Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 4,562 Bytes
41e87b8
 
 
 
 
 
 
 
 
 
 
 
 
937ecfc
41e87b8
937ecfc
 
41e87b8
 
 
 
 
879ed5a
41e87b8
4e63b17
 
2187e73
 
 
 
 
 
4e63b17
 
 
 
 
 
 
 
 
80696d3
4e63b17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57da99b
 
 
 
4e63b17
 
 
 
 
 
 
 
0421aa4
4e63b17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
879ed5a
4e63b17
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
---
dataset_info:
  features:
  - name: id
    dtype: int64
  - name: type
    dtype: string
  - name: question
    dtype: string
  - name: answer
    dtype: string
  splits:
  - name: train
    num_bytes: 953308
    num_examples: 1737
  download_size: 168993
  dataset_size: 953308
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
license: cc
---
# RiddleBench

<div style="display: flex; gap: 10px;">
  <a href="https://www.arxiv.org/abs/2510.24932">
    <img src="https://img.shields.io/badge/arXiv-2510.24932-B31B1B" alt="arXiv">
  </a>
</div>

Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of natural language understanding and generation tasks.  
However, their proficiency in complex logical and deductive reasoning remains a critical area of investigation.  

We introduce **RiddleBench**, a meticulously curated benchmark of 1,737 challenging puzzles designed to test diverse reasoning skills beyond simple pattern matching.  
Unlike conventional QA datasets that often rely on factual recall or surface-level cues, RiddleBench focuses on non-trivial reasoning by presenting problems such as coding–decoding, seating arrangements, sequence prediction, and blood relation analysis.  

By evaluating models on RiddleBench, researchers can gain deeper insights into their ability to handle abstract reasoning, commonsense inference, and structured problem solving — skills essential for robust and trustworthy AI systems.


---

## Dataset Structure

Each entry in the dataset consists of the following fields:

- `id`: Unique identifier for the riddle (1–1737)  
- `type`: Category/type of riddle  
- `question`: The riddle text  
- `answer`: The ground-truth answer  

The dataset can be directly loaded via Hugging Face Datasets.

---

## Type Distribution

The dataset covers four major categories of riddles:

| Type                   | Count |
|-------------------------|-------|
| Sequence Task | 1037   |
| Coding and Decoding Sum            | 432   |
| Blood Relations           | 146   |
| Seating Task       | 122   |
| **Total**               | 1737  |

---

## Example Entry

```json
{
  "id": 1051,
  "type": "coding and decoding sum",
  "question": "If 'CARING' is coded as 'EDVGKC', and 'SHARES' is coded as 'UKEPBO', then how will 'CASKET' be coded as in the same code? a) EDXIBP c) EDWPAI b) EDWIAP d) EDWIBP",
  "answer": "d"
}
```

## Loading the Dataset

You can load the dataset directly from Hugging Face:

```python
from datasets import load_dataset

dataset = load_dataset("ai4bharat/RiddleBench")

print(dataset)
# Example access
print(dataset["train"][0])
```

## Load Datasets by Type

```python
from datasets import load_dataset

# Load the dataset
dataset = load_dataset("ai4bharat/RiddleBench")["train"]

# Function to filter riddles by type
def get_riddles_by_type(riddle_type: str, n: int = 5):
    """
    Returns up to n riddles of the given type.
    
    Args:
        riddle_type (str): The type of riddles to filter (e.g., 'sequence task').
        n (int): Number of riddles to return (default = 5).
    """
    filtered = [ex for ex in dataset if ex["type"].lower() == riddle_type.lower()]
    return filtered[:n]

# Example usage
coding_riddles = get_riddles_by_type("coding and decoding sum", n=3)
seating_riddles = get_riddles_by_type("seating task", n=3)

print("Coding & Decoding Sum Examples:")
for r in coding_riddles:
    print(f"Q: {r['question']} | A: {r['answer']}")

print("\nSeating Task Examples:")
for r in seating_riddles:
    print(f"Q: {r['question']} | A: {r['answer']}")
```

## Intended Use

RiddleBench is designed solely as a benchmark to evaluate model reasoning abilities.
It should not be used for training or fine-tuning models intended for deployment in real-world applications.

## Citation

If you use RiddleBench in your research, please cite the following:
```
@misc{riddlebench2025,
  title        = {RiddleBench: A New General Inference and Reasoning Assessment in LLMs},
  author       = {Deepon Halder, Alan Saji, Raj Dabre, Ratish Puduppully, Anoop Kunchukuttan},
  year         = {2025},
  howpublished = {\url{https://huggingface.co/datasets/ai4bharat/RiddleBench}}
}
```

## License

This dataset is released under the **CC0 License**.
You are free to use, modify, and distribute this dataset with proper attribution.

## Contact



For questions, collaborations, or contributions, please reach out to the maintainers: 

- Email 1 : deeponh.2004@gmail.com
- Email 2 : prajdabre@gmail.com