{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import os\n", "import torch\n", "import numpy as np\n", "from torchvision import datasets" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "dataset_path = '/ssd/Datasets/I2E-ImageNet/'" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "class I2E_NpzFolder(datasets.DatasetFolder):\n", " def __init__(self, root, loader=None, extensions=['npz'], transform=None, target_transform=None, is_valid_file=None, allow_empty=False):\n", " super(I2E_NpzFolder, self).__init__(root, loader, extensions, transform, target_transform, is_valid_file, allow_empty)\n", "\n", " def __getitem__(self, index):\n", " path, target = self.samples[index]\n", " sample = torch.from_numpy(np.load(path)['arr_0']).float()\n", " if self.transform is not None:\n", " sample = self.transform(sample)\n", " if self.target_transform is not None:\n", " target = self.target_transform(target)\n", "\n", " return sample, target" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "len(train_dataset): 1281167, len(val_dataset): 50000\n" ] } ], "source": [ "train_dataset = I2E_NpzFolder(root=os.path.join(dataset_path, 'train'))\n", "val_dataset = I2E_NpzFolder(root=os.path.join(dataset_path, 'val'))\n", "print(f'len(train_dataset): {len(train_dataset)}, len(val_dataset): {len(val_dataset)}')" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "img.shape: torch.Size([8, 2, 224, 224]), label: 0\n" ] } ], "source": [ "img, label = train_dataset[0]\n", "print(f'img.shape: {img.shape}, label: {label}') # [T=8, p=2, H, W]" ] } ], "metadata": { "kernelspec": { "display_name": "pytorch291", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.14" } }, "nbformat": 4, "nbformat_minor": 2 }