import os import datasets _CITATION = """\ # (Optional) Add your citation here """ _DESCRIPTION = """\ NLGraph: A collection of graph-related tasks with natural language representations. Each subset corresponds to a task (e.g., connectivity, cycle, shortest_path). Each split contains examples stored in JSON Lines format. """ # Map folder name to config (subset) TASKS = [ "connectivity", "cycle", "flow", "GNN", "hamilton", "matching", "shortest_path", "topology", ] class NLGraphConfig(datasets.BuilderConfig): def __init__(self, task_name, **kwargs): super().__init__(name=task_name, **kwargs) self.task_name = task_name class NLGraph(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ NLGraphConfig(task_name=task) for task in TASKS ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features({ "question": datasets.Value("string"), "answer": datasets.Value("string"), "difficulty": datasets.Value("string"), "doc_id": datasets.Value("string"), # add more fields depending on your JSONL schema }), supervised_keys=None, homepage="https://huggingface.co/datasets/huayangli/nlgraph", citation=_CITATION, ) def _split_generators(self, dl_manager): data_files = { "test": dl_manager.download_and_extract(os.path.join(self.config.name, "test.jsonl")), "train": dl_manager.download_and_extract(os.path.join(self.config.name, "train.jsonl")), } return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files['train']}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": data_files['test']}, ), ] def _generate_examples(self, filepath): import json with open(filepath, "r", encoding="utf-8") as f: for idx, line in enumerate(f): data = json.loads(line) yield idx, data