Commit
ยท
22cb1c2
0
Parent(s):
Initialized
Browse files- .gitattributes +35 -0
- README.md +274 -0
- assets/dna-r1-logo.png +0 -0
- assets/dna-r1-pipeline.png +0 -0
.gitattributes
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
- ko
|
| 5 |
+
license: cc-by-nc-4.0
|
| 6 |
+
tags:
|
| 7 |
+
- dnotitia
|
| 8 |
+
- nlp
|
| 9 |
+
- llm
|
| 10 |
+
- slm
|
| 11 |
+
- conversation
|
| 12 |
+
- chat
|
| 13 |
+
- reasoning
|
| 14 |
+
- r1
|
| 15 |
+
base_model:
|
| 16 |
+
- microsoft/phi-4
|
| 17 |
+
library_name: transformers
|
| 18 |
+
pipeline_tag: text-generation
|
| 19 |
+
---
|
| 20 |
+
|
| 21 |
+
# DNA-R1
|
| 22 |
+
|
| 23 |
+
<p align="center">
|
| 24 |
+
<img src="assets/dna-r1-logo.png" width="400" style="margin: 40px auto;">
|
| 25 |
+
</p>
|
| 26 |
+
|
| 27 |
+
We introduce **DNA-R1**, a specialized reasoning model optimized for Korean language based on Microsoft's Phi-4. By applying large-scale reinforcement learning (RL) using the same methodology as DeepSeek-R1, we have significantly enhanced the model's Korean reasoning capabilities. This model demonstrates deep understanding of Korean text and exhibits exceptional reasoning abilities across mathematics, coding, and general reasoning tasks.
|
| 28 |
+
|
| 29 |
+
<p align="center">
|
| 30 |
+
<img src="assets/dna-r1-pipeline.png" width="100%" style="margin: 40px auto;">
|
| 31 |
+
</p>
|
| 32 |
+
|
| 33 |
+
## Training Methodology
|
| 34 |
+
|
| 35 |
+
Our comprehensive training pipeline consists of three strategic stages:
|
| 36 |
+
|
| 37 |
+
- **Stage 1:** Initial SFT with a large Korean non-reasoning dataset (760k examples) reused from our [DNA 1.0 8B Instruct](https://huggingface.co/dnotitia/Llama-DNA-1.0-8B-Instruct) training pipeline
|
| 38 |
+
- **Stage 2:** Strategic integration of Korean reasoning patterns from DeepSeek R1 using a specialized Korean reasoning dataset (300k examples)
|
| 39 |
+
- **Stage 3:** Advanced reinforcement learning with GRPO using a combined Korean/English reasoning dataset, with format, accuracy, and language consistency as rewards
|
| 40 |
+
|
| 41 |
+
DNA-R1 has learned reasoning patterns specifically tailored for Korean language, and demonstrates capabilities such as self-verification, reflection, and generation of long chains-of-thought (CoT). This represents a significant milestone for the AI research community in the Korean language environment.
|
| 42 |
+
|
| 43 |
+
## Model Specifications
|
| 44 |
+
|
| 45 |
+
- **Developed by:** Dnotitia Inc.
|
| 46 |
+
- **Supported Languages:** Korean, English
|
| 47 |
+
- **Model Release Date:** Mar 4, 2025
|
| 48 |
+
- **Number of Parameters:** 14B
|
| 49 |
+
- **License:** CC BY-NC 4.0
|
| 50 |
+
|
| 51 |
+
<div style="padding: 2px 8px; background-color: hsl(240, 100%, 50%, 0.1); border-radius: 5px">
|
| 52 |
+
<p><strong>NOTICE (Korean):</strong></p>
|
| 53 |
+
<p>๋ณธ ๋ชจ๋ธ์ ์์
์ ๋ชฉ์ ์ผ๋ก ํ์ฉํ์ค ์ ์์ต๋๋ค. ์์
์ ์ด์ฉ์ ์ํ์๋ ๊ฒฝ์ฐ, ๋๋
ธํฐ์์ ํํ์ด์ง์ <a href="https://www.dnotitia.com/contact/post-form">Contact us</a>๋ฅผ ํตํด ๋ฌธ์ํด ์ฃผ์๊ธฐ ๋ฐ๋๋๋ค. ๊ฐ๋จํ ํ์ ์ ์ฐจ๋ฅผ ๊ฑฐ์ณ ์์
์ ํ์ฉ์ ์น์ธํด ๋๋ฆฌ๋๋ก ํ๊ฒ ์ต๋๋ค.</p>
|
| 54 |
+
</div>
|
| 55 |
+
|
| 56 |
+
## Technical Details
|
| 57 |
+
|
| 58 |
+
### Multi-Stage Training Pipeline
|
| 59 |
+
|
| 60 |
+
We implemented a sophisticated training approach to enhance Phi-4's Korean reasoning capabilities:
|
| 61 |
+
|
| 62 |
+
1. **Initial Foundation (Stage 1):** Supervised Fine-Tuning using our extensive Korean non-reasoning dataset from the established [DNA 1.0 8B Instruct](https://huggingface.co/dnotitia/Llama-DNA-1.0-8B-Instruct) training pipeline
|
| 63 |
+
2. **Reasoning Integration (Stage 2):** Specialized adaptation of DeepSeek R1's reasoning patterns with Korean-specific optimization through a meticulously curated dataset
|
| 64 |
+
3. **Advanced Refinement (Stage 3):** Reinforcement learning optimization using GRPO to perfect reasoning in both Korean and English, with comprehensive reward signals for format structure, factual accuracy, and language consistency
|
| 65 |
+
|
| 66 |
+
This methodical approach enables DNA-R1 to develop sophisticated chain-of-thought (CoT) reasoning for complex problem solving, resulting in a model finely calibrated for Korean language reasoning while maintaining robust general capabilities.
