fg-mindee
commited on
Commit
·
7579229
1
Parent(s):
8f043c7
feat: Added PyTorch model
Browse files- README.md +110 -0
- config.json +1 -0
- pytorch_model.bin +3 -0
README.md
CHANGED
|
@@ -1,3 +1,113 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- image-classification
|
| 5 |
+
- pytorch
|
| 6 |
+
- onnx
|
| 7 |
+
datasets:
|
| 8 |
+
- imagenette
|
| 9 |
---
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
# Darknet-19 model
|
| 13 |
+
|
| 14 |
+
Pretrained on [ImageNette](https://github.com/fastai/imagenette). The Darknet-19 architecture was introduced in [this paper](https://pjreddie.com/media/files/papers/YOLO9000.pdf).
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
## Model description
|
| 18 |
+
|
| 19 |
+
The core idea of the author is to combine high throughput of a highway net with performance gains using better activations (Leaky ReLU) and batch normalization. This architecture is used as a backbone for YOLOv2.
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
## Installation
|
| 23 |
+
|
| 24 |
+
### Prerequisites
|
| 25 |
+
|
| 26 |
+
Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron.
|
| 27 |
+
|
| 28 |
+
### Latest stable release
|
| 29 |
+
|
| 30 |
+
You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows:
|
| 31 |
+
|
| 32 |
+
```shell
|
| 33 |
+
pip install pylocron
|
| 34 |
+
```
|
| 35 |
+
|
| 36 |
+
or using [conda](https://anaconda.org/frgfm/pylocron):
|
| 37 |
+
|
| 38 |
+
```shell
|
| 39 |
+
conda install -c frgfm pylocron
|
| 40 |
+
```
|
| 41 |
+
|
| 42 |
+
### Developer mode
|
| 43 |
+
|
| 44 |
+
Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*:
|
| 45 |
+
|
| 46 |
+
```shell
|
| 47 |
+
git clone https://github.com/frgfm/Holocron.git
|
| 48 |
+
pip install -e Holocron/.
|
| 49 |
+
```
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
## Usage instructions
|
| 53 |
+
|
| 54 |
+
```python
|
| 55 |
+
from PIL import Image
|
| 56 |
+
from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize
|
| 57 |
+
from torchvision.transforms.functional import InterpolationMode
|
| 58 |
+
from holocron.models import model_from_hf_hub
|
| 59 |
+
|
| 60 |
+
model = model_from_hf_hub("frgfm/darknet19").eval()
|
| 61 |
+
|
| 62 |
+
img = Image.open(path_to_an_image).convert("RGB")
|
| 63 |
+
|
| 64 |
+
# Preprocessing
|
| 65 |
+
config = model.default_cfg
|
| 66 |
+
transform = Compose([
|
| 67 |
+
Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR),
|
| 68 |
+
PILToTensor(),
|
| 69 |
+
ConvertImageDtype(torch.float32),
|
| 70 |
+
Normalize(config['mean'], config['std'])
|
| 71 |
+
])
|
| 72 |
+
|
| 73 |
+
input_tensor = transform(img).unsqueeze(0)
|
| 74 |
+
|
| 75 |
+
# Inference
|
| 76 |
+
with torch.inference_mode():
|
| 77 |
+
output = model(input_tensor)
|
| 78 |
+
probs = output.squeeze(0).softmax(dim=0)
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
## Citation
|
| 83 |
+
|
| 84 |
+
Original paper
|
| 85 |
+
|
| 86 |
+
```bibtex
|
| 87 |
+
@article{DBLP:journals/corr/RedmonF16,
|
| 88 |
+
author = {Joseph Redmon and
|
| 89 |
+
Ali Farhadi},
|
| 90 |
+
title = {{YOLO9000:} Better, Faster, Stronger},
|
| 91 |
+
journal = {CoRR},
|
| 92 |
+
volume = {abs/1612.08242},
|
| 93 |
+
year = {2016},
|
| 94 |
+
url = {http://arxiv.org/abs/1612.08242},
|
| 95 |
+
eprinttype = {arXiv},
|
| 96 |
+
eprint = {1612.08242},
|
| 97 |
+
timestamp = {Mon, 13 Aug 2018 16:48:25 +0200},
|
| 98 |
+
biburl = {https://dblp.org/rec/journals/corr/RedmonF16.bib},
|
| 99 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
| 100 |
+
}
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
Source of this implementation
|
| 104 |
+
|
| 105 |
+
```bibtex
|
| 106 |
+
@software{Fernandez_Holocron_2020,
|
| 107 |
+
author = {Fernandez, François-Guillaume},
|
| 108 |
+
month = {5},
|
| 109 |
+
title = {{Holocron}},
|
| 110 |
+
url = {https://github.com/frgfm/Holocron},
|
| 111 |
+
year = {2020}
|
| 112 |
+
}
|
| 113 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"mean": [0.485, 0.456, 0.406], "std": [0.229, 0.224, 0.225], "arch": "darknet19", "interpolation": "bilinear", "input_shape": [3, 224, 224], "classes": ["tench", "English springer", "cassette player", "chain saw", "church", "French horn", "garbage truck", "gas pump", "golf ball", "parachute"]}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b02d469e0841608223cf8d027ca25006fca8406c58b9535d89f38084f537502b
|
| 3 |
+
size 79403557
|