File size: 20,946 Bytes
1904ee8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Union
import bitsandbytes as bnb
import torch
from accelerate import Accelerator
from datasets import DatasetDict, builder, load_dataset
from peft import LoraConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training
from peft.tuners.lora import LoraLayer
from torch import nn
from tqdm import tqdm
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
HfArgumentParser,
PreTrainedTokenizerBase,
TrainingArguments,
)
from trl import RewardTrainer
tqdm.pandas()
builder.has_sufficient_disk_space = lambda needed_bytes, directory=".": True
# torch.autograd.set_detect_anomaly(True)
### fix from https://github.com/huggingface/trl/issues/274
class GPTRewardTrainer(RewardTrainer):
def compute_loss(
self,
model,
inputs,
return_outputs=False,
):
rewards = model(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
)[0]
bsz = rewards.size(0)
jidx = torch.arange(0, bsz, 2)
kidx = jidx + 1
rewards_chosen = rewards[jidx]
rewards_rejected = rewards[kidx]
loss = -nn.functional.logsigmoid(rewards_chosen - rewards_rejected).mean()
if return_outputs:
return loss, {
"rewards_chosen": rewards_chosen,
"rewards_rejected": rewards_rejected,
}
return loss
@dataclass
class GPTRewardDataCollatorWithPadding:
r"""
Reward DataCollator class that pads the inputs to the maximum length of the batch.
Args:
tokenizer (`PreTrainedTokenizerBase`):
The tokenizer used for encoding the data.
padding (`Union[bool, str, `PaddingStrategy`]`, `optional`, defaults to `True`):
padding_strategy to pass to the tokenizer.
max_length (`Optional[int]`, `optional`, defaults to `None`):
The maximum length of the sequence to be processed.
pad_to_multiple_of (`Optional[int]`, `optional`, defaults to `None`):
If set will pad the sequence to a multiple of the provided value.
return_tensors (`str`, `optional`, defaults to `"pt"`):
The tensor type to use.
"""
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
return_tensors: str = "pt"
def __call__(self, features):
# features_chosen = []
# features_rejected = []
merged_features = []
for feature in features:
# check if the keys are named as expected
if (
"input_ids_chosen" not in feature
or "input_ids_rejected" not in feature
or "attention_mask_chosen" not in feature
or "attention_mask_rejected" not in feature
):
raise ValueError(
"The features should include `input_ids_chosen`, `attention_mask_chosen`, `input_ids_rejected` and `attention_mask_rejected`"
)
merged_features.append(
{
"input_ids": feature["input_ids_chosen"],
"attention_mask": feature["attention_mask_chosen"],
}
)
merged_features.append(
{
"input_ids": feature["input_ids_rejected"],
"attention_mask": feature["attention_mask_rejected"],
}
)
batch = self.tokenizer.pad(
merged_features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors=self.return_tensors,
)
batch = {
"input_ids": batch["input_ids"],
"attention_mask": batch["attention_mask"],
"return_loss": True,
}
return batch
# Define and parse arguments.
@dataclass
class ScriptArguments:
"""
The name of the Casual LM model we wish to fine with RewardTrainer
"""
model_name: Optional[str] = field(
default="/home/toolkit/huggingface/tldr_sft_pythia7b", metadata={"help": "the model name"}
)
dataset_name: Optional[str] = field(
default="mnoukhov/openai_summarize_comparisons_tldrprompt", metadata={"help": "the dataset name"}
)
dataset_text_field: Optional[str] = field(default="prompt", metadata={"help": "the text field of the dataset"})
log_with: Optional[str] = field(default=None, metadata={"help": "use 'wandb' to log with wandb"})
logging_steps: Optional[int] = field(default=100, metadata={"help": "the number of update steps between two logs"})
train_split: Optional[str] = field(
default="train", metadata={"help": "the dataset split to evaluate on; default to 'none' (no evaluation)"}
)
eval_split: Optional[str] = field(
default="test[:5000]", metadata={"help": "the dataset split to evaluate on; default to 'none' (no evaluation)"}
)
learning_rate: Optional[float] = field(default=1e-5, metadata={"help": "the learning rate"})
weight_decay: Optional[float] = field(default=0.001)
num_warmup_steps: Optional[int] = field(default=100)
lr_scheduler_type: Optional[str] = field(default="cosine")
optimizer_type: Optional[str] = field(default="adamw_torch", metadata={"help": "the optimizer type"})
per_device_train_batch_size: Optional[int] = field(default=2, metadata={"help": "the per device train batch size"})
per_device_eval_batch_size: Optional[int] = field(default=1, metadata={"help": "the per device eval batch size"})
num_train_epochs: Optional[int] = field(default=1, metadata={"help": "the number of training epochs"})
seq_length: Optional[int] = field(default=560, metadata={"help": "Input sequence length"})
gradient_accumulation_steps: Optional[int] = field(
default=16, metadata={"help": "the number of gradient accumulation steps"}
)
bf16: Optional[bool] = field(
default=False,
metadata={
"help": "This essentially cuts the training time in half if you want to sacrifice a little precision and have a supported GPU."