|
| 67 |
+
|
| 68 |
+
### Performance Highlights
|
| 69 |
+
|
| 70 |
+
Our Korean-specific multi-stage training pipeline significantly enhances the Phi-4 base model's understanding of Korean context, reasoning depth, and response capabilities. The model excels at:
|
| 71 |
+
|
| 72 |
+
- Generating nuanced Korean chains-of-thought (CoT)
|
| 73 |
+
- Performing rigorous self-verification
|
| 74 |
+
- Solving multi-step complex problems
|
| 75 |
+
- Maintaining cultural and linguistic context in reasoning
|
| 76 |
+
- Distinguishing between deep thinking and concise answers using the `<think>` and `<answer>` tags
|
| 77 |
+
|
| 78 |
+
## Evaluation Results
|
| 79 |
+
|
| 80 |
+
Below, we present our evaluation results for the DNA-R1 model across math, coding, science, Korean, and general-performance benchmarks.
|
| 81 |
+
Despite being only 14B in size, the DNA-R1 model demonstrates superior performance compared to many larger models across various benchmarks.
|
| 82 |
+
|
| 83 |
+
<table>
|
| 84 |
+
<thead>
|
| 85 |
+
<tr>
|
| 86 |
+
<th>Benchmark</th>
|
| 87 |
+
<th>Task</th>
|
| 88 |
+
<th>DNA-R1-14B v1.0</th>
|
| 89 |
+
<th>DeepSeek-R1-Distill-Qwen-14B</th>
|
| 90 |
+
<th>DeepSeek-R1-Distill-Qwen-32B</th>
|
| 91 |
+
<th>EXAONE-3.5-32B-Instruct<th>
|
| 92 |
+
<th>QwQ-32B-Preview</th>
|
| 93 |
+
<th>gpt-4o-0513</th>
|
| 94 |
+
<th>o1-mini</th>
|
| 95 |
+
<th>o1-preview</th>
|
| 96 |
+
</tr>
|
| 97 |
+
</thead>
|
| 98 |
+
<tbody>
|
| 99 |
+
<tr>
|
| 100 |
+
<td>GSM8K</td>
|
| 101 |
+
<td rowspan="4">Math</td>
|
| 102 |
+
<td><b>92.49</b></td>
|
| 103 |
+
<td>88.63</td>
|
| 104 |
+
<td>82.64</td>
|
| 105 |
+
<td><u>91.9</u></td>
|
| 106 |
+
<td>82.41</td>
|
| 107 |
+
<td>-</td>
|
| 108 |
+
<td>-</td>
|
| 109 |
+
<td>-</td>
|
| 110 |
+
</tr>
|
| 111 |
+
<tr>
|
| 112 |
+
<td>Math500</td>
|
| 113 |
+
<td><u>89.4</u></td>
|
| 114 |
+
<td>88.2</td>
|
| 115 |
+
<td>87.4</td>
|
| 116 |
+
<td>-</td>
|
| 117 |
+
<td><b>92.2</b></td>
|
| 118 |
+
<td>75.8</td>
|
| 119 |
+
<td>85.6</td>
|
| 120 |
+
<td>81.4</td>
|
| 121 |
+
</tr>
|
| 122 |
+
<tr>
|
| 123 |
+
<td>AIME2024</td>
|
| 124 |
+
<td>53.3</td>
|
| 125 |
+
<td><u>69.7</u></td>
|
| 126 |
+
<td><b>72.6</b></td>
|
| 127 |
+
<td>6.67</td>
|
| 128 |
+
<td>50.0</td>
|
| 129 |
+
<td>8.6</td>
|
| 130 |
+
<td>64.0</td>
|
| 131 |
+
<td>40</td>
|
| 132 |
+
</tr>
|
| 133 |
+
<tr>
|
| 134 |
+
<td>OlympiadBench (Math, EN)</td>
|
| 135 |
+
<td><u>59.3</u></td>
