File size: 20,946 Bytes
1904ee8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Union

import bitsandbytes as bnb
import torch
from accelerate import Accelerator
from datasets import DatasetDict, builder, load_dataset
from peft import LoraConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training
from peft.tuners.lora import LoraLayer
from torch import nn
from tqdm import tqdm
from transformers import (
    AutoModelForSequenceClassification,
    AutoTokenizer,
    BitsAndBytesConfig,
    HfArgumentParser,
    PreTrainedTokenizerBase,
    TrainingArguments,
)

from trl import RewardTrainer


tqdm.pandas()
builder.has_sufficient_disk_space = lambda needed_bytes, directory=".": True
# torch.autograd.set_detect_anomaly(True)

### fix from https://github.com/huggingface/trl/issues/274


class GPTRewardTrainer(RewardTrainer):
    def compute_loss(
        self,
        model,
        inputs,
        return_outputs=False,
    ):
        rewards = model(
            input_ids=inputs["input_ids"],
            attention_mask=inputs["attention_mask"],
        )[0]
        bsz = rewards.size(0)
        jidx = torch.arange(0, bsz, 2)
        kidx = jidx + 1
        rewards_chosen = rewards[jidx]
        rewards_rejected = rewards[kidx]
        loss = -nn.functional.logsigmoid(rewards_chosen - rewards_rejected).mean()
        if return_outputs:
            return loss, {
                "rewards_chosen": rewards_chosen,
                "rewards_rejected": rewards_rejected,
            }
        return loss


@dataclass
class GPTRewardDataCollatorWithPadding:
    r"""
    Reward DataCollator class that pads the inputs to the maximum length of the batch.
    Args:
        tokenizer (`PreTrainedTokenizerBase`):
            The tokenizer used for encoding the data.
        padding (`Union[bool, str, `PaddingStrategy`]`, `optional`, defaults to `True`):
            padding_strategy to pass to the tokenizer.
        max_length (`Optional[int]`, `optional`, defaults to `None`):
            The maximum length of the sequence to be processed.
        pad_to_multiple_of (`Optional[int]`, `optional`, defaults to `None`):
            If set will pad the sequence to a multiple of the provided value.
        return_tensors (`str`, `optional`, defaults to `"pt"`):
            The tensor type to use.
    """

    tokenizer: PreTrainedTokenizerBase
    padding: Union[bool, str] = True
    max_length: Optional[int] = None
    pad_to_multiple_of: Optional[int] = None
    return_tensors: str = "pt"

    def __call__(self, features):
        # features_chosen = []
        # features_rejected = []
        merged_features = []
        for feature in features:
            # check if the keys are named as expected
            if (
                "input_ids_chosen" not in feature
                or "input_ids_rejected" not in feature
                or "attention_mask_chosen" not in feature
                or "attention_mask_rejected" not in feature
            ):
                raise ValueError(
                    "The features should include `input_ids_chosen`, `attention_mask_chosen`, `input_ids_rejected` and `attention_mask_rejected`"
                )

            merged_features.append(
                {
                    "input_ids": feature["input_ids_chosen"],
                    "attention_mask": feature["attention_mask_chosen"],
                }
            )
            merged_features.append(
                {
                    "input_ids": feature["input_ids_rejected"],
                    "attention_mask": feature["attention_mask_rejected"],
                }
            )
        batch = self.tokenizer.pad(
            merged_features,
            padding=self.padding,
            max_length=self.max_length,
            pad_to_multiple_of=self.pad_to_multiple_of,
            return_tensors=self.return_tensors,
        )
        batch = {
            "input_ids": batch["input_ids"],
            "attention_mask": batch["attention_mask"],
            "return_loss": True,
        }
        return batch


# Define and parse arguments.
@dataclass
class ScriptArguments:
    """
    The name of the Casual LM model we wish to fine with RewardTrainer
    """

