., 512 or 1024 or 2048).
|
| 66 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
|
| 67 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
| 68 |
+
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
|
| 69 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
| 70 |
+
The epsilon used by the layer normalization layers.
|
| 71 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 72 |
+
The dropout ratio for the attention probabilities.
|
| 73 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 74 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 75 |
+
initializer_factor (`float`, *optional*, defaults to 1.0):
|
| 76 |
+
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
| 77 |
+
testing).
|
| 78 |
+
pad_token_id (`int`, *optional*, defaults to 1):
|
| 79 |
+
Padding token id.
|
| 80 |
+
bos_token_id (`int`, *optional*, defaults to 49406):
|
| 81 |
+
Beginning of stream token id.
|
| 82 |
+
eos_token_id (`int`, *optional*, defaults to 49407):
|
| 83 |
+
End of stream token id.
|
| 84 |
+
|
| 85 |
+
Example:
|
| 86 |
+
|
| 87 |
+
```python
|
| 88 |
+
>>> from transformers import CLIPTextConfig, CLIPTextModel
|
| 89 |
+
|
| 90 |
+
>>> # Initializing a CLIPTextConfig with openai/clip-vit-base-patch32 style configuration
|
| 91 |
+
>>> configuration = CLIPTextConfig()
|
| 92 |
+
|
| 93 |
+
>>> # Initializing a CLIPTextModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
|
| 94 |
+
>>> model = CLIPTextModel(configuration)
|
| 95 |
+
|
| 96 |
+
>>> # Accessing the model configuration
|
| 97 |
+
>>> configuration = model.config
|
| 98 |
+
```"""
|
| 99 |
+
|
| 100 |
+
model_type = "clip_text_model"
|
| 101 |
+
|
| 102 |
+
def __init__(
|
| 103 |
+
self,
|
| 104 |
+
vocab_size=49408,
|
| 105 |
+
hidden_size=512,
|
| 106 |
+
intermediate_size=2048,
|
| 107 |
+
projection_dim=512,
|
| 108 |
+
num_hidden_layers=12,
|
| 109 |
+
num_attention_heads=8,
|
| 110 |
+
max_position_embeddings=77,
|
| 111 |
+
hidden_act="gelu",
|
| 112 |
+
layer_norm_eps=1e-5,
|
| 113 |
+
attention_dropout=0.0,
|
| 114 |
+
initializer_range=0.02,
|
| 115 |
+
initializer_factor=1.0,
|
| 116 |
+
# This differs from `CLIPTokenizer`'s default and from openai/clip
|
| 117 |
+
# See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538
|
| 118 |
+
q_bias=True,
|
| 119 |
+
k_bias=True,
|
| 120 |
+
v_bias=True,
|
| 121 |
+
subln=False,
|
| 122 |
+
swiglu=False,
|
| 123 |
+
rope=False,
|
| 124 |
+
post_layernorm=False,
|
| 125 |
+
pad_token_id=1,
|
| 126 |
+
bos_token_id=49406,
|
| 127 |
+
eos_token_id=49407,
|
| 128 |
+
**kwargs,
|
| 129 |
+
):
|
| 130 |
+
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
| 131 |
+
|
| 132 |
+
self.vocab_size = vocab_size
|
| 133 |
+
self.hidden_size = hidden_size
|
| 134 |
+
self.intermediate_size = intermediate_size
|
| 135 |
+
self.projection_dim = projection_dim
|
| 136 |
+
self.num_hidden_layers = num_hidden_layers
|
| 137 |
+
self.num_attention_heads = num_attention_heads
|
| 138 |
+
self.max_position_embeddings = max_position_embeddings
|
| 139 |
+
self.layer_norm_eps = layer_norm_eps
|
| 140 |
+
self.hidden_act = hidden_act
|
| 141 |
+
self.initializer_range = initializer_range
|
| 142 |
+
self.initializer_factor = initializer_factor
|
| 143 |
+
self.q_bias=q_bias
|
| 144 |
+
self.k_bias=k_bias
|
| 145 |
+
self.v_bias=v_bias
|
| 146 |
+
self.subln = subln
|
| 147 |
+
self.swiglu = swiglu
|
| 148 |
+
self.rope = rope
|
| 149 |
+
self.post_layernorm = post_layernorm
|
| 150 |
+
self.attention_dropout = attention_dropout
|
| 151 |
+
|
| 152 |
+
@classmethod
|
| 153 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
| 154 |
+
cls._set_token_in_kwargs(kwargs)
|
| 155 |
+
|
| 156 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
| 157 |
+
|
| 158 |
+
# get the text config dict if we are loading from CLIPConfig
|
| 159 |
+
if config_dict.get("model_type") == "clip":
|
| 160 |
+
config_dict = config_dict["text_config"]
|
| 161 |
+
|
| 162 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
| 163 |
+
logger.warning(
|
| 164 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
| 165 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
return cls.from_dict(config_dict, **kwargs)
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
class QLIPVisionConfig(PretrainedConfig):
|
| 172 |
+
r"""
|
| 173 |
+
This is the configuration class to store the configuration of a [`CLIPVisionModel`]. It is used to instantiate a
|
| 174 |
+
CLIP vision encoder according to the specified arguments, defining the model architecture. Instantiating a
|
| 175 |
+
configuration with the defaults will yield a similar configuration to that of the vision encoder of the CLIP
|
| 176 |
+
[openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture.
|
| 177 |
+
|
| 178 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 179 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 180 |
+
|
| 181 |
+
Args:
|
| 182 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
| 183 |
+
Dimensionality of the encoder layers and the pooler layer.
|
| 184 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
| 185 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
| 186 |
+
projection_dim (`int`, *optional*, defaults to 512):
|
| 187 |
+
Dimentionality of text and vision projection layers.
|
| 188 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
| 189 |
+
Number of hidden layers in the Transformer encoder.
|
| 190 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
| 191 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 192 |
+
num_channels (`int`, *optional*, defaults to 3):
|
| 193 |
+
The number of input channels.
|
| 194 |
+
image_size (`int`, *optional*, defaults to 224):
|
| 195 |
+
The size (resolution) of each image.
|
| 196 |
+
patch_size (`int`, *optional*, defaults to 32):
|
| 197 |
+
The size (resolution) of each patch.
|
| 198 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
|
| 199 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
| 200 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
| 201 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
| 202 |
+
The epsilon used by the layer normalization layers.
|
| 203 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 204 |
+
The dropout ratio for the attention probabilities.
|
| 205 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 206 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 207 |
+
initializer_factor (`float`, *optional*, defaults to 1.0):
|
| 208 |
+
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
| 209 |
+
testing).
|
| 210 |
+
|
| 211 |
+
Example:
|
| 212 |
+
|
| 213 |
+
```python
|
| 214 |
+
>>> from transformers import CLIPVisionConfig, CLIPVisionModel
|
| 215 |
+
|
| 216 |
+
>>> # Initializing a CLIPVisionConfig with openai/clip-vit-base-patch32 style configuration
|
| 217 |
+
>>> configuration = CLIPVisionConfig()
|
| 218 |
+
|
| 219 |
+
>>> # Initializing a CLIPVisionModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
|
| 220 |
+
>>> model = CLIPVisionModel(configuration)
|
| 221 |
+
|
| 222 |
+
>>> # Accessing the model configuration
|
| 223 |
+
>>> configuration = model.config
|
| 224 |
+
```"""
|
| 225 |
+
|
| 226 |
+
model_type = "clip_vision_model"
|
| 227 |
+
|
| 228 |
+
def __init__(
|
| 229 |
+
self,
|
| 230 |
+
hidden_size=768,
|
| 231 |
+
intermediate_size=3072,
|
| 232 |
+
projection_dim=512,
|
| 233 |
+
num_hidden_layers=12,
|
| 234 |
+
num_attention_heads=12,
|
| 235 |
+
num_channels=3,
|
| 236 |
+
image_size=224,
|
| 237 |
+
patch_size=32,
|
| 238 |
+
hidden_act="gelu",
|
| 239 |
+
layer_norm_eps=1e-5,
|
| 240 |
+
attention_dropout=0.0,
|
| 241 |
+
initializer_range=0.02,
|
| 242 |
+
initializer_factor=1.0,
|
| 243 |
+
q_bias=True,
|
| 244 |
+
k_bias=True,
|
| 245 |
+
v_bias=True,
|
| 246 |
+
subln=False,
|
| 247 |
+
swiglu=False,
|
| 248 |
+
rope=False,
|
| 249 |
+
post_layernorm=False,
|
| 250 |
+
# quantizer specs
|
| 251 |
+
quantizer="none",
|
| 252 |
+
quantizer_l2_norm=False,
|
| 253 |
+
quantizer_embed_type="identity",
|
| 254 |
+
hidden_size_post_q=None,
|
| 255 |
+
quantizer_cfg=dict(),
|
| 256 |
+
**kwargs,
|
| 257 |
+
):
|
| 258 |
+
super().__init__(**kwargs)
|
| 259 |
+
|
| 260 |
+
self.hidden_size = hidden_size
|
| 261 |
+
self.intermediate_size = intermediate_size
|
| 262 |
+
self.projection_dim = projection_dim
|
| 263 |
+
self.num_hidden_layers = num_hidden_layers
|
| 264 |
+
self.num_attention_heads = num_attention_heads
|
| 265 |
+
self.num_channels = num_channels
|
| 266 |
+
self.patch_size = patch_size
|
| 267 |
+
self.image_size = image_size
|
| 268 |
+
self.initializer_range = initializer_range
|
| 269 |
+
self.initializer_factor = initializer_factor
|
| 270 |
+
self.q_bias=q_bias
|
| 271 |
+
self.k_bias=k_bias
|
| 272 |
+
self.v_bias=v_bias
|
| 273 |
+
self.subln = subln
|
| 274 |
+
self.swiglu = swiglu
|
| 275 |
+
self.rope = rope
|
| 276 |
+
self.post_layernorm = post_layernorm
|
| 277 |
+
self.attention_dropout = attention_dropout
|
| 278 |
+
self.layer_norm_eps = layer_norm_eps
|
| 279 |
+
self.hidden_act = hidden_act
|
| 280 |
+
|
| 281 |
+
self.quantizer = quantizer
|
| 282 |
+
self.quantizer_l2_norm = quantizer_l2_norm
|
| 283 |
+
self.quantizer_embed_type = quantizer_embed_type
|
| 284 |
+
self.hidden_size_post_q = self.hidden_size if hidden_size_post_q is None else hidden_size_post_q
|
| 285 |
+
self.quantizer_cfg = quantizer_cfg
|
| 286 |
+
|
| 287 |
+
@classmethod
|
| 288 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
| 289 |
+
cls._set_token_in_kwargs(kwargs)
|
| 290 |
+
|
| 291 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
| 292 |
+
|
| 293 |
+
# get the vision config dict if we are loading from CLIPConfig
|
| 294 |
+
if config_dict.get("model_type") == "clip":
|
| 295 |
+
config_dict = config_dict["vision_config"]
|
| 296 |
+
|
| 297 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
| 298 |
+
logger.warning(
|
| 299 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
| 300 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
+
return cls.from_dict(config_dict, **kwargs)
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
class QLIPDecoderConfig(PretrainedConfig):
|
| 307 |
+
model_type = "clip_decoder_model"
|
| 308 |
+
|
| 309 |
+
def __init__(
|
| 310 |
+
self,
|
| 311 |
+
hidden_size=768,
|
| 312 |
+
intermediate_size=3072,
|
| 313 |
+
projection_dim=512,
|
| 314 |
+
num_hidden_layers=12,
|
| 315 |
+
num_attention_heads=12,
|
| 316 |
+
num_channels=3,
|
| 317 |
+
image_size=224,
|
| 318 |
+
patch_size=32,
|
| 319 |
+
hidden_act="gelu",
|
| 320 |
+
layer_norm_eps=1e-5,
|
| 321 |
+
attention_dropout=0.0,
|
| 322 |
+
initializer_range=0.02,
|
| 323 |
+
initializer_factor=1.0,
|
| 324 |
+
q_bias=True,
|
| 325 |
+
k_bias=True,
|
| 326 |
+
v_bias=True,
|
| 327 |
+
subln=False,
|
| 328 |
+
swiglu=False,
|
| 329 |
+
rope=False,
|
| 330 |
+
post_layernorm=False,
|
| 331 |
+
# quantizer specs
|
| 332 |
+
quantizer="none",
|
| 333 |
+
quantizer_l2_norm=False,
|
| 334 |
+
quantizer_embed_type="identity",
|
| 335 |
+
hidden_size_post_q=None,
|
| 336 |
+
quantizer_cfg=dict(),
|
| 337 |
+
**kwargs,
|
| 338 |
+
):
|
| 339 |
+
super().__init__(**kwargs)
|
| 340 |
+
|
| 341 |
+
self.hidden_size = hidden_size
|
| 342 |
+
self.intermediate_size = intermediate_size
|
| 343 |
+
self.projection_dim = projection_dim
|
| 344 |
+
self.num_hidden_layers = num_hidden_layers
|
| 345 |
+
self.num_attention_heads = num_attention_heads
|
| 346 |
+
self.num_channels = num_channels
|
| 347 |
+
self.patch_size = patch_size
|
| 348 |
+
self.image_size = image_size
|
| 349 |
+
self.initializer_range = initializer_range
|
| 350 |
+
self.initializer_factor = initializer_factor
|
| 351 |
+
self.q_bias=q_bias
|
| 352 |
+
self.k_bias=k_bias
|
| 353 |
+
self.v_bias=v_bias
|
| 354 |
+
self.subln = subln
|
| 355 |
+
self.swiglu = swiglu
|
| 356 |
+
self.rope = rope
|
| 357 |
+
self.post_layernorm = post_layernorm
|
| 358 |
+
self.attention_dropout = attention_dropout
|
| 359 |
+
self.layer_norm_eps = layer_norm_eps
|
| 360 |
+
self.hidden_act = hidden_act
|
| 361 |
+
|
| 362 |
+
self.quantizer = quantizer
|
| 363 |
+
self.quantizer_l2_norm = quantizer_l2_norm
|
| 364 |
+
self.quantizer_embed_type = quantizer_embed_type
|
| 365 |
+
self.hidden_size_post_q = self.hidden_size if hidden_size_post_q is None else hidden_size_post_q
|
| 366 |
+
self.quantizer_cfg = quantizer_cfg
|
| 367 |
+
|
| 368 |
+
@classmethod
|
| 369 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
| 370 |
+
cls._set_token_in_kwargs(kwargs)
|
| 371 |
+
|
| 372 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
| 373 |
+
|
| 374 |
+
# get the vision config dict if we are loading from CLIPConfig
|
| 375 |
+
if config_dict.get("model_type") == "clip":
|
| 376 |
+
config_dict = config_dict["vision_config"]
|
| 377 |
+
|
| 378 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
| 379 |
+
logger.warning(
|
| 380 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
| 381 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
| 382 |
+
)
|
| 383 |
+
|
| 384 |
+
return cls.from_dict(config_dict, **kwargs)
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
class QLIPConfig(PretrainedConfig):
|
| 388 |
+
r"""
|
| 389 |
+
[`CLIPConfig`] is the configuration class to store the configuration of a [`CLIPModel`]. It is used to instantiate
|
| 390 |
+
a CLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating
|
| 391 |
+
a configuration with the defaults will yield a similar configuration to that of the CLIP
|
| 392 |
+
[openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture.
