fg-mindee
commited on
Commit
·
e69f58b
1
Parent(s):
52a70b2
feat: Added first version
Browse files- README.md +112 -0
- config.json +1 -0
- pytorch_model.bin +3 -0
README.md
CHANGED
|
@@ -1,3 +1,115 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- image-classification
|
| 5 |
+
- pytorch
|
| 6 |
+
datasets:
|
| 7 |
+
- imagenette
|
| 8 |
---
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
# ReXNet-1.0x model
|
| 12 |
+
|
| 13 |
+
Pretrained on [ImageNette](https://github.com/fastai/imagenette). The ReXNet architecture was introduced in [this paper](https://arxiv.org/pdf/2007.00992.pdf).
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
## Model description
|
| 17 |
+
|
| 18 |
+
The core idea of the author is to help the gradient propagation through numerous layers by adding a skip connection.
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
## Installation
|
| 22 |
+
|
| 23 |
+
### Prerequisites
|
| 24 |
+
|
| 25 |
+
Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron.
|
| 26 |
+
|
| 27 |
+
### Latest stable release
|
| 28 |
+
|
| 29 |
+
You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows:
|
| 30 |
+
|
| 31 |
+
```shell
|
| 32 |
+
pip install pylocron
|
| 33 |
+
```
|
| 34 |
+
|
| 35 |
+
or using [conda](https://anaconda.org/frgfm/pylocron):
|
| 36 |
+
|
| 37 |
+
```shell
|
| 38 |
+
conda install -c frgfm pylocron
|
| 39 |
+
```
|
| 40 |
+
|
| 41 |
+
### Developer mode
|
| 42 |
+
|
| 43 |
+
Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*:
|
| 44 |
+
|
| 45 |
+
```shell
|
| 46 |
+
git clone https://github.com/frgfm/Holocron.git
|
| 47 |
+
pip install -e Holocron/.
|
| 48 |
+
```
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
## Usage instructions
|
| 52 |
+
|
| 53 |
+
```python
|
| 54 |
+
from PIL import Image
|
| 55 |
+
from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize
|
| 56 |
+
from torchvision.transforms.functional import InterpolationMode
|
| 57 |
+
from holocron.models import model_from_hf_hub
|
| 58 |
+
|
| 59 |
+
model = model_from_hf_hub("frgfm/rexnet1_0x").eval()
|
| 60 |
+
|
| 61 |
+
img = Image.open(path_to_an_image).convert("RGB")
|
| 62 |
+
|
| 63 |
+
# Preprocessing
|
| 64 |
+
config = model.default_cfg
|
| 65 |
+
transform = Compose([
|
| 66 |
+
Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR),
|
| 67 |
+
PILToTensor(),
|
| 68 |
+
ConvertImageDtype(torch.float32),
|
| 69 |
+
Normalize(config['mean'], config['std'])
|
| 70 |
+
])
|
| 71 |
+
|
| 72 |
+
input_tensor = transform(img).unsqueeze(0)
|
| 73 |
+
|
| 74 |
+
# Inference
|
| 75 |
+
with torch.inference_mode():
|
| 76 |
+
output = model(input_tensor)
|
| 77 |
+
probs = output.squeeze(0).softmax(dim=0)
|
| 78 |
+
```
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
## Citation
|
| 82 |
+
|
| 83 |
+
Original paper
|
| 84 |
+
|
| 85 |
+
```bibtex
|
| 86 |
+
@article{DBLP:journals/corr/abs-2007-00992,
|
| 87 |
+
author = {Dongyoon Han and
|
| 88 |
+
Sangdoo Yun and
|
| 89 |
+
Byeongho Heo and
|
| 90 |
+
Young Joon Yoo},
|
| 91 |
+
title = {ReXNet: Diminishing Representational Bottleneck on Convolutional Neural
|
| 92 |
+
Network},
|
| 93 |
+
journal = {CoRR},
|
| 94 |
+
volume = {abs/2007.00992},
|
| 95 |
+
year = {2020},
|
| 96 |
+
url = {https://arxiv.org/abs/2007.00992},
|
| 97 |
+
eprinttype = {arXiv},
|
| 98 |
+
eprint = {2007.00992},
|
| 99 |
+
timestamp = {Mon, 06 Jul 2020 15:26:01 +0200},
|
| 100 |
+
biburl = {https://dblp.org/rec/journals/corr/abs-2007-00992.bib},
|
| 101 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
| 102 |
+
}
|
| 103 |
+
```
|
| 104 |
+
|
| 105 |
+
Source of this implementation
|
| 106 |
+
|
| 107 |
+
```bibtex
|
| 108 |
+
@software{Fernandez_Holocron_2020,
|
| 109 |
+
author = {Fernandez, François-Guillaume},
|
| 110 |
+
month = {5},
|
| 111 |
+
title = {{Holocron}},
|
| 112 |
+
url = {https://github.com/frgfm/Holocron},
|
| 113 |
+
year = {2020}
|
| 114 |
+
}
|
| 115 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"mean": [0.485, 0.456, 0.406], "std": [0.229, 0.224, 0.225], "arch": "rexnet1_0x", "interpolation": "bilinear", "input_shape": [3, 224, 224], "classes": ["tench", "English springer", "cassette player", "chain saw", "church", "French horn", "garbage truck", "gas pump", "golf ball", "parachute"]}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a711822d7c992c26046d3f9a3fd3b75f48817ed749e8b6189fc26965a0bcd93d
|
| 3 |
+
size 14400737
|