|
| 136 |
+
<td>56.82</td>
|
| 137 |
+
<td>55.34</td>
|
| 138 |
+
<td>-</td>
|
| 139 |
+
<td><b>62.17</b></td>
|
| 140 |
+
<td>-</td>
|
| 141 |
+
<td>-</td>
|
| 142 |
+
<td>59.2</td>
|
| 143 |
+
</tr>
|
| 144 |
+
<tr>
|
| 145 |
+
<td>GPQA-Diamond</td>
|
| 146 |
+
<td>Science/Reasoning</td>
|
| 147 |
+
<td><u>61.11</u></td>
|
| 148 |
+
<td>59.1</td>
|
| 149 |
+
<td>58.08</td>
|
| 150 |
+
<td>33.33</td>
|
| 151 |
+
<td>52.5</td>
|
| 152 |
+
<td>46.5</td>
|
| 153 |
+
<td>60</td>
|
| 154 |
+
<td><b>75.2</b></td>
|
| 155 |
+
</tr>
|
| 156 |
+
<tr>
|
| 157 |
+
<td>LiveCodeBench</td>
|
| 158 |
+
<td>Coding</td>
|
| 159 |
+
<td>50.58</td>
|
| 160 |
+
<td>59.88</td>
|
| 161 |
+
<td><u>61.65</u></td>
|
| 162 |
+
<td>-</td>
|
| 163 |
+
<td>59.12</td>
|
| 164 |
+
<td>50.48</td>
|
| 165 |
+
<td><b>72.75</b></td>
|
| 166 |
+
<td>59.14</td>
|
| 167 |
+
</tr>
|
| 168 |
+
<tr>
|
| 169 |
+
<td>KMMLU-direct</td>
|
| 170 |
+
<td rowspan="3">Korean</td>
|
| 171 |
+
<td><u>59.9</u></td>
|
| 172 |
+
<td>50.5</td>
|
| 173 |
+
<td>58.62</td>
|
| 174 |
+
<td>-</td>
|
| 175 |
+
<td><b>62.96</b></td>
|
| 176 |
+
<td>-</td>
|
| 177 |
+
<td>-</td>
|
| 178 |
+
<td>-</td>
|
| 179 |
+
</tr>
|
| 180 |
+
<tr>
|
| 181 |
+
<td>KMMLU-hard</td>
|
| 182 |
+
<td><u>36.65</u></td>
|
| 183 |
+
<td>25.34</td>
|
| 184 |
+
<td>33.67</td>
|
| 185 |
+
<td>-</td>
|
| 186 |
+
<td><b>37.98</b></td>
|
| 187 |
+
<td>-</td>
|
| 188 |
+
<td>-</td>
|
| 189 |
+
<td>-</td>
|
| 190 |
+
</tr>
|
| 191 |
+
<tr>
|
| 192 |
+
<td>KoBEST</td>
|
| 193 |
+
<td><u>83.05</u></td>
|
| 194 |
+
<td>74.32</td>
|
| 195 |
+
<td>78.53</td>
|
| 196 |
+
<td>-</td>
|
| 197 |
+
<td><b>85.93</b></td>
|
| 198 |
+
<td>-</td>
|
| 199 |
+
<td>-</td>
|
| 200 |
+
<td>-</td>
|
| 201 |
+
</tr>
|
| 202 |
+
<tr>
|
| 203 |
+
<td>MMLU-Pro</td>
|
| 204 |
+
<td rowspan="3">General</td>
|
| 205 |
+
<td><u>57.64</u></td>
|
| 206 |
+
<td>50.55</td>
|
| 207 |
+
<td><b>59.58</b></td>
|
| 208 |
+
<td>-</td>
|
| 209 |
+
<td>46.82</td>
|
| 210 |
+
<td>-</td>
|
| 211 |
+
<td>-</td>
|
| 212 |
+
<td>-</td>
|
| 213 |
+
</tr>
|
| 214 |
+
</tbody>
|
| 215 |
+
</table>
|
| 216 |
+
|
| 217 |
+
- The *highest* *scores* are in **bold** form, and the *second*\-*highest* *scores* are <u>underlined</u>.
|
| 218 |
+
- All benchmarks are evaluated with [lm-eval](https://github.com/EleutherAI/lm-evaluation-harness) and [skythought-eval](https://github.com/NovaSky-AI/SkyThought/tree/main/skythought/evals).