|
| 393 |
+
|
| 394 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 395 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 396 |
+
|
| 397 |
+
Args:
|
| 398 |
+
text_config (`dict`, *optional*):
|
| 399 |
+
Dictionary of configuration options used to initialize [`CLIPTextConfig`].
|
| 400 |
+
vision_config (`dict`, *optional*):
|
| 401 |
+
Dictionary of configuration options used to initialize [`CLIPVisionConfig`].
|
| 402 |
+
projection_dim (`int`, *optional*, defaults to 512):
|
| 403 |
+
Dimentionality of text and vision projection layers.
|
| 404 |
+
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
|
| 405 |
+
The inital value of the *logit_scale* paramter. Default is used as per the original CLIP implementation.
|
| 406 |
+
kwargs (*optional*):
|
| 407 |
+
Dictionary of keyword arguments.
|
| 408 |
+
|
| 409 |
+
Example:
|
| 410 |
+
|
| 411 |
+
```python
|
| 412 |
+
>>> from transformers import CLIPConfig, CLIPModel
|
| 413 |
+
|
| 414 |
+
>>> # Initializing a CLIPConfig with openai/clip-vit-base-patch32 style configuration
|
| 415 |
+
>>> configuration = CLIPConfig()
|
| 416 |
+
|
| 417 |
+
>>> # Initializing a CLIPModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
|
| 418 |
+
>>> model = CLIPModel(configuration)
|
| 419 |
+
|
| 420 |
+
>>> # Accessing the model configuration
|
| 421 |
+
>>> configuration = model.config
|
| 422 |
+
|
| 423 |
+
>>> # We can also initialize a CLIPConfig from a CLIPTextConfig and a CLIPVisionConfig
|
| 424 |
+
>>> from transformers import CLIPTextConfig, CLIPVisionConfig
|
| 425 |
+
|
| 426 |
+
>>> # Initializing a CLIPText and CLIPVision configuration
|
| 427 |
+
>>> config_text = CLIPTextConfig()
|
| 428 |
+
>>> config_vision = CLIPVisionConfig()
|
| 429 |
+
|
| 430 |
+
>>> config = CLIPConfig.from_text_vision_configs(config_text, config_vision)
|
| 431 |
+
```"""
|
| 432 |
+
|
| 433 |
+
model_type = "clip"
|
| 434 |
+
|
| 435 |
+
def __init__(
|
| 436 |
+
self, text_config=None, vision_config=None, decoder_config=None, projection_dim=512, logit_scale_init_value=2.6592, **kwargs
|
| 437 |
+
):
|
| 438 |
+
# If `_config_dict` exist, we use them for the backward compatibility.
|
| 439 |
+
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
|
| 440 |
+
# of confusion!).
|
| 441 |
+
text_config_dict = kwargs.pop("text_config_dict", None)
|
| 442 |
+
vision_config_dict = kwargs.pop("vision_config_dict", None)
|
| 443 |
+
decoder_config_dict = kwargs.pop("decoder_config_dict", None)
|
| 444 |
+
|
| 445 |
+
super().__init__(**kwargs)
|
| 446 |
+
|
| 447 |
+
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
|
| 448 |
+
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
|
| 449 |
+
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
|
| 450 |
+
if text_config_dict is not None:
|
| 451 |
+
if text_config is None:
|
| 452 |
+
text_config = {}
|
| 453 |
+
|
| 454 |
+
# This is the complete result when using `text_config_dict`.
|
| 455 |
+
_text_config_dict = QLIPTextConfig(**text_config_dict).to_dict()
|
| 456 |
+
|
| 457 |
+
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
|
| 458 |
+
for key, value in _text_config_dict.items():
|
| 459 |
+
if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
|
| 460 |
+
# If specified in `text_config_dict`
|
| 461 |
+
if key in text_config_dict:
|
| 462 |
+
message = (
|
| 463 |
+
f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
|
| 464 |
+
f'The value `text_config_dict["{key}"]` will be used instead.'
|
| 465 |
+
)
|
| 466 |
+
# If inferred from default argument values (just to be super careful)
|
| 467 |
+
else:
|
| 468 |
+
message = (
|
| 469 |
+
f"`text_config_dict` is provided which will be used to initialize `CLIPTextConfig`. The "
|
| 470 |
+
f'value `text_config["{key}"]` will be overriden.'
|
| 471 |
+
)
|
| 472 |
+
logger.info(message)
|
| 473 |
+
|
| 474 |
+
# Update all values in `text_config` with the ones in `_text_config_dict`.
|
| 475 |
+
text_config.update(_text_config_dict)
|
| 476 |
+
|
| 477 |
+
if vision_config_dict is not None:
|
| 478 |
+
if vision_config is None:
|
| 479 |
+
vision_config = {}
|
| 480 |
+
|
| 481 |
+
# This is the complete result when using `vision_config_dict`.
|
| 482 |
+
_vision_config_dict = QLIPVisionConfig(**vision_config_dict).to_dict()
|
| 483 |
+
# convert keys to string instead of integer
|
| 484 |
+
if "id2label" in _vision_config_dict:
|
| 485 |
+
_vision_config_dict["id2label"] = {
|
| 486 |
+
str(key): value for key, value in _vision_config_dict["id2label"].items()
|
| 487 |
+
}
|
| 488 |
+
|
| 489 |
+
# Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
|
| 490 |
+
for key, value in _vision_config_dict.items():
|
| 491 |
+
if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
|
| 492 |
+
# If specified in `vision_config_dict`
|
| 493 |
+
if key in vision_config_dict:
|
| 494 |
+
message = (
|
| 495 |
+
f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different "
|
| 496 |
+
f'values. The value `vision_config_dict["{key}"]` will be used instead.'
|
| 497 |
+
)
|
| 498 |
+
# If inferred from default argument values (just to be super careful)
|
| 499 |
+
else:
|
| 500 |
+
message = (
|
| 501 |
+
f"`vision_config_dict` is provided which will be used to initialize `CLIPVisionConfig`. "
|
| 502 |
+
f'The value `vision_config["{key}"]` will be overriden.'
|
| 503 |
+
)
|
| 504 |
+
logger.info(message)
|
| 505 |
+
|
| 506 |
+
# Update all values in `vision_config` with the ones in `_vision_config_dict`.
|
| 507 |
+
vision_config.update(_vision_config_dict)
|
| 508 |
+
|
| 509 |
+
if decoder_config_dict is not None:
|
| 510 |
+
if decoder_config is None:
|
| 511 |
+
decoder_config = {}
|
| 512 |
+
|
| 513 |
+
# This is the complete result when using `decoder_config_dict`.
|
| 514 |
+
_decoder_config_dict = QLIPDecoderConfig(**decoder_config_dict).to_dict()
|
| 515 |
+
|
| 516 |
+
# Give a warning if the values exist in both `_decoder_config_dict` and `decoder_config` but being different.
|
| 517 |
+
for key, value in _decoder_config_dict.items():
|
| 518 |
+
if key in decoder_config and value != decoder_config[key] and key not in ["transformers_version"]:
|
| 519 |
+
# If specified in `decoder_config_dict`
|
| 520 |
+
if key in decoder_config_dict:
|
| 521 |
+
message = (
|
| 522 |
+
f"`{key}` is found in both `decoder_config_dict` and `decoder_config` but with different values. "
|
| 523 |
+
f'The value `decoder_config_dict["{key}"]` will be used instead.'
|
| 524 |
+
)
|
| 525 |
+
# If inferred from default argument values (just to be super careful)
|
| 526 |
+
else:
|
| 527 |
+
message = (
|
| 528 |
+
f"`decoder_config_dict` is provided which will be used to initialize `QLIPDecoderConfig`. The "
|
| 529 |
+
f'value `decoder_config["{key}"]` will be overriden.'
|
| 530 |
+
)
|
| 531 |
+
logger.info(message)
|
| 532 |
+
|
| 533 |
+
# Update all values in `decoder_config` with the ones in `_decoder_config_dict`.
|
| 534 |
+
decoder_config.update(_decoder_config_dict)
|
| 535 |
+
|
| 536 |
+
if text_config is None:
|
| 537 |
+
text_config = {}
|
| 538 |
+
logger.info("`text_config` is `None`. Initializing the `CLIPTextConfig` with default values.")
|
| 539 |
+
|
| 540 |
+
if vision_config is None:
|
| 541 |
+
vision_config = {}
|
| 542 |
+
logger.info("`vision_config` is `None`. initializing the `CLIPVisionConfig` with default values.")
|
| 543 |
+
|
| 544 |
+
if decoder_config is None:
|
| 545 |
+
decoder_config = {}
|
| 546 |
+
logger.info("`decoder_config` is `None`. initializing the `CLIPDecoderConfig` with default values.")
|
| 547 |
+
|
| 548 |
+
self.text_config = QLIPTextConfig(**text_config)
|
| 549 |
+
self.vision_config = QLIPVisionConfig(**vision_config)
|
| 550 |
+
self.decoder_config = QLIPDecoderConfig(**decoder_config)
|
| 551 |
+
|
| 552 |
+
self.projection_dim = projection_dim
|
| 553 |
+
self.logit_scale_init_value = logit_scale_init_value
|
| 554 |
+
self.initializer_factor = 1.0
|
| 555 |
+
|
| 556 |
+
@classmethod
|
| 557 |
+
def from_text_vision_configs(cls, text_config: QLIPTextConfig, vision_config: QLIPVisionConfig, decoder_config: QLIPDecoderConfig, **kwargs):
|
| 558 |
+
r"""
|
| 559 |
+
Instantiate a [`CLIPConfig`] (or a derived class) from clip text model configuration and clip vision model
|
| 560 |
+
configuration.
|
| 561 |
+
|
| 562 |
+
Returns:
|
| 563 |
+
[`CLIPConfig`]: An instance of a configuration object
|
| 564 |
+
"""
|
| 565 |
+
|
| 566 |
+
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), decoder_config=decoder_config.to_dict(), **kwargs)
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fadc513e54e22fa7e1f8b3195e5202a5b36f6dcb4f7ae8b00af6b792b337da52
|
| 3 |
+
size 958085620
|
modeling_qlip.py
ADDED
|
@@ -0,0 +1,1481 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024, NVIDIA Corporation & Affiliates. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# This work is made available under the Nvidia Source Code License-NC.
|
| 4 |
+
# To view a copy of this license, visit
|
| 5 |
+
# https://github.com/NVlabs/QLIP/blob/main/LICENSE
|
| 6 |
+
|
| 7 |
+
# Copyright 2021 The OpenAI Team Authors and The HuggingFace Team. All rights reserved.
|
| 8 |
+
#
|
| 9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 10 |
+
# you may not use this file except in compliance with the License.
|
| 11 |
+
# You may obtain a copy of the License at
|
| 12 |
+
#
|
| 13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 14 |
+
#
|
| 15 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 18 |
+
# See the License for the specific language governing permissions and
|
| 19 |
+
# limitations under the License.
|
| 20 |
+
""" PyTorch CLIP model."""
