File size: 12,506 Bytes
addb26d
 
 
 
 
 
 
 
 
 
 
eda17fb
addb26d
 
 
eda17fb
 
addb26d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf9c6ea
 
addb26d
cf9c6ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
866f0c8
 
 
cf9c6ea
 
 
 
 
 
 
 
 
 
 
 
 
 
866f0c8
 
 
 
 
 
 
cf9c6ea
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
"""ASR pipeline for audio-to-text transcription with optional timestamps and diarization."""

import re
from pathlib import Path
from typing import Any

import numpy as np
import torch
import transformers

try:
    from .alignment import ForcedAligner
    from .asr_modeling import ASRModel
    from .diarization import SpeakerDiarizer
except ImportError:
    from alignment import ForcedAligner  # type: ignore[no-redef]
    from asr_modeling import ASRModel  # type: ignore[no-redef]
    from diarization import SpeakerDiarizer  # type: ignore[no-redef]

# Re-export for backwards compatibility
__all__ = ["ForcedAligner", "SpeakerDiarizer", "ASRPipeline"]


class ASRPipeline(transformers.AutomaticSpeechRecognitionPipeline):
    """ASR Pipeline for audio-to-text transcription."""

    model: ASRModel

    def __init__(self, model: ASRModel, **kwargs):
        """Initialize ASR pipeline.

        Args:
            model: ASRModel instance for transcription
            **kwargs: Additional arguments (feature_extractor, tokenizer, device)
        """
        feature_extractor = kwargs.pop("feature_extractor", None)
        tokenizer = kwargs.pop("tokenizer", model.tokenizer)

        if feature_extractor is None:
            feature_extractor = model.get_processor().feature_extractor

        super().__init__(
            model=model, feature_extractor=feature_extractor, tokenizer=tokenizer, **kwargs
        )
        self._current_audio = None

    def _sanitize_parameters(self, **kwargs):
        """Intercept our custom parameters before parent class validates them."""
        # Remove our custom parameters so parent doesn't see them
        kwargs.pop("return_timestamps", None)
        kwargs.pop("return_speakers", None)
        kwargs.pop("num_speakers", None)
        kwargs.pop("min_speakers", None)
        kwargs.pop("max_speakers", None)
        kwargs.pop("hf_token", None)
        kwargs.pop("user_prompt", None)
        kwargs.pop("diarization_backend", None)

        return super()._sanitize_parameters(**kwargs)

    def __call__(
        self,
        inputs,
        **kwargs,
    ):
        """Transcribe audio with optional word-level timestamps and speaker diarization.

        Args:
            inputs: Audio input (file path, dict with array/sampling_rate, etc.)
            return_timestamps: If True, return word-level timestamps using forced alignment
            return_speakers: If True, return speaker labels for each word
            user_prompt: Custom transcription prompt (default: "Transcribe: ")
            num_speakers: Exact number of speakers (if known, for diarization)
            min_speakers: Minimum number of speakers (for diarization)
            max_speakers: Maximum number of speakers (for diarization)
            **kwargs: Additional arguments passed to the pipeline

        Returns:
            Dict with 'text' key, 'words' key if return_timestamps=True,
            and speaker labels on words if return_speakers=True
        """
        # Extract our params before super().__call__ (which will also call _sanitize_parameters)
        return_timestamps = kwargs.pop("return_timestamps", False)
        return_speakers = kwargs.pop("return_speakers", False)
        user_prompt = kwargs.pop("user_prompt", None)
        diarization_params = {
            "num_speakers": kwargs.pop("num_speakers", None),
            "min_speakers": kwargs.pop("min_speakers", None),
            "max_speakers": kwargs.pop("max_speakers", None),
        }

        if return_speakers:
            return_timestamps = True

        # Set custom user prompt if provided
        original_prompt = None
        if user_prompt:
            original_prompt = self.model.TRANSCRIBE_PROMPT
            self.model.TRANSCRIBE_PROMPT = user_prompt