    model_name: Optional[str] = field(
        default="/home/toolkit/huggingface/tldr_sft_pythia7b", metadata={"help": "the model name"}
    )
    dataset_name: Optional[str] = field(
        default="mnoukhov/openai_summarize_comparisons_tldrprompt", metadata={"help": "the dataset name"}
    )
    dataset_text_field: Optional[str] = field(default="prompt", metadata={"help": "the text field of the dataset"})
    log_with: Optional[str] = field(default=None, metadata={"help": "use 'wandb' to log with wandb"})
    logging_steps: Optional[int] = field(default=100, metadata={"help": "the number of update steps between two logs"})
    train_split: Optional[str] = field(
        default="train", metadata={"help": "the dataset split to evaluate on; default to 'none' (no evaluation)"}
    )
    eval_split: Optional[str] = field(
        default="test[:5000]", metadata={"help": "the dataset split to evaluate on; default to 'none' (no evaluation)"}
    )
    learning_rate: Optional[float] = field(default=1e-5, metadata={"help": "the learning rate"})
    weight_decay: Optional[float] = field(default=0.001)
    num_warmup_steps: Optional[int] = field(default=100)
    lr_scheduler_type: Optional[str] = field(default="cosine")
    optimizer_type: Optional[str] = field(default="adamw_torch", metadata={"help": "the optimizer type"})
    per_device_train_batch_size: Optional[int] = field(default=2, metadata={"help": "the per device train batch size"})
    per_device_eval_batch_size: Optional[int] = field(default=1, metadata={"help": "the per device eval batch size"})
    num_train_epochs: Optional[int] = field(default=1, metadata={"help": "the number of training epochs"})
    seq_length: Optional[int] = field(default=560, metadata={"help": "Input sequence length"})
    gradient_accumulation_steps: Optional[int] = field(
        default=16, metadata={"help": "the number of gradient accumulation steps"}
    )
    bf16: Optional[bool] = field(
        default=False,
        metadata={
            "help": "This essentially cuts the training time in half if you want to sacrifice a little precision and have a supported GPU."
        },
    )
    fp16: Optional[bool] = field(
        default=False,
        metadata={
            "help": "This essentially cuts the training time in half if you want to sacrifice a little precision and have a supported GPU."
        },
    )
    fp16_model: Optional[bool] = field(
        default=False,
        metadata={},
    )
    load_in_8bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 8 bits precision"})
    load_in_4bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 4 bits precision"})
    use_lora: Optional[bool] = field(
        default=True,
    )
    lora_alpha: Optional[float] = field(default=16, metadata={"help": "the lora alpha parameter"})
    lora_dropout: Optional[float] = field(default=0.05, metadata={"help": "the lora dropout parameter"})
    lora_r: Optional[int] = field(default=8, metadata={"help": "the lora r parameter"})
    lora_all_linear: Optional[bool] = field(default=False, metadata={"help": "lora adapter on all linear layers"})
    trust_remote_code: Optional[bool] = field(default=True, metadata={"help": "Enable `trust_remote_code`"})
    output_dir: Optional[str] = field(default="results", metadata={"help": "the output directory"})
    gradient_checkpointing: Optional[bool] = field(
        default=False,
        metadata={"help": "Enables gradient checkpointing."},
    )
    mode: Optional[str] = field(default="train")
    eval_steps: Optional[float] = field(default=None)
    pretrained_adapter: Optional[str] = field(default=None)
    padding: Optional[str] = field(
        default="max_length", metadata={"help": "padding to use for preprocessing the dataset"}
    )
    save_strategy: Optional[str] = field(default="steps")


def find_all_linear_names(args, model):
    cls = bnb.nn.Linear4bit if args.load_in_4bit else (bnb.nn.Linear8bitLt if args.load_in_8bit else torch.nn.Linear)
    lora_module_names = set()
    for name, module in model.named_modules():
        if isinstance(module, cls):
            names = name.split(".")
            lora_module_names.add(names[0] if len(names) == 1 else names[-1])

    if "lm_head" in lora_module_names:  # needed for 16-bit
        lora_module_names.remove("lm_head")

    if "score" in lora_module_names:  # needed for 16-bit
        lora_module_names.remove("score")

    return list(lora_module_names)


def create_and_prepare_model(args):
    if args.load_in_8bit and args.load_in_4bit:
        raise ValueError("You can't load the model in 8 bits and 4 bits at the same time")
    elif args.load_in_8bit or args.load_in_4bit:
        quantization_config = BitsAndBytesConfig(load_in_8bit=args.load_in_8bit, load_in_4bit=args.load_in_4bit)
        device_map = {"": Accelerator().local_process_index}
    else:
        device_map = None
        quantization_config = None

    if args.bf16:
        torch_dtype = torch.bfloat16
    elif args.fp16_model:
        torch_dtype = torch.float16
    else:
        torch_dtype = torch.float32

    model = AutoModelForSequenceClassification.from_pretrained(
        args.model_name,
        quantization_config=quantization_config,
        device_map=device_map,
        num_labels=1,
        torch_dtype=torch_dtype,
    )

    model.config.torch_dtype = torch_dtype
    model.config.use_cache = not args.gradient_checkpointing