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
from collections import OrderedDict
|
| 24 |
+
from dataclasses import dataclass
|
| 25 |
+
from typing import Any, Optional, Tuple, Union
|
| 26 |
+
|
| 27 |
+
from einops import rearrange
|
| 28 |
+
import torch
|
| 29 |
+
import torch.utils.checkpoint
|
| 30 |
+
from torch import nn
|
| 31 |
+
import torch.nn.functional as F
|
| 32 |
+
|
| 33 |
+
from transformers.activations import ACT2FN
|
| 34 |
+
from transformers.modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask
|
| 35 |
+
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
| 36 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 37 |
+
from transformers.utils import (
|
| 38 |
+
ModelOutput,
|
| 39 |
+
add_start_docstrings,
|
| 40 |
+
add_start_docstrings_to_model_forward,
|
| 41 |
+
logging,
|
| 42 |
+
replace_return_docstrings,
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
from configuration_qlip import QLIPConfig, QLIPTextConfig, QLIPVisionConfig, QLIPDecoderConfig
|
| 46 |
+
from bsq import BinarySphericalQuantizer
|
| 47 |
+
from rope import VisionRotaryEmbeddingFast
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
logger = logging.get_logger(__name__)
|
| 51 |
+
|
| 52 |
+
_CHECKPOINT_FOR_DOC = "openai/clip-vit-base-patch32"
|
| 53 |
+
|
| 54 |
+
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
| 55 |
+
"openai/clip-vit-base-patch32",
|
| 56 |
+
# See all CLIP models at https://huggingface.co/models?filter=clip
|
| 57 |
+
]
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
# contrastive loss function, adapted from
|
| 61 |
+
# https://sachinruk.github.io/blog/2021-03-07-clip.html
|
| 62 |
+
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
|
| 63 |
+
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def clip_loss(similarity: torch.Tensor) -> torch.Tensor:
|
| 67 |
+
caption_loss = contrastive_loss(similarity)
|
| 68 |
+
image_loss = contrastive_loss(similarity.t())
|
| 69 |
+
return (caption_loss + image_loss) / 2.0
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
@dataclass
|
| 73 |
+
class QLIPVisionModelOutput(ModelOutput):
|
| 74 |
+
"""
|
| 75 |
+
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
|
| 76 |
+
|
| 77 |
+
Args:
|
| 78 |
+
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
| 79 |
+
The image embeddings obtained by applying the projection layer to the pooler_output.
|
| 80 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 81 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
| 82 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 83 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
| 84 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
| 85 |
+
|
| 86 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
| 87 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 88 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 89 |
+
sequence_length)`.
|
| 90 |
+
|
| 91 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 92 |
+
heads.
|
| 93 |
+
"""
|
| 94 |
+
|
| 95 |
+
image_embeds: Optional[torch.FloatTensor] = None
|
| 96 |
+
last_hidden_state: torch.FloatTensor = None
|
| 97 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 98 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
@dataclass
|
| 102 |
+
class QLIPTextModelOutput(ModelOutput):
|
| 103 |
+
"""
|
| 104 |
+
Base class for text model's outputs that also contains a pooling of the last hidden states.
|
| 105 |
+
|
| 106 |
+
Args:
|
| 107 |
+
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
| 108 |
+
The text embeddings obtained by applying the projection layer to the pooler_output.
|
| 109 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 110 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
| 111 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 112 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
| 113 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
| 114 |
+
|
| 115 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
| 116 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 117 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 118 |
+
sequence_length)`.
|
| 119 |
+
|
| 120 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 121 |
+
heads.
|
| 122 |
+
"""
|
| 123 |
+
|
| 124 |
+
text_embeds: Optional[torch.FloatTensor] = None
|
| 125 |
+
last_hidden_state: torch.FloatTensor = None
|
| 126 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 127 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
@dataclass
|
| 131 |
+
class QLIPOutput(ModelOutput):
|
| 132 |
+
"""
|
| 133 |
+
Args:
|
| 134 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
|
| 135 |
+
Contrastive loss for image-text similarity.
|
| 136 |
+
logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
|
| 137 |
+
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
|
| 138 |
+
similarity scores.
|
| 139 |
+
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
|
| 140 |
+
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
|
| 141 |
+
similarity scores.
|
| 142 |
+
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
| 143 |
+
The text embeddings obtained by applying the projection layer to the pooled output of [`CLIPTextModel`].
|
| 144 |
+
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
| 145 |
+
The image embeddings obtained by applying the projection layer to the pooled output of [`CLIPVisionModel`].
|
| 146 |
+
text_model_output(`BaseModelOutputWithPooling`):
|
| 147 |
+
The output of the [`CLIPTextModel`].
|
| 148 |
+
vision_model_output(`BaseModelOutputWithPooling`):
|
| 149 |
+
The output of the [`CLIPVisionModel`].
|
| 150 |
+
"""
|
| 151 |
+
|
| 152 |
+
loss: Optional[torch.FloatTensor] = None
|
| 153 |
+
logits_per_image: torch.FloatTensor = None
|
| 154 |
+
logits_per_text: torch.FloatTensor = None
|
| 155 |
+
text_embeds: torch.FloatTensor = None
|
| 156 |
+
image_embeds: torch.FloatTensor = None
|
| 157 |
+
text_model_output: BaseModelOutputWithPooling = None
|
| 158 |
+
vision_model_output: BaseModelOutputWithPooling = None
|
| 159 |
+
reconstructions: torch.FloatTensor = None
|
| 160 |
+
|
| 161 |
+
def to_tuple(self) -> Tuple[Any]:
|
| 162 |
+
return tuple(
|
| 163 |
+
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
|
| 164 |
+
for k in self.keys()
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
class QLIPVisionEmbeddings(nn.Module):
|
| 169 |
+
def __init__(self, config: QLIPVisionConfig):
|
| 170 |
+
super().__init__()
|
| 171 |
+
self.config = config
|
| 172 |
+
self.embed_dim = config.hidden_size
|
| 173 |
+
self.image_size = config.image_size
|
| 174 |
+
self.patch_size = config.patch_size
|
| 175 |
+
|
| 176 |
+
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
|
| 177 |
+
|
| 178 |
+
self.patch_embedding = nn.Conv2d(
|
| 179 |
+
in_channels=config.num_channels,
|
| 180 |
+
out_channels=self.embed_dim,
|
| 181 |
+
kernel_size=self.patch_size,
|
| 182 |
+
stride=self.patch_size,
|
| 183 |
+
bias=True,
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
| 187 |
+
self.num_positions = self.num_patches + 1
|
| 188 |
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
| 189 |
+
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
|
| 190 |
+
|
| 191 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
| 192 |
+
batch_size = pixel_values.shape[0]
|
| 193 |
+
target_dtype = self.patch_embedding.weight.dtype
|
| 194 |
+
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
|
| 195 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
| 196 |
+
|
| 197 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
| 198 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
| 199 |
+
embeddings = embeddings + self.position_embedding(self.position_ids)
|
| 200 |
+
return embeddings
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
class QLIPTextEmbeddings(nn.Module):
|
| 204 |
+
def __init__(self, config: QLIPTextConfig):
|
| 205 |
+
super().__init__()
|
| 206 |
+
embed_dim = config.hidden_size
|
| 207 |
+
|
| 208 |
+
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
|
| 209 |
+
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
|
| 210 |
+
|
| 211 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
| 212 |
+
self.register_buffer(
|
| 213 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
def forward(
|
| 217 |
+
self,
|
| 218 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 219 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 220 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 221 |
+
) -> torch.Tensor:
|
| 222 |
+
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
| 223 |
+
|
| 224 |
+
if position_ids is None:
|
| 225 |
+
position_ids = self.position_ids[:, :seq_length]
|
| 226 |
+
|
| 227 |
+
if inputs_embeds is None:
|
| 228 |
+
inputs_embeds = self.token_embedding(input_ids)
|
| 229 |
+
|
| 230 |
+
position_embeddings = self.position_embedding(position_ids)
|
| 231 |
+
embeddings = inputs_embeds + position_embeddings
|
| 232 |
+
|
| 233 |
+
return embeddings
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
class QLIPAttention(nn.Module):
|
| 237 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 238 |
+
|
| 239 |
+
def __init__(self, config, rope=None, rope_shift=1):
|
| 240 |
+
super().__init__()
|
| 241 |
+
self.config = config
|
| 242 |
+
self.embed_dim = config.hidden_size
|
| 243 |
+
self.num_heads = config.num_attention_heads
|
| 244 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 245 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
| 246 |
+
raise ValueError(
|
| 247 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
| 248 |
+
f" {self.num_heads})."
|
| 249 |
+
)
|
| 250 |
+
self.scale = self.head_dim**-0.5
|
| 251 |
+
self.dropout = config.attention_dropout
|
| 252 |
+
|
| 253 |
+
self.subln = config.subln
|
| 254 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.k_bias)
|
| 255 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.v_bias)
|
| 256 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.q_bias)
|
| 257 |
+
self.inner_attn_ln = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) if config.subln else nn.Identity()
|
| 258 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=True)
|
| 259 |
+
|
| 260 |
+
self.rope = rope
|
| 261 |
+
self.rope_shift = rope_shift
|
| 262 |
+
|
| 263 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
| 264 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
| 265 |
+
|
| 266 |
+
def forward(
|
| 267 |
+
self,
|
| 268 |
+
hidden_states: torch.Tensor,
|
| 269 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 270 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
| 271 |
+
output_attentions: Optional[bool] = False,
|
| 272 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 273 |
+
"""Input shape: Batch x Time x Channel"""
|
| 274 |
+
|
| 275 |
+
bsz, tgt_len, embed_dim = hidden_states.size()
|
| 276 |
+
|
| 277 |
+
# get query proj
|
| 278 |
+
query_states = self.q_proj(hidden_states) * self.scale
|
| 279 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
| 280 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
| 281 |
+
|
| 282 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
| 283 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
| 284 |
+
key_states = key_states.view(*proj_shape)
|
| 285 |
+
value_states = value_states.view(*proj_shape)
|
| 286 |
+
|
| 287 |
+
if self.rope:
|
| 288 |
+
q_t = query_states[:, self.rope_shift:, :]
|
| 289 |
+
ro_q_t = self.rope(q_t)
|
| 290 |
+
query_states = torch.cat([query_states[:, :self.rope_shift, :], ro_q_t], dim=-2).type_as(value_states)
|
| 291 |
+
|
| 292 |
+
k_t = key_states[:, self.rope_shift:, :]
|
| 293 |
+
ro_k_t = self.rope(k_t)
|
| 294 |
+
key_states = torch.cat([key_states[:, :self.rope_shift, :], ro_k_t], dim=-2).type_as(value_states)
|
| 295 |
+
|
| 296 |
+
src_len = key_states.size(1)
|
| 297 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
| 298 |
+
|
| 299 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
| 300 |
+
raise ValueError(
|
| 301 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
| 302 |
+
f" {attn_weights.size()}"
|
| 303 |
+
)
|
| 304 |
+
|
| 305 |
+
# apply the causal_attention_mask first
|
| 306 |
+
if causal_attention_mask is not None:
|
| 307 |
+
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
| 308 |
+
raise ValueError(
|
| 309 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
|
| 310 |
+
f" {causal_attention_mask.size()}"
|
| 311 |
+
)
|
| 312 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
|
| 313 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
| 314 |
+
|
| 315 |
+
if attention_mask is not None:
|
| 316 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
| 317 |
+
raise ValueError(
|
| 318 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
| 319 |
+
)
|
| 320 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
| 321 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
| 322 |
+
|
| 323 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
| 324 |
+
|
| 325 |
+
if output_attentions:
|
| 326 |
+
# this operation is a bit akward, but it's required to
|
| 327 |
+
# make sure that attn_weights keeps its gradient.
|
| 328 |
+
# In order to do so, attn_weights have to reshaped
|
| 329 |
+
# twice and have to be reused in the following
|
| 330 |
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
| 331 |
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
| 332 |
+
else:
|
| 333 |
+
attn_weights_reshaped = None
|
| 334 |
+
|
| 335 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
| 336 |
+
|
| 337 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
| 338 |
+
|
| 339 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
| 340 |
+
raise ValueError(
|
| 341 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
| 342 |
+
f" {attn_output.size()}"
|
| 343 |
+
)
|
| 344 |
+
|
| 345 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
| 346 |
+
attn_output = attn_output.transpose(1, 2)
|
| 347 |
+
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
|
| 348 |
+
|
| 349 |
+
attn_output = self.inner_attn_ln(attn_output)
|
| 350 |
+
attn_output = self.out_proj(attn_output)
|
| 351 |
+
|
| 352 |
+
return attn_output, attn_weights_reshaped
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
class QLIPSwiGLU(nn.Module):
|
| 356 |
+
def __init__(self, config):
|
| 357 |
+
super().__init__()
|
| 358 |
+
self.config = config
|
| 359 |
+
self.hidden_size = config.hidden_size
|
| 360 |
+
self.intermediate_size = config.intermediate_size
|
| 361 |
+
self.w1 = nn.Linear(self.hidden_size, self.intermediate_size)
|
| 362 |
+
self.w2 = nn.Linear(self.hidden_size, self.intermediate_size)
|
| 363 |
+
self.w3 = nn.Linear(self.intermediate_size, self.hidden_size)
|
| 364 |
+
self.act_fn = nn.SiLU()
|
| 365 |
+
self.ffn_ln = nn.LayerNorm(self.intermediate_size, eps=config.layer_norm_eps) if config.subln else nn.Identity()
|
| 366 |
+
|
| 367 |
+
def forward(self, x):
|
| 368 |
+
x1 = self.w1(x)
|
| 369 |
+
x2 = self.w2(x)
|
| 370 |
+
hidden = self.act_fn(x1) * x2
|
| 371 |
+
x = self.ffn_ln(hidden)
|
| 372 |
+
x = self.w3(x)
|
| 373 |
+
return x
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
class QLIPMLP(nn.Module):
|
| 377 |
+
def __init__(self, config):
|
| 378 |
+
super().__init__()
|
| 379 |
+
self.config = config
|
| 380 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
| 381 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 382 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 383 |
+
self.ffn_ln = nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps) if config.subln else nn.Identity()
|
| 384 |
+
|
| 385 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 386 |
+
hidden_states = self.fc1(hidden_states)
|
| 387 |
+
hidden_states = self.activation_fn(hidden_states)
|
| 388 |
+
hidden_states = self.ffn_ln(hidden_states)
|
| 389 |
+
hidden_states = self.fc2(hidden_states)
|
| 390 |
+
return hidden_states
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
class QLIPEncoderLayer(nn.Module):
|
| 394 |
+
def __init__(self, config: QLIPConfig, rope=None, rope_shift=1):
|
| 395 |
+
super().__init__()
|
| 396 |
+
self.embed_dim = config.hidden_size
|
| 397 |
+
self.self_attn = QLIPAttention(config, rope=rope, rope_shift=rope_shift)
|
| 398 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 399 |
+
self.mlp = QLIPSwiGLU(config) if config.swiglu else QLIPMLP(config)
|
| 400 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 401 |
+
|
| 402 |
+
def forward(
|
| 403 |
+
self,
|
| 404 |
+
hidden_states: torch.Tensor,
|
| 405 |
+
attention_mask: torch.Tensor,
|
| 406 |
+
causal_attention_mask: torch.Tensor,
|
| 407 |
+
output_attentions: Optional[bool] = False,
|
| 408 |
+
) -> Tuple[torch.FloatTensor]:
|
| 409 |
+
"""
|
| 410 |
+
Args:
|
| 411 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 412 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
| 413 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
| 414 |
+
`(config.encoder_attention_heads,)`.
|
| 415 |
+
output_attentions (`bool`, *optional*):
|
| 416 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 417 |
+
returned tensors for more detail.
|
| 418 |
+
"""
|
| 419 |
+
residual = hidden_states
|
| 420 |
+
|
| 421 |
+
hidden_states = self.layer_norm1(hidden_states)
|
| 422 |
+
hidden_states, attn_weights = self.self_attn(
|
| 423 |
+
hidden_states=hidden_states,
|
| 424 |
+
attention_mask=attention_mask,
|
| 425 |
+
causal_attention_mask=causal_attention_mask,
|
| 426 |
+
output_attentions=output_attentions,
|
| 427 |
+
)
|
| 428 |
+
hidden_states = residual + hidden_states
|
| 429 |
+
|
| 430 |
+
residual = hidden_states
|
| 431 |
+
hidden_states = self.layer_norm2(hidden_states)
|
| 432 |
+
hidden_states = self.mlp(hidden_states)
|
| 433 |
+
hidden_states = residual + hidden_states
|
| 434 |
+
|
| 435 |
+
outputs = (hidden_states,)
|
| 436 |
+
|
| 437 |
+
if output_attentions:
|
| 438 |
+
outputs += (attn_weights,)
|
| 439 |
+
|
| 440 |
+
return outputs
|
| 441 |
+
|
| 442 |
+
|
| 443 |
+
class QLIPPreTrainedModel(PreTrainedModel):
|
| 444 |
+
"""
|
| 445 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 446 |
+
models.
|
| 447 |
+
"""
|
| 448 |
+
|
| 449 |
+
config_class = QLIPConfig
|
| 450 |
+
base_model_prefix = "clip"
|
| 451 |
+
supports_gradient_checkpointing = True
|
| 452 |
+
|
| 453 |
+
def _init_weights(self, module):
|
| 454 |
+
"""Initialize the weights"""
|
| 455 |
+
factor = self.config.initializer_factor
|
| 456 |
+
if isinstance(module, QLIPTextEmbeddings):
|
| 457 |
+
module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
|
| 458 |
+
module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
|
| 459 |
+
elif isinstance(module, QLIPVisionEmbeddings):
|
| 460 |
+
factor = self.config.initializer_factor
|
| 461 |
+
nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
|
| 462 |
+
nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
|
| 463 |
+
nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
|
| 464 |
+
elif isinstance(module, QLIPAttention):
|
| 465 |
+
factor = self.config.initializer_factor
|
| 466 |
+
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
| 467 |
+
out_proj_std = (module.embed_dim**-0.5) * factor
|
| 468 |
+
nn.init.normal_(module.q_proj.weight, std=in_proj_std)
|
| 469 |
+
nn.init.normal_(module.k_proj.weight, std=in_proj_std)
|
| 470 |
+
nn.init.normal_(module.v_proj.weight, std=in_proj_std)
|
| 471 |
+
nn.init.normal_(module.out_proj.weight, std=out_proj_std)
|
| 472 |
+
elif isinstance(module, QLIPMLP):
|
| 473 |
+
factor = self.config.initializer_factor
|
| 474 |
+
in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
| 475 |
+
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
|
| 476 |
+
nn.init.normal_(module.fc1.weight, std=fc_std)
|
| 477 |
+
nn.init.normal_(module.fc2.weight, std=in_proj_std)
|
| 478 |
+
elif isinstance(module, QLIPModel):
|
| 479 |
+
nn.init.normal_(
|
| 480 |
+
module.text_projection.weight,
|
| 481 |
+
std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
|
| 482 |
+
)
|
| 483 |
+
nn.init.normal_(
|
| 484 |
+
module.visual_projection.weight,
|
| 485 |
+
std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
|
| 486 |
+
)
|
| 487 |
+
elif isinstance(module, QLIPVisionModelWithProjection):
|
| 488 |
+
nn.init.normal_(
|
| 489 |
+
module.visual_projection.weight,
|
| 490 |
+
std=self.config.hidden_size**-0.5 * self.config.initializer_factor,
|
| 491 |
+
)
|
| 492 |
+
elif isinstance(module, QLIPTextModelWithProjection):
|
| 493 |
+
nn.init.normal_(
|
| 494 |
+
module.text_projection.weight,
|
| 495 |
+
std=self.config.hidden_size**-0.5 * self.config.initializer_factor,
|
| 496 |
+
)
|
| 497 |
+
|
| 498 |
+
if isinstance(module, nn.LayerNorm):
|
| 499 |
+
module.bias.data.zero_()
|
| 500 |
+
module.weight.data.fill_(1.0)
|
| 501 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
| 502 |
+
module.bias.data.zero_()
|
| 503 |
+
|
| 504 |
+
|
| 505 |
+
CLIP_START_DOCSTRING = r"""
|
| 506 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 507 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 508 |
+
etc.)
|
| 509 |
+
|
| 510 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 511 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 512 |
+
and behavior.
|
| 513 |
+
|
| 514 |
+
Parameters:
|
| 515 |
+
config ([`CLIPConfig`]): Model configuration class with all the parameters of the model.
|
| 516 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
| 517 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 518 |
+
"""
|
| 519 |
+
|
| 520 |
+
CLIP_TEXT_INPUTS_DOCSTRING = r"""
|
| 521 |
+
Args:
|
| 522 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 523 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 524 |
+
it.
|
| 525 |
+
|
| 526 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 527 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 528 |
+
|
| 529 |
+
[What are input IDs?](../glossary#input-ids)
|
| 530 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 531 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 532 |
+
|
| 533 |
+
- 1 for tokens that are **not masked**,
|
| 534 |
+
- 0 for tokens that are **masked**.
|
| 535 |
+
|
| 536 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 537 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 538 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 539 |
+
config.max_position_embeddings - 1]`.
|
| 540 |
+
|
| 541 |
+
[What are position IDs?](../glossary#position-ids)
|
| 542 |
+
output_attentions (`bool`, *optional*):
|
| 543 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 544 |
+
tensors for more detail.
|
| 545 |
+
output_hidden_states (`bool`, *optional*):
|
| 546 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 547 |
+
more detail.
|
| 548 |
+
return_dict (`bool`, *optional*):
|
| 549 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 550 |
+
"""
|
| 551 |
+
|
| 552 |
+
CLIP_VISION_INPUTS_DOCSTRING = r"""
|
| 553 |
+
Args:
|
| 554 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
| 555 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
| 556 |
+
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
| 557 |
+
output_attentions (`bool`, *optional*):
|
| 558 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 559 |
+
tensors for more detail.
|
| 560 |
+
output_hidden_states (`bool`, *optional*):
|
| 561 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 562 |
+
more detail.
|
| 563 |
+
return_dict (`bool`, *optional*):
|
| 564 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 565 |
+
"""
|
| 566 |
+
|
| 567 |
+
CLIP_INPUTS_DOCSTRING = r"""
|
| 568 |
+
Args:
|
| 569 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 570 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 571 |
+
it.
|
| 572 |
+
|
| 573 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 574 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 575 |
+
|
| 576 |
+
[What are input IDs?](../glossary#input-ids)
|
| 577 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 578 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 579 |
+
|
| 580 |
+
- 1 for tokens that are **not masked**,
|
| 581 |
+
- 0 for tokens that are **masked**.
