--- dataset_info: features: - name: query dtype: string - name: doc dtype: string splits: - name: train num_bytes: 38429966 num_examples: 13951 - name: test num_bytes: 5378012 num_examples: 1994 - name: validation num_bytes: 10639697 num_examples: 3986 download_size: 28977376 dataset_size: 54447675 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: validation path: data/validation-* --- # Dataset Card for Stackoverflow-QA-TR ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Source Data](#source-data) ## Dataset Description Stackoverflow-QA-TR dataset is obtained by translating both the queries and corpora of [StackoverflowQA](https://huggingface.co/datasets/CoIR-Retrieval/stackoverflow-qa) into Turkish using GPT4.1. ### Dataset Structure The original dataset only had `train` and `test` splits. We applied the following splitting methodology to obtain `validation` and `test` splits: * If a train-val-test split is available, we use the existing divisions as provided. * For datasets with a train-test split only, we create a val split from the training set, sized to match the test set, and apply this across all models. * In cases with a train-val split, we reassign the val set as the test split, then generate a new val split from the training data following the approach above. * In cases with a val-test split, we split validation into train and vad sets in 80\% and 20\% proportions, respectively. * When only a single combined split is present, we partition the data into train, val, and test sets in 70\%, 15\%, and 15\% proportions, respectively. ### Data Fields - **query**(string) : Stackoverflow question - **doc**(string) : Stackoverflow answer ## Source Dataset [StackoverflowQA](https://huggingface.co/datasets/CoIR-Retrieval/stackoverflow-qa)