    # if script_args.ignore_bias_buffers:
    # torch distributed hack
    if quantization_config is not None:
        model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=args.gradient_checkpointing)
        args.gradient_checkpointing = False

    if args.use_lora:
        # we add `score` to the list of modules to save to
        # correctly save the score head.
        if args.pretrained_adapter is not None:
            model = PeftModel.from_pretrained(model, args.pretrained_adapter)
        else:
            if args.lora_all_linear:
                target_modules = find_all_linear_names(args, model)
            else:
                target_modules = None

            peft_config = LoraConfig(
                r=args.lora_r,
                lora_alpha=args.lora_alpha,
                lora_dropout=args.lora_dropout,
                bias="none",
                task_type="SEQ_CLS",
                target_modules=target_modules,
                modules_to_save=["score"],
            )

            model = get_peft_model(model, peft_config)

        modules_to_save = ["score"]
        for key, _ in model.named_modules():
            target_module_found = any(key.endswith(target_key) for target_key in modules_to_save)
            if target_module_found:
                model.get_submodule(key + ".original_module").requires_grad_(False)

        if torch_dtype == torch.bfloat16:
            for name, module in model.named_modules():
                if isinstance(module, LoraLayer):
                    module = module.to(torch_dtype)
                if "norm" in name:
                    module = module.to(torch.float32)
                if "score" in name or "embed_tokens" in name:
                    if hasattr(module, "weight") and module.weight.dtype == torch.float32:
                        module = module.to(torch_dtype)

    tokenizer = AutoTokenizer.from_pretrained(script_args.model_name)
    if getattr(tokenizer, "pad_token", None) is None:
        tokenizer.pad_token = tokenizer.eos_token

    if getattr(model.config, "pad_token_id", None) is None:
        model.config.pad_token_id = model.config.eos_token_id

    return model, tokenizer


def prepare_dataset(args, dataset, tokenizer, num_proc=2):
    # def summary_filter(example):
    #     return (example["chosen"] != example["rejected"]) and (
    #         len(example["chosen"].split()) >= 5 or len(example["rejected"].split()) >= 5
    #     )
    #
    # pre_filter = len(dataset)
    # dataset = dataset.filter(summary_filter)
    # print(f"filtered {pre_filter - len(dataset)} samples from {split}")
    original_columns = dataset.column_names

    def preprocess_function(examples):
        new_examples = {
            "input_ids_chosen": [],
            "attention_mask_chosen": [],
            "input_ids_rejected": [],
            "attention_mask_rejected": [],
        }
        for prompt, chosen, rejected in zip(examples["prompt"], examples["chosen"], examples["rejected"]):
            tokenized_chosen = tokenizer(
                prompt + " " + chosen, padding=args.padding, truncation=True, max_length=script_args.seq_length
            )
            tokenized_rejected = tokenizer(
                prompt + " " + rejected, padding=args.padding, truncation=True, max_length=script_args.seq_length
            )
            new_examples["input_ids_chosen"].append(tokenized_chosen["input_ids"])
            new_examples["attention_mask_chosen"].append(tokenized_chosen["attention_mask"])
            new_examples["input_ids_rejected"].append(tokenized_rejected["input_ids"])
            new_examples["attention_mask_rejected"].append(tokenized_rejected["attention_mask"])

        return new_examples

    dataset = dataset.map(preprocess_function, batched=True, num_proc=num_proc, remove_columns=original_columns)

    return dataset


parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]

model, tokenizer = create_and_prepare_model(script_args)
if script_args.mode != "eval":
    train_data = load_dataset(script_args.dataset_name, split=script_args.train_split)
    train_dataset = prepare_dataset(script_args, train_data, tokenizer)
else:
    train_dataset = None

if script_args.eval_split is not None and script_args.eval_split != "None":
    eval_data = load_dataset(script_args.dataset_name, split=script_args.eval_split)
    eval_dataset = prepare_dataset(script_args, eval_data, tokenizer)
else:
    eval_dataset = None

# don't include gradient_checkpointing here, see trl#728
training_args = TrainingArguments(
    output_dir=script_args.output_dir,
    per_device_train_batch_size=script_args.per_device_train_batch_size,
    per_device_eval_batch_size=script_args.per_device_eval_batch_size,
    bf16=script_args.bf16,
    fp16=script_args.fp16,
    num_train_epochs=script_args.num_train_epochs,
    gradient_accumulation_steps=script_args.gradient_accumulation_steps,
    learning_rate=script_args.learning_rate,
    report_to=script_args.log_with,
    remove_unused_columns=False,
    lr_scheduler_type=script_args.lr_scheduler_type,
    weight_decay=script_args.weight_decay,
    optim=script_args.optimizer_type,
    warmup_steps=script_args.num_warmup_steps,
    logging_steps=script_args.logging_steps,
    evaluation_strategy=("steps" if script_args.eval_steps is not None else "epoch"),
    eval_steps=script_args.eval_steps,
    save_strategy="epoch",
    gradient_checkpointing=script_args.gradient_checkpointing,
    ddp_find_unused_parameters=False,
)

data_collator = GPTRewardDataCollatorWithPadding(tokenizer, max_length=script_args.seq_length, pad_to_multiple_of=8)