|
| 582 |
+
|
| 583 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 584 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 585 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 586 |
+
config.max_position_embeddings - 1]`.
|
| 587 |
+
|
| 588 |
+
[What are position IDs?](../glossary#position-ids)
|
| 589 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
| 590 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
| 591 |
+
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
| 592 |
+
return_loss (`bool`, *optional*):
|
| 593 |
+
Whether or not to return the contrastive loss.
|
| 594 |
+
output_attentions (`bool`, *optional*):
|
| 595 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 596 |
+
tensors for more detail.
|
| 597 |
+
output_hidden_states (`bool`, *optional*):
|
| 598 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 599 |
+
more detail.
|
| 600 |
+
return_dict (`bool`, *optional*):
|
| 601 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 602 |
+
"""
|
| 603 |
+
|
| 604 |
+
|
| 605 |
+
class QLIPEncoder(nn.Module):
|
| 606 |
+
"""
|
| 607 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
| 608 |
+
[`CLIPEncoderLayer`].
|
| 609 |
+
|
| 610 |
+
Args:
|
| 611 |
+
config: CLIPConfig
|
| 612 |
+
"""
|
| 613 |
+
|
| 614 |
+
def __init__(self, config: QLIPConfig, rope=None, rope_shift=1):
|
| 615 |
+
super().__init__()
|
| 616 |
+
self.config = config
|
| 617 |
+
self.layers = nn.ModuleList([
|
| 618 |
+
QLIPEncoderLayer(config, rope=rope, rope_shift=rope_shift)
|
| 619 |
+
for _ in range(config.num_hidden_layers)
|
| 620 |
+
])
|
| 621 |
+
self.gradient_checkpointing = False
|
| 622 |
+
|
| 623 |
+
def forward(
|
| 624 |
+
self,
|
| 625 |
+
inputs_embeds,
|
| 626 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 627 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
| 628 |
+
output_attentions: Optional[bool] = None,
|
| 629 |
+
output_hidden_states: Optional[bool] = None,
|
| 630 |
+
return_dict: Optional[bool] = None,
|
| 631 |
+
) -> Union[Tuple, BaseModelOutput]:
|
| 632 |
+
r"""
|
| 633 |
+
Args:
|
| 634 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 635 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
| 636 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
| 637 |
+
than the model's internal embedding lookup matrix.
|
| 638 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 639 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 640 |
+
|
| 641 |
+
- 1 for tokens that are **not masked**,
|
| 642 |
+
- 0 for tokens that are **masked**.
|
| 643 |
+
|
| 644 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 645 |
+
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 646 |
+
Causal mask for the text model. Mask values selected in `[0, 1]`:
|
| 647 |
+
|
| 648 |
+
- 1 for tokens that are **not masked**,
|
| 649 |
+
- 0 for tokens that are **masked**.
|
| 650 |
+
|
| 651 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 652 |
+
output_attentions (`bool`, *optional*):
|
| 653 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 654 |
+
returned tensors for more detail.
|
| 655 |
+
output_hidden_states (`bool`, *optional*):
|
| 656 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
| 657 |
+
for more detail.
|
| 658 |
+
return_dict (`bool`, *optional*):
|
| 659 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 660 |
+
"""
|
| 661 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 662 |
+
output_hidden_states = (
|
| 663 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 664 |
+
)
|
| 665 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 666 |
+
|
| 667 |
+
encoder_states = () if output_hidden_states else None
|
| 668 |
+
all_attentions = () if output_attentions else None
|
| 669 |
+
|
| 670 |
+
hidden_states = inputs_embeds
|
| 671 |
+
for idx, encoder_layer in enumerate(self.layers):
|
| 672 |
+
if output_hidden_states:
|
| 673 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 674 |
+
if self.gradient_checkpointing and self.training:
|
| 675 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 676 |
+
encoder_layer.__call__,
|
| 677 |
+
hidden_states,
|
| 678 |
+
attention_mask,
|
| 679 |
+
causal_attention_mask,
|
| 680 |
+
output_attentions,
|
| 681 |
+
)
|
| 682 |
+
else:
|
| 683 |
+
layer_outputs = encoder_layer(
|
| 684 |
+
hidden_states,
|
| 685 |
+
attention_mask,
|
| 686 |
+
causal_attention_mask,
|
| 687 |
+
output_attentions=output_attentions,
|
| 688 |
+
)
|
| 689 |
+
|
| 690 |
+
hidden_states = layer_outputs[0]
|
| 691 |
+
|
| 692 |
+
if output_attentions:
|
| 693 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
| 694 |
+
|
| 695 |
+
if output_hidden_states:
|
| 696 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 697 |
+
|
| 698 |
+
if not return_dict:
|
| 699 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
| 700 |
+
return BaseModelOutput(
|
| 701 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
| 702 |
+
)
|
| 703 |
+
|
| 704 |
+
|
| 705 |
+
class QLIPTextTransformer(nn.Module):
|
| 706 |
+
def __init__(self, config: QLIPTextConfig):
|
| 707 |
+
super().__init__()
|
| 708 |
+
self.config = config
|
| 709 |
+
embed_dim = config.hidden_size
|
| 710 |
+
self.embeddings = QLIPTextEmbeddings(config)
|
| 711 |
+
self.encoder = QLIPEncoder(config)
|
| 712 |
+
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
| 713 |
+
|
| 714 |
+
# For `pooled_output` computation
|
| 715 |
+
self.eos_token_id = config.eos_token_id
|
| 716 |
+
|
| 717 |
+
@add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
|
| 718 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=QLIPTextConfig)
|
| 719 |
+
def forward(
|
| 720 |
+
self,
|
| 721 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 722 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 723 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 724 |
+
output_attentions: Optional[bool] = None,
|
| 725 |
+
output_hidden_states: Optional[bool] = None,
|
| 726 |
+
return_dict: Optional[bool] = None,
|
| 727 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 728 |
+
r"""
|
| 729 |
+
Returns:
|
| 730 |
+
|
| 731 |
+
"""
|
| 732 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 733 |
+
output_hidden_states = (
|
| 734 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 735 |
+
)
|
| 736 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 737 |
+
|
| 738 |
+
if input_ids is None:
|
| 739 |
+
raise ValueError("You have to specify input_ids")
|
| 740 |
+
|
| 741 |
+
input_shape = input_ids.size()
|
| 742 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
| 743 |
+
|
| 744 |
+
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
|
| 745 |
+
|
| 746 |
+
# CLIP's text model uses causal mask, prepare it here.
|
| 747 |
+
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
|
| 748 |
+
causal_attention_mask = _create_4d_causal_attention_mask(
|
| 749 |
+
input_shape, hidden_states.dtype, device=hidden_states.device
|
| 750 |
+
)
|
| 751 |
+
# expand attention_mask
|
| 752 |
+
if attention_mask is not None:
|
| 753 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 754 |
+
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
|
| 755 |
+
|
| 756 |
+
encoder_outputs = self.encoder(
|
| 757 |
+
inputs_embeds=hidden_states,
|
| 758 |
+
attention_mask=attention_mask,
|
| 759 |
+
causal_attention_mask=causal_attention_mask,
|
| 760 |
+
output_attentions=output_attentions,
|
| 761 |
+
output_hidden_states=output_hidden_states,
|
| 762 |
+
return_dict=return_dict,
|
| 763 |
+
)
|
| 764 |
+
|
| 765 |
+
last_hidden_state = encoder_outputs[0]
|
| 766 |
+
last_hidden_state = self.final_layer_norm(last_hidden_state)
|
| 767 |
+
|
| 768 |
+
if self.eos_token_id == 2:
|
| 769 |
+
# The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here.
|
| 770 |
+
# A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added
|
| 771 |
+
# ------------------------------------------------------------
|
| 772 |
+
# text_embeds.shape = [batch_size, sequence_length, transformer.width]
|
| 773 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
| 774 |
+
# casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
|
| 775 |
+
pooled_output = last_hidden_state[
|
| 776 |
+
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
|
| 777 |
+
input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1),
|
| 778 |
+
]
|
| 779 |
+
else:
|
| 780 |
+
# The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible)
|
| 781 |
+
pooled_output = last_hidden_state[
|
| 782 |
+
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
|
| 783 |
+
# We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`)
|
| 784 |
+
(input_ids.to(dtype=torch.int, device=last_hidden_state.device) == self.eos_token_id)
|
| 785 |
+
.int()
|
| 786 |
+
.argmax(dim=-1),
|
| 787 |
+
]
|
| 788 |
+
|
| 789 |
+
if not return_dict:
|
| 790 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
| 791 |
+
|
| 792 |
+
return BaseModelOutputWithPooling(
|
| 793 |
+
last_hidden_state=last_hidden_state,
|
| 794 |
+
pooler_output=pooled_output,
|
| 795 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 796 |
+
attentions=encoder_outputs.attentions,
|
| 797 |
+
)
|
| 798 |
+
|
| 799 |
+
|
| 800 |
+
@add_start_docstrings(
|
| 801 |
+
"""The text model from CLIP without any head or projection on top.""",
|
| 802 |
+
CLIP_START_DOCSTRING,
|
| 803 |
+
)
|
| 804 |
+
class QLIPTextModel(QLIPPreTrainedModel):
|
| 805 |
+
config_class = QLIPTextConfig
|
| 806 |
+
|
| 807 |
+
_no_split_modules = ["QLIPTextEmbeddings", "QLIPEncoderLayer"]
|
| 808 |
+
|
| 809 |
+
def __init__(self, config: QLIPTextConfig):
|
| 810 |
+
super().__init__(config)
|
| 811 |
+
self.text_model = QLIPTextTransformer(config)
|
| 812 |
+
# Initialize weights and apply final processing
|
| 813 |
+
self.post_init()
|
| 814 |
+
|
| 815 |
+
def get_input_embeddings(self) -> nn.Module:
|
| 816 |
+
return self.text_model.embeddings.token_embedding
|
| 817 |
+
|
| 818 |
+
def set_input_embeddings(self, value):
|
| 819 |
+
self.text_model.embeddings.token_embedding = value
|
| 820 |
+
|
| 821 |
+
@add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
|
| 822 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=QLIPTextConfig)
|
| 823 |
+
def forward(
|
| 824 |
+
self,
|
| 825 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 826 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 827 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 828 |
+
output_attentions: Optional[bool] = None,
|
| 829 |
+
output_hidden_states: Optional[bool] = None,
|
| 830 |
+
return_dict: Optional[bool] = None,
|
| 831 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 832 |
+
r"""
|
| 833 |
+
Returns:
|
| 834 |
+
|
| 835 |
+
Examples:
|
| 836 |
+
|
| 837 |
+
```python
|
| 838 |
+
>>> from transformers import AutoTokenizer, CLIPTextModel
|
| 839 |
+
|
| 840 |
+
>>> model = CLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")
|