},
)
fp16: Optional[bool] = field(
default=False,
metadata={
"help": "This essentially cuts the training time in half if you want to sacrifice a little precision and have a supported GPU."
},
)
fp16_model: Optional[bool] = field(
default=False,
metadata={},
)
load_in_8bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 8 bits precision"})
load_in_4bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 4 bits precision"})
use_lora: Optional[bool] = field(
default=True,
)
lora_alpha: Optional[float] = field(default=16, metadata={"help": "the lora alpha parameter"})
lora_dropout: Optional[float] = field(default=0.05, metadata={"help": "the lora dropout parameter"})
lora_r: Optional[int] = field(default=8, metadata={"help": "the lora r parameter"})
lora_all_linear: Optional[bool] = field(default=False, metadata={"help": "lora adapter on all linear layers"})
trust_remote_code: Optional[bool] = field(default=True, metadata={"help": "Enable `trust_remote_code`"})
output_dir: Optional[str] = field(default="results", metadata={"help": "the output directory"})
gradient_checkpointing: Optional[bool] = field(
default=False,
metadata={"help": "Enables gradient checkpointing."},
)
mode: Optional[str] = field(default="train")
eval_steps: Optional[float] = field(default=None)
pretrained_adapter: Optional[str] = field(default=None)
padding: Optional[str] = field(
default="max_length", metadata={"help": "padding to use for preprocessing the dataset"}
)
save_strategy: Optional[str] = field(default="steps")
def find_all_linear_names(args, model):
cls = bnb.nn.Linear4bit if args.load_in_4bit else (bnb.nn.Linear8bitLt if args.load_in_8bit else torch.nn.Linear)
lora_module_names = set()
for name, module in model.named_modules():
if isinstance(module, cls):
names = name.split(".")
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if "lm_head" in lora_module_names: # needed for 16-bit
lora_module_names.remove("lm_head")
if "score" in lora_module_names: # needed for 16-bit
lora_module_names.remove("score")
return list(lora_module_names)
def create_and_prepare_model(args):
if args.load_in_8bit and args.load_in_4bit:
raise ValueError("You can't load the model in 8 bits and 4 bits at the same time")
elif args.load_in_8bit or args.load_in_4bit:
quantization_config = BitsAndBytesConfig(load_in_8bit=args.load_in_8bit, load_in_4bit=args.load_in_4bit)
device_map = {"": Accelerator().local_process_index}
else:
device_map = None
quantization_config = None
if args.bf16:
torch_dtype = torch.bfloat16
elif args.fp16_model:
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
model = AutoModelForSequenceClassification.from_pretrained(
args.model_name,
quantization_config=quantization_config,
device_map=device_map,
num_labels=1,
torch_dtype=torch_dtype,
)
model.config.torch_dtype = torch_dtype
model.config.use_cache = not args.gradient_checkpointing
# if script_args.ignore_bias_buffers:
# torch distributed hack
if quantization_config is not None:
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=args.gradient_checkpointing)
args.gradient_checkpointing = False
if args.use_lora:
# we add `score` to the list of modules to save to
# correctly save the score head.
if args.pretrained_adapter is not None:
model = PeftModel.from_pretrained(model, args.pretrained_adapter)
else:
if args.lora_all_linear:
target_modules = find_all_linear_names(args, model)
else:
target_modules = None
peft_config = LoraConfig(
r=args.lora_r,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
bias="none",
task_type="SEQ_CLS",
target_modules=target_modules,
modules_to_save=["score"],
)
model = get_peft_model(model, peft_config)
modules_to_save = ["score"]
for key, _ in model.named_modules():
target_module_found = any(key.endswith(target_key) for target_key in modules_to_save)
if target_module_found:
model.get_submodule(key + ".original_module").requires_grad_(False)
if torch_dtype == torch.bfloat16:
for name, module in model.named_modules():
if isinstance(module, LoraLayer):
module = module.to(torch_dtype)
if "norm" in name:
module = module.to(torch.float32)
if "score" in name or "embed_tokens" in name:
if hasattr(module, "weight") and module.weight.dtype == torch.float32:
module = module.to(torch_dtype)
tokenizer = AutoTokenizer.from_pretrained(script_args.model_name)
if getattr(tokenizer, "pad_token", None) is None:
tokenizer.pad_token = tokenizer.eos_token
if getattr(model.config, "pad_token_id", None) is None:
model.config.pad_token_id = model.config.eos_token_id
return model, tokenizer
def prepare_dataset(args, dataset, tokenizer, num_proc=2):
# def summary_filter(example):
# return (example["chosen"] != example["rejected"]) and (
# len(example["chosen"].split()) >= 5 or len(example["rejected"].split()) >= 5
# )
#
# pre_filter = len(dataset)
# dataset = dataset.filter(summary_filter)
# print(f"filtered {pre_filter - len(dataset)} samples from {split}")
original_columns = dataset.column_names
def preprocess_function(examples):
new_examples = {
"input_ids_chosen": [],
"attention_mask_chosen": [],
"input_ids_rejected": [],
"attention_mask_rejected": [],
}
for prompt, chosen, rejected in zip(examples["prompt"], examples["chosen"], examples["rejected"]):
tokenized_chosen = tokenizer(
prompt + " " + chosen, padding=args.padding, truncation=True, max_length=script_args.seq_length
)
tokenized_rejected = tokenizer(
prompt + " " + rejected, padding=args.padding, truncation=True, max_length=script_args.seq_length
)
new_examples["input_ids_chosen"].append(tokenized_chosen["input_ids"])
new_examples["attention_mask_chosen"].append(tokenized_chosen["attention_mask"])
new_examples["input_ids_rejected"].append(tokenized_rejected["input_ids"])
new_examples["attention_mask_rejected"].append(tokenized_rejected["attention_mask"])
return new_examples
dataset = dataset.map(preprocess_function, batched=True, num_proc=num_proc, remove_columns=original_columns)
return dataset
parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]
model, tokenizer = create_and_prepare_model(script_args)
if script_args.mode != "eval":
train_data = load_dataset(script_args.dataset_name, split=script_args.train_split)
train_dataset = prepare_dataset(script_args, train_data, tokenizer)
else:
train_dataset = None
if script_args.eval_split is not None and script_args.eval_split != "None":
eval_data = load_dataset(script_args.dataset_name, split=script_args.eval_split)
eval_dataset = prepare_dataset(script_args, eval_data, tokenizer)
else:
eval_dataset = None
# don't include gradient_checkpointing here, see trl#728
training_args = TrainingArguments(
output_dir=script_args.output_dir,
per_device_train_batch_size=script_args.per_device_train_batch_size,
per_device_eval_batch_size=script_args.per_device_eval_batch_size,
bf16=script_args.bf16,
fp16=script_args.fp16,
num_train_epochs=script_args.num_train_epochs,
gradient_accumulation_steps=script_args.gradient_accumulation_steps,
learning_rate=script_args.learning_rate,
report_to=script_args.log_with,
remove_unused_columns=False,
lr_scheduler_type=script_args.lr_scheduler_type,
weight_decay=script_args.weight_decay,
optim=script_args.optimizer_type,
warmup_steps=script_args.num_warmup_steps,
logging_steps=script_args.logging_steps,
evaluation_strategy=("steps" if script_args.eval_steps is not None else "epoch"),
eval_steps=script_args.eval_steps,
save_strategy="epoch",