trainer = GPTRewardTrainer(
    model=model,
    tokenizer=tokenizer,
    args=training_args,
    train_dataset=train_dataset,
    eval_dataset=eval_dataset,
    max_length=script_args.seq_length,
    data_collator=data_collator,
)

if script_args.mode == "train":
    print("Training")
    trainer.train()
    trainer.evaluate()

    print("Saving last checkpoint of the model")
    trainer.save_model(script_args.output_dir)

    output_dir = os.path.join(script_args.output_dir, "final_checkpoint")
    trainer.model.save_pretrained(output_dir)
elif script_args.mode == "eval":
    print("Evaluating")
    # results = trainer.evaluate()
    results = trainer.evaluate()
    print(results)
elif script_args.mode == "relabel":

    def relabel_with_preds(batch: Dict[str, List]):
        relabel_batch = {
            "prompt": [],
            "chosen": [],
            "rejected": [],
            "pred_chosen": [],
            "pred_rejected": [],
        }
        for prompt, chosen, rejected, pred_chosen, pred_rejected in zip(
            batch["prompt"],
            batch["chosen"],
            batch["rejected"],
            batch["pred_chosen"],
            batch["pred_rejected"],
        ):
            relabel_batch["prompt"].append(prompt)
            if pred_chosen >= pred_rejected:
                relabel_batch["chosen"].append(chosen)
                relabel_batch["rejected"].append(rejected)
                relabel_batch["pred_chosen"].append(pred_chosen)
                relabel_batch["pred_rejected"].append(pred_rejected)
            else:
                relabel_batch["chosen"].append(rejected)
                relabel_batch["rejected"].append(chosen)
                relabel_batch["pred_chosen"].append(pred_rejected)
                relabel_batch["pred_rejected"].append(pred_chosen)

        return relabel_batch

    relabel_dataset = DatasetDict()
    for split, pred_dataset in [("train", train_dataset), ("test", eval_dataset)]:
        if pred_dataset is None:
            continue
        trainer.accelerator.print(f"Prediction {split}")
        preds, _, metrics = trainer.predict(pred_dataset)
        trainer.accelerator.print(f"metrics {metrics}")

        if trainer.accelerator.is_local_main_process:
            print("Relabelling Dataset and Saving")
            ds_split = script_args.train_split if split == "train" else script_args.eval_split
            dataset = load_dataset(script_args.dataset_name, split=ds_split)
            dataset = dataset.add_column("pred_chosen", preds[:, 0])
            dataset = dataset.add_column("pred_rejected", preds[:, 1])

            dataset = dataset.map(relabel_with_preds, batched=True)

            dataset._info.description = f"{script_args.dataset_name} relabelled with {script_args.model_name}"
            relabel_dataset[split] = dataset

    if trainer.accelerator.is_local_main_process:
        print("Saving")
        relabel_dataset.save_to_disk(script_args.output_dir)
        print("Pushing")
        relabel_dataset.push_to_hub(os.path.basename(script_args.output_dir))
elif script_args.mode == "predict":
    relabel_dataset = DatasetDict()
    for split, pred_dataset in [("train", train_dataset), ("test", eval_dataset)]:
        if pred_dataset is None:
            continue
        trainer.accelerator.print(f"Prediction {split}")
        preds, _, metrics = trainer.predict(pred_dataset)
        trainer.accelerator.print(f"metrics {metrics}")

        if trainer.accelerator.is_local_main_process:
            print("Relabelling Dataset and Saving")
            ds_split = script_args.train_split if split == "train" else script_args.eval_split
            dataset = load_dataset(script_args.dataset_name, split=ds_split)
            model_basename = script_args.model_name.rsplit("/", 1)[-1]
            dataset = dataset.add_column(f"pred_chosen_{model_basename}", preds[:, 0])
            dataset = dataset.add_column(f"pred_rejected_{model_basename}", preds[:, 1])

            dataset._info.description = f"{script_args.dataset_name} relabelled with {script_args.model_name}"
            relabel_dataset[split] = dataset

    if trainer.accelerator.is_local_main_process:
        print("Saving")
        relabel_dataset.save_to_disk(script_args.output_dir)
        print("Pushing")
        relabel_dataset.push_to_hub(os.path.basename(script_args.output_dir))
else:
    raise Exception(f"incorrect mode {script_args.mode}")
    # TODO this freezes for some reason
    # for split, dataset in relabel_dataset.items():
    #     if trainer.accelerator.is_local_main_process:
    #         eval_dataset = prepare_dataset(script_args, dataset, tokenizer)
    #     trainer.accelerator.print(f"Re-evaluating relabel {split} dataset of size {len(dataset)}")
    #     trainer.accelerator.wait_for_everyone()
    #     results = trainer.evaluate(eval_dataset)
    #     trainer.accelerator.print(results)