| 841 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
| 842 |
+
|
| 843 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
| 844 |
+
|
| 845 |
+
>>> outputs = model(**inputs)
|
| 846 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
| 847 |
+
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
|
| 848 |
+
```"""
|
| 849 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 850 |
+
|
| 851 |
+
return self.text_model(
|
| 852 |
+
input_ids=input_ids,
|
| 853 |
+
attention_mask=attention_mask,
|
| 854 |
+
position_ids=position_ids,
|
| 855 |
+
output_attentions=output_attentions,
|
| 856 |
+
output_hidden_states=output_hidden_states,
|
| 857 |
+
return_dict=return_dict,
|
| 858 |
+
)
|
| 859 |
+
|
| 860 |
+
|
| 861 |
+
class QLIPVisionTransformer(nn.Module):
|
| 862 |
+
def __init__(self, config: QLIPVisionConfig):
|
| 863 |
+
super().__init__()
|
| 864 |
+
self.config = config
|
| 865 |
+
embed_dim = config.hidden_size
|
| 866 |
+
|
| 867 |
+
self.embeddings = QLIPVisionEmbeddings(config)
|
| 868 |
+
if config.rope:
|
| 869 |
+
half_head_dim = config.hidden_size // config.num_attention_heads // 2
|
| 870 |
+
hw_seq_len = config.image_size // config.patch_size
|
| 871 |
+
self.rope = VisionRotaryEmbeddingFast(
|
| 872 |
+
dim=half_head_dim,
|
| 873 |
+
pt_seq_len=16,
|
| 874 |
+
ft_seq_len=hw_seq_len,
|
| 875 |
+
)
|
| 876 |
+
else:
|
| 877 |
+
self.rope = None
|
| 878 |
+
self.encoder = QLIPEncoder(config, rope=self.rope, rope_shift=1)
|
| 879 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
| 880 |
+
|
| 881 |
+
if config.quantizer == "bsq":
|
| 882 |
+
self.quantizer = BinarySphericalQuantizer(**config.quantizer_cfg)
|
| 883 |
+
self.quantizer_l2_norm = config.quantizer_l2_norm
|
| 884 |
+
if config.quantizer_embed_type == "mlp":
|
| 885 |
+
self.quant_embed = nn.Sequential(
|
| 886 |
+
OrderedDict(
|
| 887 |
+
[
|
| 888 |
+
("c_fc", nn.Linear(config.hidden_size, config.hidden_size)),
|
| 889 |
+
("gelu", nn.GELU()),
|
| 890 |
+
("c_proj", nn.Linear(config.hidden_size, config.quantizer_cfg["embed_dim"])),
|
| 891 |
+
]
|
| 892 |
+
)
|
| 893 |
+
)
|
| 894 |
+
self.quant_embed_post = nn.Sequential(
|
| 895 |
+
OrderedDict(
|
| 896 |
+
[
|
| 897 |
+
("c_fc", nn.Linear(config.quantizer_cfg["embed_dim"], config.hidden_size_post_q)),
|
| 898 |
+
("gelu", nn.GELU()),
|
| 899 |
+
("c_proj", nn.Linear(config.hidden_size_post_q, config.hidden_size_post_q)),
|
| 900 |
+
]
|
| 901 |
+
)
|
| 902 |
+
)
|
| 903 |
+
else:
|
| 904 |
+
self.quant_embed = nn.Identity()
|
| 905 |
+
self.quant_embed_post = nn.Identity()
|
| 906 |
+
|
| 907 |
+
@add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
|
| 908 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=QLIPVisionConfig)
|
| 909 |
+
def forward(
|
| 910 |
+
self,
|
| 911 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 912 |
+
output_attentions: Optional[bool] = None,
|
| 913 |
+
output_hidden_states: Optional[bool] = None,
|
| 914 |
+
return_dict: Optional[bool] = None,
|
| 915 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 916 |
+
r"""
|
| 917 |
+
Returns:
|
| 918 |
+
|
| 919 |
+
"""
|
| 920 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 921 |
+
output_hidden_states = (
|
| 922 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 923 |
+
)
|
| 924 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 925 |
+
|
| 926 |
+
if pixel_values is None:
|
| 927 |
+
raise ValueError("You have to specify pixel_values")
|
| 928 |
+
|
| 929 |
+
hidden_states = self.embeddings(pixel_values)
|
| 930 |
+
|
| 931 |
+
encoder_outputs = self.encoder(
|
| 932 |
+
inputs_embeds=hidden_states,
|
| 933 |
+
output_attentions=output_attentions,
|
| 934 |
+
output_hidden_states=output_hidden_states,
|
| 935 |
+
return_dict=return_dict,
|
| 936 |
+
)
|
| 937 |
+
|
| 938 |
+
last_hidden_state = encoder_outputs[0]
|
| 939 |
+
pooled_output = last_hidden_state[:, 0, :]
|
| 940 |
+
z = last_hidden_state[:, 1:, :]
|
| 941 |
+
h = self.quant_embed(z)
|
| 942 |
+
if self.quantizer_l2_norm:
|
| 943 |
+
h = F.normalize(h, dim=-1)
|
| 944 |
+
if self.quantizer is not None:
|
| 945 |
+
quant, _, _ = self.quantizer(h)
|
| 946 |
+
else:
|
| 947 |
+
quant = h
|
| 948 |
+
zhat = self.quant_embed_post(quant)
|
| 949 |
+
last_hidden_state = zhat
|
| 950 |
+
pooled_output = self.post_layernorm(pooled_output)
|
| 951 |
+
|
| 952 |
+
if not return_dict:
|
| 953 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
| 954 |
+
|
| 955 |
+
return BaseModelOutputWithPooling(
|
| 956 |
+
last_hidden_state=last_hidden_state,
|
| 957 |
+
pooler_output=pooled_output,
|
| 958 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 959 |
+
attentions=encoder_outputs.attentions,
|
| 960 |
+
)
|
| 961 |
+
|
| 962 |
+
|
| 963 |
+
class QLIPVisionTransformerDecoder(nn.Module):
|
| 964 |
+
def __init__(self, config: QLIPDecoderConfig):
|
| 965 |
+
super().__init__()
|
| 966 |
+
self.config = config
|
| 967 |
+
embed_dim = config.hidden_size
|
| 968 |
+
|
| 969 |
+
num_patches = (config.image_size // config.patch_size) ** 2
|
| 970 |
+
self.patch_shape = (config.image_size // config.patch_size, config.image_size // config.patch_size)
|
| 971 |
+
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
|
| 972 |
+
if config.rope:
|
| 973 |
+
half_head_dim = config.hidden_size // config.num_attention_heads // 2
|
| 974 |
+
hw_seq_len = config.image_size // config.patch_size
|
| 975 |
+
self.rope = VisionRotaryEmbeddingFast(
|
| 976 |
+
dim=half_head_dim,
|
| 977 |
+
pt_seq_len=16,
|
| 978 |
+
ft_seq_len=hw_seq_len,
|
| 979 |
+
)
|
| 980 |
+
else:
|
| 981 |
+
self.rope = None
|
| 982 |
+
self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 983 |
+
self.encoder = QLIPEncoder(config, rope=self.rope, rope_shift=0)
|
| 984 |
+
self.ffn = nn.Sequential(
|
| 985 |
+
nn.Linear(config.hidden_size, config.intermediate_size),
|
| 986 |
+
nn.Tanh(),
|
| 987 |
+
)
|
| 988 |
+
self.conv_out = nn.Linear(
|
| 989 |
+
in_features=config.intermediate_size,
|
| 990 |
+
out_features=3 * config.patch_size * config.patch_size,
|
| 991 |
+
)
|
| 992 |
+
|
| 993 |
+
@add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
|
| 994 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=QLIPVisionConfig)
|
| 995 |
+
def forward(
|
| 996 |
+
self,
|
| 997 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 998 |
+
output_attentions: Optional[bool] = None,
|
| 999 |
+
output_hidden_states: Optional[bool] = None,
|
| 1000 |
+
return_dict: Optional[bool] = None,
|
| 1001 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 1002 |
+
r"""
|
| 1003 |
+
Returns:
|
| 1004 |
+
|
| 1005 |
+
"""
|
| 1006 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1007 |
+
output_hidden_states = (
|
| 1008 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1009 |
+
)
|
| 1010 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1011 |
+
|
| 1012 |
+
if latents is None:
|
| 1013 |
+
raise ValueError("You have to specify latents")
|
| 1014 |
+
|
| 1015 |
+
hidden_states = self.position_embeddings + latents
|
| 1016 |
+
|
| 1017 |
+
decoder_outputs = self.encoder(
|
| 1018 |
+
inputs_embeds=hidden_states,
|
| 1019 |
+
output_attentions=output_attentions,
|
| 1020 |
+
output_hidden_states=output_hidden_states,
|
| 1021 |
+
return_dict=return_dict,
|
| 1022 |
+
)
|
| 1023 |
+
|
| 1024 |
+
last_hidden_state = decoder_outputs[0]
|
| 1025 |
+
recon = self.conv_out(self.ffn(self.norm(last_hidden_state)))
|
| 1026 |
+
recon_reshaped = rearrange(
|
| 1027 |
+
recon, "b (hh ww) (c sh sw) -> b c (hh sh) (ww sw)",
|
| 1028 |
+
hh=self.patch_shape[0], ww=self.patch_shape[1],
|
| 1029 |
+
sh=self.config.patch_size, sw=self.config.patch_size,
|
| 1030 |
+
)
|
| 1031 |
+
return recon_reshaped
|
| 1032 |
+
|
| 1033 |
+
|
| 1034 |
+
@add_start_docstrings(
|
| 1035 |
+
"""The vision model from CLIP without any head or projection on top.""",
|
| 1036 |
+
CLIP_START_DOCSTRING,
|
| 1037 |
+
)
|
| 1038 |
+
class QLIPVisionModel(QLIPPreTrainedModel):
|
| 1039 |
+
config_class = QLIPVisionConfig
|
| 1040 |
+
main_input_name = "pixel_values"
|
| 1041 |
+
_no_split_modules = ["QLIPEncoderLayer"]
|
| 1042 |
+
|
| 1043 |
+
def __init__(self, config: QLIPVisionConfig):
|
| 1044 |
+
super().__init__(config)
|
| 1045 |
+
self.vision_model = QLIPVisionTransformer(config)
|
| 1046 |
+
# Initialize weights and apply final processing
|
| 1047 |
+
self.post_init()
|
| 1048 |
+
|
| 1049 |
+
def get_input_embeddings(self) -> nn.Module:
|
| 1050 |
+
return self.vision_model.embeddings.patch_embedding
|
| 1051 |
+
|
| 1052 |
+
@add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
|
| 1053 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=QLIPVisionConfig)
|
| 1054 |
+
def forward(
|
| 1055 |
+
self,
|
| 1056 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 1057 |
+
output_attentions: Optional[bool] = None,
|
| 1058 |
+
output_hidden_states: Optional[bool] = None,
|
| 1059 |
+
return_dict: Optional[bool] = None,
|
| 1060 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 1061 |
+
r"""
|
| 1062 |
+
Returns:
|
| 1063 |
+
|
| 1064 |
+
Examples:
|
| 1065 |
+
|
| 1066 |
+
```python
|
| 1067 |
+
>>> from PIL import Image
|
| 1068 |
+
>>> import requests
|
| 1069 |
+
>>> from transformers import AutoProcessor, CLIPVisionModel
|
| 1070 |
+
|
| 1071 |
+
>>> model = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
|
| 1072 |
+
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 1073 |
+
|
| 1074 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 1075 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
| 1076 |
+
|
| 1077 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
| 1078 |
+
|
| 1079 |
+
>>> outputs = model(**inputs)
|
| 1080 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
| 1081 |
+
>>> pooled_output = outputs.pooler_output # pooled CLS states
|
| 1082 |
+
```"""
|
| 1083 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1084 |
+
|
| 1085 |
+
return self.vision_model(
|
| 1086 |
+
pixel_values=pixel_values,
|
| 1087 |
+
output_attentions=output_attentions,
|
| 1088 |
+
output_hidden_states=output_hidden_states,
|
| 1089 |
+
return_dict=return_dict,
|
| 1090 |
+
)
|
| 1091 |
+
|
| 1092 |
+
|
| 1093 |
+
@add_start_docstrings(CLIP_START_DOCSTRING)
|
| 1094 |
+
class QLIPModel(QLIPPreTrainedModel):
|
| 1095 |
+
config_class = QLIPConfig
|
| 1096 |
+
|
| 1097 |
+
def __init__(self, config: QLIPConfig):
|
| 1098 |
+
super().__init__(config)
|
| 1099 |
+
|
| 1100 |
+
if not isinstance(config.text_config, QLIPTextConfig):
|
| 1101 |
+
raise ValueError(
|
| 1102 |
+
"config.text_config is expected to be of type CLIPTextConfig but is of type"
|
| 1103 |
+
f" {type(config.text_config)}."
|
| 1104 |
+
)
|
| 1105 |
+
|
| 1106 |
+
if not isinstance(config.vision_config, QLIPVisionConfig):
|
| 1107 |
+
raise ValueError(
|
| 1108 |
+
"config.vision_config is expected to be of type CLIPVisionConfig but is of type"
|
| 1109 |
+
f" {type(config.vision_config)}."