|
| 219 |
+
|
| 220 |
+
## Quickstart
|
| 221 |
+
|
| 222 |
+
```python
|
| 223 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
| 224 |
+
|
| 225 |
+
tokenizer = AutoTokenizer.from_pretrained('dnotitia/DNA-R1')
|
| 226 |
+
model = AutoModelForCausalLM.from_pretrained('dnotitia/DNA-R1', device_map='auto')
|
| 227 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 228 |
+
|
| 229 |
+
conversation = [
|
| 230 |
+
{"role": "user", "content": """
|
| 231 |
+
์ด๋ ค์๋ถํฐ ์ฐ๋ฆฌ ์ง์ ๊ฐ๋ํ์๊ณ
|
| 232 |
+
๋จ๋ค ๋คํ๋ ์ธ์ ๋ช ๋ฒ ํ ์ ์ด ์์๊ณ
|
| 233 |
+
์ผํฐ์ ๋๊ฐ์ ์ด๋จธ๋ ์ง์ ์์ผ๋ฉด
|
| 234 |
+
์ธ์ ๋ ํผ์์ ๋์ฌ ๋จน์๋ ๋ผ๋ฉด
|
| 235 |
+
๊ทธ๋ฌ๋ค ๋ผ๋ฉด์ด ๋๋ฌด ์ง๊ฒจ์์
|
| 236 |
+
๋ง์๋ ๊ฒ ์ข ๋จน์๊ณ ๋๋ค์์์ด
|
| 237 |
+
๊ทธ๋ฌ์ ์ด๋จธ๋์ด ๋ง์ง๋ชปํด ๊บผ๋ด์
|
| 238 |
+
์จ๊ฒจ๋์ ๋น์๊ธ์ผ๋ก ์์ผ์ฃผ์
|
| 239 |
+
์ง์ฅ๋ฉด ํ๋์ ๋๋ฌด๋ ํ๋ณตํ์์ด
|
| 240 |
+
ํ์ง๋ง ์ด๋จธ๋์ ์ ์ง ๋์์ง ์์์ด
|
| 241 |
+
์ด๋จธ๋์ ์ง์ฅ๋ฉด์ด ์ซ๋ค๊ณ ํ์
จ์ด
|
| 242 |
+
์ด๋จธ๋์ ์ง์ฅ๋ฉด์ด ์ซ๋ค๊ณ ํ์
จ์ด
|
| 243 |
+
์ผ์ด์ผ~์ผ ๊ทธ๋ ๊ฒ ์ด์๊ฐ๊ณ
|
| 244 |
+
๊ทธ๋ ๊ฒ ํํํ๊ณ ๋๋ฌผ๋ ํ๋ฆฌ๊ณ
|
| 245 |
+
์ผ์ด์ผ~์ผ ๊ทธ๋ ๊ฒ ์ด์๊ฐ๊ณ
|
| 246 |
+
๋๋ฌด๋ ์ํ๊ณ ํ์ง๋ง ๋ค์ ์๊ณ
|
| 247 |
+
---
|
| 248 |
+
์น๊ตฌ๊ฐ ์ด ์์ธ๋ฐ, ์ฌ๊ธฐ์ ์น๊ตฌ์ ์ด๋จธ๋๊ฐ ์ง์ฅ๋ฉด์ด ์ซ๋ค๊ณ ํ์ ์ด์ ๋?"""},
|
| 249 |
+
]
|
| 250 |
+
inputs = tokenizer.apply_chat_template(conversation,
|
| 251 |
+
add_generation_prompt=True,
|
| 252 |
+
return_dict=True,
|
| 253 |
+
return_tensors="pt").to(model.device)
|
| 254 |
+
_ = model.generate(**inputs, streamer=streamer)
|
| 255 |
+
```
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
## License
|
| 259 |
+
|
| 260 |
+
This model is released under CC BY-NC 4.0 license. If you have any questions or commercial usage inquiries, please [Contact us](https://www.dnotitia.com/contact/post-form).
|
| 261 |
+
|
| 262 |
+
## Citation
|
| 263 |
+
|
| 264 |
+
If you use or discuss this model in your academic research, please cite the project to help spread awareness:
|
| 265 |
+
|
| 266 |
+
```
|
| 267 |
+
@misc{dnar12025,
|
| 268 |
+
title={DNA R1},
|
| 269 |
+
author={Jungyup Lee and Jemin Kim and Sang Park and SeungJae Lee},
|
| 270 |
+
year={2025},
|
| 271 |
+
publisher={HuggingFace},
|
| 272 |
+
url={https://huggingface.co/dnotitia/DNA-R1}
|
| 273 |
+
}
|
| 274 |
+
```
|
assets/dna-r1-logo.png
ADDED
|
assets/dna-r1-pipeline.png
ADDED
|