        # Store audio for timestamp alignment and diarization
        if return_timestamps or return_speakers:
            self._current_audio = self._extract_audio(inputs)

        # Run standard transcription
        result = super().__call__(inputs, **kwargs)

        # Add timestamps if requested
        if return_timestamps and self._current_audio is not None:
            text = result.get("text", "")
            if text:
                try:
                    words = ForcedAligner.align(
                        self._current_audio["array"],
                        text,
                        sample_rate=self._current_audio.get("sampling_rate", 16000),
                    )
                    result["words"] = words
                except Exception as e:
                    result["words"] = []
                    result["timestamp_error"] = str(e)
            else:
                result["words"] = []

        # Add speaker diarization if requested
        if return_speakers and self._current_audio is not None:
            try:
                # Run diarization
                speaker_segments = SpeakerDiarizer.diarize(
                    self._current_audio["array"],
                    sample_rate=self._current_audio.get("sampling_rate", 16000),
                    **{k: v for k, v in diarization_params.items() if v is not None},
                )
                result["speaker_segments"] = speaker_segments

                # Assign speakers to words
                if result.get("words"):
                    result["words"] = SpeakerDiarizer.assign_speakers_to_words(
                        result["words"],
                        speaker_segments,
                    )
            except Exception as e:
                result["speaker_segments"] = []
                result["diarization_error"] = str(e)

        # Clean up
        self._current_audio = None
        if original_prompt is not None:
            self.model.TRANSCRIBE_PROMPT = original_prompt

        return result

    def _extract_audio(self, inputs) -> dict | None:
        """Extract audio array from various input formats using HF utilities."""
        from transformers.pipelines.audio_utils import ffmpeg_read

        if isinstance(inputs, dict):
            if "array" in inputs:
                return {
                    "array": inputs["array"],
                    "sampling_rate": inputs.get("sampling_rate", 16000),
                }
            if "raw" in inputs:
                return {
                    "array": inputs["raw"],
                    "sampling_rate": inputs.get("sampling_rate", 16000),
                }
        elif isinstance(inputs, str):
            # File path - load audio using ffmpeg (same as HF pipeline)
            with Path(inputs).open("rb") as f:
                audio = ffmpeg_read(f.read(), sampling_rate=16000)
            return {"array": audio, "sampling_rate": 16000}
        elif isinstance(inputs, bytes):
            audio = ffmpeg_read(inputs, sampling_rate=16000)
            return {"array": audio, "sampling_rate": 16000}
        elif isinstance(inputs, np.ndarray):
            return {"array": inputs, "sampling_rate": 16000}

        return None

    def preprocess(self, inputs, **preprocess_params):
        """Preprocess audio inputs for the model.

        Args:
            inputs: Audio input (dict with array, file path, etc.)
            **preprocess_params: Additional preprocessing parameters

        Yields:
            Model input dicts with input_features and attention_mask
        """
        # Handle dict with "array" key (from datasets)
        if isinstance(inputs, dict) and "array" in inputs:
            inputs = {
                "raw": inputs["array"],
                "sampling_rate": inputs.get("sampling_rate", self.feature_extractor.sampling_rate),
            }

        for item in super().preprocess(inputs, **preprocess_params):
            if "is_last" not in item:
                item["is_last"] = True
            yield item

    def _forward(self, model_inputs, **generate_kwargs) -> dict[str, Any]:
        """Run model forward pass to generate transcription.

        Args:
            model_inputs: Dict with input_features and attention_mask
            **generate_kwargs: Generation parameters

        Returns:
            Dict with generated token IDs
        """
        # Extract audio features and is_last flag
        is_last = model_inputs.pop("is_last", True) if isinstance(model_inputs, dict) else True

        input_features = model_inputs["input_features"].to(self.model.device)
        audio_attention_mask = model_inputs["attention_mask"].to(self.model.device)

        generated_ids = self.model.generate(
            input_features=input_features,
            audio_attention_mask=audio_attention_mask,
            **generate_kwargs,
        )

        return {"tokens": generated_ids, "is_last": is_last}

    def postprocess(self, model_outputs, **kwargs) -> dict[str, str]:
        """Convert model output tokens to text.