|
| 1110 |
+
)
|
| 1111 |
+
|
| 1112 |
+
text_config = config.text_config
|
| 1113 |
+
vision_config = config.vision_config
|
| 1114 |
+
decoder_config = config.decoder_config
|
| 1115 |
+
|
| 1116 |
+
self.projection_dim = config.projection_dim
|
| 1117 |
+
self.text_embed_dim = text_config.hidden_size
|
| 1118 |
+
self.vision_embed_dim = vision_config.hidden_size
|
| 1119 |
+
|
| 1120 |
+
self.text_model = QLIPTextTransformer(text_config)
|
| 1121 |
+
self.vision_model = QLIPVisionTransformer(vision_config)
|
| 1122 |
+
self.vision_decoder = QLIPVisionTransformerDecoder(decoder_config)
|
| 1123 |
+
|
| 1124 |
+
self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=config.vision_projection_bias)
|
| 1125 |
+
self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=config.text_projection_bias)
|
| 1126 |
+
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
|
| 1127 |
+
|
| 1128 |
+
# Initialize weights and apply final processing
|
| 1129 |
+
self.post_init()
|
| 1130 |
+
|
| 1131 |
+
@add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
|
| 1132 |
+
def get_text_features(
|
| 1133 |
+
self,
|
| 1134 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1135 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1136 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1137 |
+
output_attentions: Optional[bool] = None,
|
| 1138 |
+
output_hidden_states: Optional[bool] = None,
|
| 1139 |
+
return_dict: Optional[bool] = None,
|
| 1140 |
+
) -> torch.FloatTensor:
|
| 1141 |
+
r"""
|
| 1142 |
+
Returns:
|
| 1143 |
+
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
|
| 1144 |
+
applying the projection layer to the pooled output of [`CLIPTextModel`].
|
| 1145 |
+
|
| 1146 |
+
Examples:
|
| 1147 |
+
|
| 1148 |
+
```python
|
| 1149 |
+
>>> from transformers import AutoTokenizer, CLIPModel
|
| 1150 |
+
|
| 1151 |
+
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
| 1152 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
| 1153 |
+
|
| 1154 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
| 1155 |
+
>>> text_features = model.get_text_features(**inputs)
|
| 1156 |
+
```"""
|
| 1157 |
+
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
|
| 1158 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1159 |
+
output_hidden_states = (
|
| 1160 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1161 |
+
)
|
| 1162 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1163 |
+
|
| 1164 |
+
text_outputs = self.text_model(
|
| 1165 |
+
input_ids=input_ids,
|
| 1166 |
+
attention_mask=attention_mask,
|
| 1167 |
+
position_ids=position_ids,
|
| 1168 |
+
output_attentions=output_attentions,
|
| 1169 |
+
output_hidden_states=output_hidden_states,
|
| 1170 |
+
return_dict=return_dict,
|
| 1171 |
+
)
|
| 1172 |
+
|
| 1173 |
+
pooled_output = text_outputs[1]
|
| 1174 |
+
text_features = self.text_projection(pooled_output)
|
| 1175 |
+
|
| 1176 |
+
return text_features
|
| 1177 |
+
|
| 1178 |
+
@add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
|
| 1179 |
+
def get_image_features(
|
| 1180 |
+
self,
|
| 1181 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 1182 |
+
output_attentions: Optional[bool] = None,
|
| 1183 |
+
output_hidden_states: Optional[bool] = None,
|
| 1184 |
+
return_dict: Optional[bool] = None,
|
| 1185 |
+
) -> torch.FloatTensor:
|
| 1186 |
+
r"""
|
| 1187 |
+
Returns:
|
| 1188 |
+
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
|
| 1189 |
+
applying the projection layer to the pooled output of [`CLIPVisionModel`].
|
| 1190 |
+
|
| 1191 |
+
Examples:
|
| 1192 |
+
|
| 1193 |
+
```python
|
| 1194 |
+
>>> from PIL import Image
|
| 1195 |
+
>>> import requests
|
| 1196 |
+
>>> from transformers import AutoProcessor, CLIPModel
|
| 1197 |
+
|
| 1198 |
+
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
| 1199 |
+
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 1200 |
+
|
| 1201 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 1202 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
| 1203 |
+
|
| 1204 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
| 1205 |
+
|
| 1206 |
+
>>> image_features = model.get_image_features(**inputs)
|
| 1207 |
+
```"""
|
| 1208 |
+
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
|
| 1209 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1210 |
+
output_hidden_states = (
|
| 1211 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1212 |
+
)
|
| 1213 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1214 |
+
|
| 1215 |
+
vision_outputs = self.vision_model(
|
| 1216 |
+
pixel_values=pixel_values,
|
| 1217 |
+
output_attentions=output_attentions,
|
| 1218 |
+
output_hidden_states=output_hidden_states,
|
| 1219 |
+
return_dict=return_dict,
|
| 1220 |
+
)
|
| 1221 |
+
|
| 1222 |
+
pooled_output = vision_outputs[1] # pooled_output
|
| 1223 |
+
image_features = self.visual_projection(pooled_output)
|
| 1224 |
+
|
| 1225 |
+
return image_features
|
| 1226 |
+
|
| 1227 |
+
@add_start_docstrings_to_model_forward(CLIP_INPUTS_DOCSTRING)
|
| 1228 |
+
@replace_return_docstrings(output_type=QLIPOutput, config_class=QLIPConfig)
|
| 1229 |
+
def forward(
|
| 1230 |
+
self,
|
| 1231 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1232 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 1233 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1234 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1235 |
+
return_loss: Optional[bool] = None,
|
| 1236 |
+
output_attentions: Optional[bool] = None,
|
| 1237 |
+
output_hidden_states: Optional[bool] = None,
|
| 1238 |
+
return_dict: Optional[bool] = None,
|
| 1239 |
+
) -> Union[Tuple, QLIPOutput]:
|
| 1240 |
+
r"""
|
| 1241 |
+
Returns:
|
| 1242 |
+
|
| 1243 |
+
Examples:
|
| 1244 |
+
|
| 1245 |
+
```python
|
| 1246 |
+
>>> from PIL import Image
|
| 1247 |
+
>>> import requests
|
| 1248 |
+
>>> from transformers import AutoProcessor, CLIPModel
|
| 1249 |
+
|
| 1250 |
+
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
| 1251 |
+
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 1252 |
+
|
| 1253 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 1254 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
| 1255 |
+
|
| 1256 |
+
>>> inputs = processor(
|
| 1257 |
+
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
|
| 1258 |
+
... )
|
| 1259 |
+
|
| 1260 |
+
>>> outputs = model(**inputs)
|
| 1261 |
+
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
| 1262 |
+
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
|
| 1263 |
+
```"""
|
| 1264 |
+
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
|
| 1265 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1266 |
+
output_hidden_states = (
|
| 1267 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1268 |
+
)
|
| 1269 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1270 |
+
|
| 1271 |
+
vision_outputs = self.vision_model(
|
| 1272 |
+
pixel_values=pixel_values,
|
| 1273 |
+
output_attentions=output_attentions,
|
| 1274 |
+
output_hidden_states=output_hidden_states,
|
| 1275 |
+
return_dict=return_dict,
|
| 1276 |
+
)
|
| 1277 |
+
|
| 1278 |
+
text_outputs = self.text_model(
|
| 1279 |
+
input_ids=input_ids,
|
| 1280 |
+
attention_mask=attention_mask,
|
| 1281 |
+
position_ids=position_ids,
|
| 1282 |
+
output_attentions=output_attentions,
|
| 1283 |
+
output_hidden_states=output_hidden_states,
|
| 1284 |
+
return_dict=return_dict,
|
| 1285 |
+
)
|
| 1286 |
+
|
| 1287 |
+
image_embeds = vision_outputs[1]
|
| 1288 |
+
image_embeds = self.visual_projection(image_embeds)
|
| 1289 |
+
|
| 1290 |
+
text_embeds = text_outputs[1]
|
| 1291 |
+
text_embeds = self.text_projection(text_embeds)
|
| 1292 |
+
|
| 1293 |
+
last_hidden_state = vision_outputs[0]
|
| 1294 |
+
recon = self.vision_decoder(last_hidden_state)
|
| 1295 |
+
|
| 1296 |
+
# normalized features
|
| 1297 |
+
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
|
| 1298 |
+
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
|
| 1299 |
+
|
| 1300 |
+
# cosine similarity as logits
|
| 1301 |
+
logit_scale = self.logit_scale.exp()
|
| 1302 |
+
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
|
| 1303 |
+
logits_per_image = logits_per_text.t()
|
| 1304 |
+
|
| 1305 |
+
loss = None
|
| 1306 |
+
if return_loss:
|
| 1307 |
+
loss = clip_loss(logits_per_text)
|
| 1308 |
+
|
| 1309 |
+
if not return_dict:
|
| 1310 |
+
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
| 1311 |
+
return ((loss,) + output) if loss is not None else output
|
| 1312 |
+
|
| 1313 |
+
return QLIPOutput(
|
| 1314 |
+
loss=loss,
|
| 1315 |
+
logits_per_image=logits_per_image,
|
| 1316 |
+
logits_per_text=logits_per_text,
|
| 1317 |
+
text_embeds=text_embeds,
|
| 1318 |
+
image_embeds=image_embeds,
|
| 1319 |
+
text_model_output=text_outputs,
|
| 1320 |
+
vision_model_output=vision_outputs,
|
| 1321 |
+
reconstructions=recon,
|
| 1322 |
+
)
|
| 1323 |
+
|
| 1324 |
+
|
| 1325 |
+
@add_start_docstrings(
|
| 1326 |
+
"""
|
| 1327 |
+
CLIP Text Model with a projection layer on top (a linear layer on top of the pooled output).
|
| 1328 |
+
""",
|
| 1329 |
+
CLIP_START_DOCSTRING,
|
| 1330 |
+
)
|
| 1331 |
+
class QLIPTextModelWithProjection(QLIPPreTrainedModel):
|
| 1332 |
+
config_class = QLIPTextConfig
|
| 1333 |
+
|
| 1334 |
+
_no_split_modules = ["QLIPTextEmbeddings", "QLIPEncoderLayer"]
|
| 1335 |
+
|
| 1336 |
+
def __init__(self, config: QLIPTextConfig):
|
| 1337 |
+
super().__init__(config)
|
| 1338 |
+
|
| 1339 |
+
self.text_model = QLIPTextTransformer(config)
|
| 1340 |
+
|
| 1341 |
+
self.text_projection = nn.Linear(config.hidden_size, config.projection_dim, bias=False)
|
| 1342 |
+
|
| 1343 |
+
# Initialize weights and apply final processing
|
| 1344 |
+
self.post_init()
|
| 1345 |
+
|
| 1346 |
+
def get_input_embeddings(self) -> nn.Module:
|
| 1347 |
+
return self.text_model.embeddings.token_embedding
|
| 1348 |
+
|
| 1349 |
+
def set_input_embeddings(self, value):
|
| 1350 |
+
self.text_model.embeddings.token_embedding = value
|
| 1351 |
+
|
| 1352 |
+
@add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
|
| 1353 |
+
@replace_return_docstrings(output_type=QLIPTextModelOutput, config_class=QLIPTextConfig)
|
| 1354 |
+
def forward(
|
| 1355 |
+
self,
|
| 1356 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1357 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1358 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1359 |
+
output_attentions: Optional[bool] = None,
|
| 1360 |
+
output_hidden_states: Optional[bool] = None,
|
| 1361 |
+
return_dict: Optional[bool] = None,
|
| 1362 |
+
) -> Union[Tuple, QLIPTextModelOutput]:
|
| 1363 |
+
r"""
|
| 1364 |
+
Returns:
|
| 1365 |
+
|
| 1366 |
+
Examples:
|
| 1367 |
+
|
| 1368 |
+
```python
|
| 1369 |
+
>>> from transformers import AutoTokenizer, CLIPTextModelWithProjection
|
| 1370 |
+
|
| 1371 |
+
>>> model = CLIPTextModelWithProjection.from_pretrained("openai/clip-vit-base-patch32")
|
| 1372 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
| 1373 |
+
|
| 1374 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
| 1375 |
+
|
| 1376 |
+
>>> outputs = model(**inputs)
|
| 1377 |
+
>>> text_embeds = outputs.text_embeds
|
| 1378 |
+
```"""
|
| 1379 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1380 |
+
|
| 1381 |
+
text_outputs = self.text_model(
|
| 1382 |
+
input_ids=input_ids,
|
| 1383 |
+
attention_mask=attention_mask,
|
| 1384 |
+
position_ids=position_ids,
|
| 1385 |
+
output_attentions=output_attentions,
|
| 1386 |
+
output_hidden_states=output_hidden_states,
|
| 1387 |
+
return_dict=return_dict,
|
| 1388 |
+
)
|
| 1389 |
+
|
| 1390 |
+
pooled_output = text_outputs[1]
|
| 1391 |
+
|
| 1392 |
+
text_embeds = self.text_projection(pooled_output)
|
| 1393 |
+
|
| 1394 |
+
if not return_dict:
|
| 1395 |
+
outputs = (text_embeds, text_outputs[0]) + text_outputs[2:]
|
| 1396 |
+
return tuple(output for output in outputs if output is not None)
|
| 1397 |
+
|
| 1398 |
+
return QLIPTextModelOutput(
|
| 1399 |
+
text_embeds=text_embeds,
|
| 1400 |
+
last_hidden_state=text_outputs.last_hidden_state,
|
| 1401 |
+
hidden_states=text_outputs.hidden_states,
|
| 1402 |
+
attentions=text_outputs.attentions,
|
| 1403 |
+
)
|
| 1404 |
+
|
| 1405 |
+
|
| 1406 |
+
@add_start_docstrings(
|
| 1407 |
+
"""
|
| 1408 |
+
CLIP Vision Model with a projection layer on top (a linear layer on top of the pooled output).