gradient_checkpointing=script_args.gradient_checkpointing,
ddp_find_unused_parameters=False,
)
data_collator = GPTRewardDataCollatorWithPadding(tokenizer, max_length=script_args.seq_length, pad_to_multiple_of=8)
trainer = GPTRewardTrainer(
model=model,
tokenizer=tokenizer,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
max_length=script_args.seq_length,
data_collator=data_collator,
)
if script_args.mode == "train":
print("Training")
trainer.train()
trainer.evaluate()
print("Saving last checkpoint of the model")
trainer.save_model(script_args.output_dir)
output_dir = os.path.join(script_args.output_dir, "final_checkpoint")
trainer.model.save_pretrained(output_dir)
elif script_args.mode == "eval":
print("Evaluating")
# results = trainer.evaluate()
results = trainer.evaluate()
print(results)
elif script_args.mode == "relabel":
def relabel_with_preds(batch: Dict[str, List]):
relabel_batch = {
"prompt": [],
"chosen": [],
"rejected": [],
"pred_chosen": [],
"pred_rejected": [],
}
for prompt, chosen, rejected, pred_chosen, pred_rejected in zip(
batch["prompt"],
batch["chosen"],
batch["rejected"],
batch["pred_chosen"],
batch["pred_rejected"],
):
relabel_batch["prompt"].append(prompt)
if pred_chosen >= pred_rejected:
relabel_batch["chosen"].append(chosen)
relabel_batch["rejected"].append(rejected)
relabel_batch["pred_chosen"].append(pred_chosen)
relabel_batch["pred_rejected"].append(pred_rejected)
else:
relabel_batch["chosen"].append(rejected)
relabel_batch["rejected"].append(chosen)
relabel_batch["pred_chosen"].append(pred_rejected)
relabel_batch["pred_rejected"].append(pred_chosen)
return relabel_batch
relabel_dataset = DatasetDict()
for split, pred_dataset in [("train", train_dataset), ("test", eval_dataset)]:
if pred_dataset is None:
continue
trainer.accelerator.print(f"Prediction {split}")
preds, _, metrics = trainer.predict(pred_dataset)
trainer.accelerator.print(f"metrics {metrics}")
if trainer.accelerator.is_local_main_process:
print("Relabelling Dataset and Saving")
ds_split = script_args.train_split if split == "train" else script_args.eval_split
dataset = load_dataset(script_args.dataset_name, split=ds_split)
dataset = dataset.add_column("pred_chosen", preds[:, 0])
dataset = dataset.add_column("pred_rejected", preds[:, 1])
dataset = dataset.map(relabel_with_preds, batched=True)
dataset._info.description = f"{script_args.dataset_name} relabelled with {script_args.model_name}"
relabel_dataset[split] = dataset
if trainer.accelerator.is_local_main_process:
print("Saving")
relabel_dataset.save_to_disk(script_args.output_dir)
print("Pushing")
relabel_dataset.push_to_hub(os.path.basename(script_args.output_dir))
elif script_args.mode == "predict":
relabel_dataset = DatasetDict()
for split, pred_dataset in [("train", train_dataset), ("test", eval_dataset)]:
if pred_dataset is None:
continue
trainer.accelerator.print(f"Prediction {split}")
preds, _, metrics = trainer.predict(pred_dataset)
trainer.accelerator.print(f"metrics {metrics}")
if trainer.accelerator.is_local_main_process:
print("Relabelling Dataset and Saving")
ds_split = script_args.train_split if split == "train" else script_args.eval_split
dataset = load_dataset(script_args.dataset_name, split=ds_split)
model_basename = script_args.model_name.rsplit("/", 1)[-1]
dataset = dataset.add_column(f"pred_chosen_{model_basename}", preds[:, 0])
dataset = dataset.add_column(f"pred_rejected_{model_basename}", preds[:, 1])
dataset._info.description = f"{script_args.dataset_name} relabelled with {script_args.model_name}"
relabel_dataset[split] = dataset
if trainer.accelerator.is_local_main_process:
print("Saving")
relabel_dataset.save_to_disk(script_args.output_dir)
print("Pushing")
relabel_dataset.push_to_hub(os.path.basename(script_args.output_dir))
else:
raise Exception(f"incorrect mode {script_args.mode}")
# TODO this freezes for some reason
# for split, dataset in relabel_dataset.items():
# if trainer.accelerator.is_local_main_process:
# eval_dataset = prepare_dataset(script_args, dataset, tokenizer)
# trainer.accelerator.print(f"Re-evaluating relabel {split} dataset of size {len(dataset)}")
# trainer.accelerator.wait_for_everyone()
# results = trainer.evaluate(eval_dataset)
# trainer.accelerator.print(results)
|