        Args:
            model_outputs: Dict with 'tokens' key containing generated IDs
            **kwargs: Additional postprocessing parameters

        Returns:
            Dict with 'text' key containing transcription
        """
        # Handle list of outputs (from chunking)
        if isinstance(model_outputs, list):
            model_outputs = model_outputs[0] if model_outputs else {}

        tokens = model_outputs.get("tokens")
        if tokens is None:
            return super().postprocess(model_outputs, **kwargs)

        if torch.is_tensor(tokens):
            tokens = tokens.cpu()
            if tokens.dim() > 1:
                tokens = tokens[0]

        # Filter out eos tokens that the tokenizer doesn't recognize as special
        # (generation_config.eos_token_id may differ from tokenizer.eos_token_id)
        if hasattr(self, "model") and hasattr(self.model, "generation_config"):
            eos_ids = self.model.generation_config.eos_token_id
            if eos_ids is not None:
                eos_set = set(eos_ids) if isinstance(eos_ids, list) else {eos_ids}
                tokens = [t for t in tokens.tolist() if t not in eos_set]

        text = self.tokenizer.decode(tokens, skip_special_tokens=True).strip()
        # Strip <think>...</think> tags (Qwen3 doesn't respect /no_think prompt)
        text = re.sub(r"<think>.*?</think>\s*", "", text, flags=re.DOTALL).strip()
        # Truncate repetitions at end of text
        text = _truncate_repetitions(text)
        return {"text": text}


def _truncate_repetitions(text: str, min_repeats: int = 3) -> str:
    """Truncate repeated words/phrases/characters at end of text.

    Detects patterns like:
    - Repeated words: "the the the the" -> "the"
    - Repeated phrases: "i am sorry i am sorry i am sorry" -> "i am sorry"
    - Repeated characters: "444444" -> "4"

    Args:
        text: Input text to process
        min_repeats: Minimum repetitions to trigger truncation (default 3)

    Returns:
        Text with trailing repetitions removed
    """
    if not text:
        return text

    # 1. Truncate repeated characters at end (e.g., "444444" -> "4")
    char_pattern = re.compile(r"(.)\1{" + str(min_repeats - 1) + r",}$")
    text = char_pattern.sub(r"\1", text)

    # 2. Truncate repeated words at end (e.g., "the the the" -> "the")
    word_pattern = re.compile(
        r"\b(\w+)(?:\s+\1){" + str(min_repeats - 1) + r",}\s*$", re.IGNORECASE
    )
    while word_pattern.search(text):
        text = word_pattern.sub(r"\1", text)

    # 3. Truncate repeated phrases (2-20 words) at end
    # e.g., "i am sorry i am sorry i am sorry" -> "i am sorry"
    words = text.split()
    if len(words) >= min_repeats * 2:
        # Try phrase lengths from 2 to 20 words
        for phrase_len in range(2, min(21, len(words) // min_repeats + 1)):
            # Check if the last phrase_len words repeat
            phrase = " ".join(words[-phrase_len:])
            # Build pattern to match repeated phrases at end
            phrase_escaped = re.escape(phrase)
            phrase_pattern = re.compile(
                r"(^|.*?\s)("
                + phrase_escaped
                + r")(?:\s+"
                + phrase_escaped
                + r"){"
                + str(min_repeats - 1)
                + r",}\s*$",
                re.IGNORECASE,
            )
            match = phrase_pattern.match(text)
            if match:
                # Keep prefix + one instance of the phrase
                text = (match.group(1) + match.group(2)).strip()
                words = text.split()
                break

    return text