''' NBRDF MLP model Input: Cartesian coordinate for positional samples (1: theta_h, 2: theta_d, 3: phi_d, 4: phi_h = 0) -> (hx, hy, hz, dx, dy, dz) Output: MERL reflectance value - input_size 6 - hidden_size 21 - hidden_layer 3 - output_size 3 @author Copyright (c) 2024-2025 Peter HU. @file reference: https://github.com/asztr/Neural-BRDF ''' # --- built in --- import sys import path # --- 3rd party --- import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import random # --- related module --- device = torch.device( "cuda" if torch.cuda.is_available() else torch.device("mps") if torch.backends.mps.is_available() else "cpu") class MLP(nn.Module): '''Pytorch NBRDF MLP model''' def __init__(self, input_size, hidden_size, output_size) -> None: super().__init__() # Initialize separately self.fc1 = nn.Linear(input_size, hidden_size, bias=True) self.fc2 = nn.Linear(hidden_size, hidden_size, bias=True) self.fc3 = nn.Linear(hidden_size, output_size, bias=True) # initialize the weight # Reproducibility for generation purpose torch.manual_seed(0) random.seed(0) with torch.no_grad(): for func in [self.fc1, self.fc2, self.fc3]: func.bias.zero_() func.weight.uniform_(0.0, 0.02) def forward(self, x): out = self.fc1(x) out = F.leaky_relu(out) out = self.fc2(out) out = F.leaky_relu(out) out = self.fc3(out) out = F.relu(torch.exp(out) - 1.0) return out