|
| 1409 |
+
""",
|
| 1410 |
+
CLIP_START_DOCSTRING,
|
| 1411 |
+
)
|
| 1412 |
+
class QLIPVisionModelWithProjection(QLIPPreTrainedModel):
|
| 1413 |
+
config_class = QLIPVisionConfig
|
| 1414 |
+
main_input_name = "pixel_values"
|
| 1415 |
+
|
| 1416 |
+
def __init__(self, config: QLIPVisionConfig):
|
| 1417 |
+
super().__init__(config)
|
| 1418 |
+
|
| 1419 |
+
self.vision_model = QLIPVisionTransformer(config)
|
| 1420 |
+
|
| 1421 |
+
self.visual_projection = nn.Linear(config.hidden_size, config.projection_dim, bias=False)
|
| 1422 |
+
|
| 1423 |
+
# Initialize weights and apply final processing
|
| 1424 |
+
self.post_init()
|
| 1425 |
+
|
| 1426 |
+
def get_input_embeddings(self) -> nn.Module:
|
| 1427 |
+
return self.vision_model.embeddings.patch_embedding
|
| 1428 |
+
|
| 1429 |
+
@add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
|
| 1430 |
+
@replace_return_docstrings(output_type=QLIPVisionModelOutput, config_class=QLIPVisionConfig)
|
| 1431 |
+
def forward(
|
| 1432 |
+
self,
|
| 1433 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 1434 |
+
output_attentions: Optional[bool] = None,
|
| 1435 |
+
output_hidden_states: Optional[bool] = None,
|
| 1436 |
+
return_dict: Optional[bool] = None,
|
| 1437 |
+
) -> Union[Tuple, QLIPVisionModelOutput]:
|
| 1438 |
+
r"""
|
| 1439 |
+
Returns:
|
| 1440 |
+
|
| 1441 |
+
Examples:
|
| 1442 |
+
|
| 1443 |
+
```python
|
| 1444 |
+
>>> from PIL import Image
|
| 1445 |
+
>>> import requests
|
| 1446 |
+
>>> from transformers import AutoProcessor, CLIPVisionModelWithProjection
|
| 1447 |
+
|
| 1448 |
+
>>> model = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-base-patch32")
|
| 1449 |
+
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 1450 |
+
|
| 1451 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 1452 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
| 1453 |
+
|
| 1454 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
| 1455 |
+
|
| 1456 |
+
>>> outputs = model(**inputs)
|
| 1457 |
+
>>> image_embeds = outputs.image_embeds
|
| 1458 |
+
```"""
|
| 1459 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1460 |
+
|
| 1461 |
+
vision_outputs = self.vision_model(
|
| 1462 |
+
pixel_values=pixel_values,
|
| 1463 |
+
output_attentions=output_attentions,
|
| 1464 |
+
output_hidden_states=output_hidden_states,
|
| 1465 |
+
return_dict=return_dict,
|
| 1466 |
+
)
|
| 1467 |
+
|
| 1468 |
+
pooled_output = vision_outputs[1] # pooled_output
|
| 1469 |
+
|
| 1470 |
+
image_embeds = self.visual_projection(pooled_output)
|
| 1471 |
+
|
| 1472 |
+
if not return_dict:
|
| 1473 |
+
outputs = (image_embeds, vision_outputs[0]) + vision_outputs[2:]
|
| 1474 |
+
return tuple(output for output in outputs if output is not None)
|
| 1475 |
+
|
| 1476 |
+
return QLIPVisionModelOutput(
|
| 1477 |
+
image_embeds=image_embeds,
|
| 1478 |
+
last_hidden_state=vision_outputs.last_hidden_state,
|
| 1479 |
+
hidden_states=vision_outputs.hidden_states,
|
| 1480 |
+
attentions=vision_outputs.attentions,
|
| 1481 |
+
)
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"crop_size": 256,
|
| 3 |
+
"do_center_crop": true,
|
| 4 |
+
"do_normalize": true,
|
| 5 |
+
"do_resize": true,
|
| 6 |
+
"feature_extractor_type": "CLIPFeatureExtractor",
|
| 7 |
+
"image_mean": [
|
| 8 |
+
0.48145466,
|
| 9 |
+
0.4578275,
|
| 10 |
+
0.40821073
|
| 11 |
+
],
|
| 12 |
+
"image_std": [
|
| 13 |
+
0.26862954,
|
| 14 |
+
0.26130258,
|
| 15 |
+
0.27577711
|
| 16 |
+
],
|
| 17 |
+
"resample": 3,
|
| 18 |
+
"size": 392
|
| 19 |
+
}
|
rope.py
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024, NVIDIA Corporation & Affiliates. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# This work is made available under the Nvidia Source Code License-NC.
|
| 4 |
+
# To view a copy of this license, visit
|
| 5 |
+
# https://github.com/NVlabs/QLIP/blob/main/LICENSE
|
| 6 |
+
|
| 7 |
+
# MIT License
|
| 8 |
+
|
| 9 |
+
# Copyright (c) 2022 BAAI-Vision
|
| 10 |
+
|
| 11 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 12 |
+
# of this software and associated documentation files (the "Software"), to deal
|
| 13 |
+
# in the Software without restriction, including without limitation the rights
|
| 14 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 15 |
+
# copies of the Software, and to permit persons to whom the Software is
|
| 16 |
+
# furnished to do so, subject to the following conditions:
|
| 17 |
+
|
| 18 |
+
# The above copyright notice and this permission notice shall be included in all
|
| 19 |
+
# copies or substantial portions of the Software.
|
| 20 |
+
|
| 21 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 22 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 23 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 24 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 25 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 26 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 27 |
+
# SOFTWARE.
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
from math import pi
|
| 31 |
+
import torch
|
| 32 |
+
from torch import nn
|
| 33 |
+
from einops import rearrange, repeat
|
| 34 |
+
import logging
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def broadcat(tensors, dim = -1):
|
| 38 |
+
num_tensors = len(tensors)
|
| 39 |
+
shape_lens = set(list(map(lambda t: len(t.shape), tensors)))
|
| 40 |
+
assert len(shape_lens) == 1, 'tensors must all have the same number of dimensions'
|
| 41 |
+
shape_len = list(shape_lens)[0]
|
| 42 |
+
dim = (dim + shape_len) if dim < 0 else dim
|
| 43 |
+
dims = list(zip(*map(lambda t: list(t.shape), tensors)))
|
| 44 |
+
expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
|
| 45 |
+
assert all([*map(lambda t: len(set(t[1])) <= 2, expandable_dims)]), 'invalid dimensions for broadcastable concatentation'
|
| 46 |
+
max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims))
|
| 47 |
+
expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims))
|
| 48 |
+
expanded_dims.insert(dim, (dim, dims[dim]))
|
| 49 |
+
expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims)))
|
| 50 |
+
tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes)))
|
| 51 |
+
return torch.cat(tensors, dim = dim)
|
| 52 |
+
|
| 53 |
+
def rotate_half(x):
|
| 54 |
+
x = rearrange(x, '... (d r) -> ... d r', r = 2)
|
| 55 |
+
x1, x2 = x.unbind(dim = -1)
|
| 56 |
+
x = torch.stack((-x2, x1), dim = -1)
|
| 57 |
+
return rearrange(x, '... d r -> ... (d r)')
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
class VisionRotaryEmbeddingFast(nn.Module):
|
| 61 |
+
def __init__(
|
| 62 |
+
self,
|
| 63 |
+
dim,
|
| 64 |
+
pt_seq_len,
|
| 65 |
+
ft_seq_len=None,
|
| 66 |
+
custom_freqs = None,
|
| 67 |
+
freqs_for = 'lang',
|
| 68 |
+
theta = 10000,
|
| 69 |
+
max_freq = 10,
|
| 70 |
+
num_freqs = 1,
|
| 71 |
+
patch_dropout = 0.
|
| 72 |
+
):
|
| 73 |
+
super().__init__()
|
| 74 |
+
if custom_freqs:
|
| 75 |
+
freqs = custom_freqs
|
| 76 |
+
elif freqs_for == 'lang':
|
| 77 |
+
freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
|
| 78 |
+
elif freqs_for == 'pixel':
|
| 79 |
+
freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
|
| 80 |
+
elif freqs_for == 'constant':
|
| 81 |
+
freqs = torch.ones(num_freqs).float()
|
| 82 |
+
else:
|
| 83 |
+
raise ValueError(f'unknown modality {freqs_for}')
|
| 84 |
+
|
| 85 |
+
if ft_seq_len is None: ft_seq_len = pt_seq_len
|
| 86 |
+
t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len
|
| 87 |
+
|
| 88 |
+
freqs = torch.einsum('..., f -> ... f', t, freqs)
|
| 89 |
+
freqs = repeat(freqs, '... n -> ... (n r)', r = 2)
|
| 90 |
+
freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim = -1)
|
| 91 |
+
|
| 92 |
+
freqs_cos = freqs.cos().view(-1, freqs.shape[-1])
|
| 93 |
+
freqs_sin = freqs.sin().view(-1, freqs.shape[-1])
|
| 94 |
+
|
| 95 |
+
self.patch_dropout = patch_dropout
|
| 96 |
+
|
| 97 |
+
self.register_buffer("freqs_cos", freqs_cos)
|
| 98 |
+
self.register_buffer("freqs_sin", freqs_sin)
|
| 99 |
+
|
| 100 |
+
logging.info(f'Shape of rope freq: {self.freqs_cos.shape}')
|
| 101 |
+
|
| 102 |
+
def forward(self, t, patch_indices_keep=None):
|
| 103 |
+
if patch_indices_keep is not None:
|
| 104 |
+
batch = t.size()[0]
|
| 105 |
+
batch_indices = torch.arange(batch)
|
| 106 |
+
batch_indices = batch_indices[..., None]
|
| 107 |
+
|
| 108 |
+
freqs_cos = repeat(self.freqs_cos, 'i j -> n i m j', n=t.shape[0], m=t.shape[1])
|
| 109 |
+
freqs_sin = repeat(self.freqs_sin, 'i j -> n i m j', n=t.shape[0], m=t.shape[1])
|
| 110 |
+
|
| 111 |
+
freqs_cos = freqs_cos[batch_indices, patch_indices_keep]
|
| 112 |
+
freqs_cos = rearrange(freqs_cos, 'n i m j -> n m i j')
|
| 113 |
+
freqs_sin = freqs_sin[batch_indices, patch_indices_keep]
|
| 114 |
+
freqs_sin = rearrange(freqs_sin, 'n i m j -> n m i j')
|
| 115 |
+
|
| 116 |
+
return t * freqs_cos + rotate_half(t) * freqs_sin
|
| 117 |
+
|
| 118 |
+
return t * self.freqs_cos + rotate_half(t) * self.freqs_sin
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"bos_token": {"content": "<|startoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "pad_token": "<|endoftext|>"}
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "<|startoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "pad_token": "<|endoftext|>", "add_prefix_space": false, "errors": "replace", "do_lower_case": true, "name_or_path": "openai/clip-vit-base-patch32", "model_max_length": 77, "special_tokens_map_file": "/home/suraj/.cache/huggingface/transformers/18a566598f286c9139f88160c99f84eec492a26bd22738fa9cb44d5b7e0a5c76.cce1206abbad28826f000510f22f354e53e66a97f7c23745a7dfe27609cc07f5", "tokenizer_class": "CLIPTokenizer"}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|