|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
|
Convert document images to text/tables/formulas using PaddleOCR-VL with vLLM. |
|
|
|
|
|
PaddleOCR-VL is a compact 0.9B OCR model with task-specific capabilities for |
|
|
document parsing. It combines a NaViT-style dynamic resolution visual encoder |
|
|
with the ERNIE-4.5-0.3B language model for accurate element recognition. |
|
|
|
|
|
Features: |
|
|
- π― Ultra-compact: Only 0.9B parameters (smallest OCR model) |
|
|
- π OCR mode: General text extraction to markdown |
|
|
- π Table mode: HTML table recognition and extraction |
|
|
- π Formula mode: LaTeX mathematical notation |
|
|
- π Chart mode: Structured chart analysis |
|
|
- π Multilingual support |
|
|
- β‘ Fast initialization due to small size |
|
|
- π§ Based on ERNIE-4.5 (different from Qwen-based models) |
|
|
|
|
|
Model: PaddlePaddle/PaddleOCR-VL |
|
|
vLLM: Requires nightly build for full support |
|
|
""" |
|
|
|
|
|
import argparse |
|
|
import base64 |
|
|
import io |
|
|
import json |
|
|
import logging |
|
|
import math |
|
|
import os |
|
|
import sys |
|
|
from typing import Any, Dict, List, Union |
|
|
from datetime import datetime |
|
|
|
|
|
import torch |
|
|
from datasets import load_dataset |
|
|
from huggingface_hub import DatasetCard, login |
|
|
from PIL import Image |
|
|
from toolz import partition_all |
|
|
from tqdm.auto import tqdm |
|
|
from vllm import LLM, SamplingParams |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
|
|
|
|
TASK_MODES = { |
|
|
"ocr": "OCR:", |
|
|
"table": "Table Recognition:", |
|
|
"formula": "Formula Recognition:", |
|
|
"chart": "Chart Recognition:", |
|
|
} |
|
|
|
|
|
|
|
|
TASK_DESCRIPTIONS = { |
|
|
"ocr": "General text extraction to markdown format", |
|
|
"table": "Table extraction to HTML format", |
|
|
"formula": "Mathematical formula recognition to LaTeX", |
|
|
"chart": "Chart and diagram analysis", |
|
|
} |
|
|
|
|
|
|
|
|
def check_cuda_availability(): |
|
|
"""Check if CUDA is available and exit if not.""" |
|
|
if not torch.cuda.is_available(): |
|
|
logger.error("CUDA is not available. This script requires a GPU.") |
|
|
logger.error("Please run on a machine with a CUDA-capable GPU.") |
|
|
sys.exit(1) |
|
|
else: |
|
|
logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}") |
|
|
|
|
|
|
|
|
def smart_resize( |
|
|
height: int, |
|
|
width: int, |
|
|
factor: int = 28, |
|
|
min_pixels: int = 28 * 28 * 130, |
|
|
max_pixels: int = 28 * 28 * 1280, |
|
|
) -> tuple[int, int]: |
|
|
""" |
|
|
PaddleOCR-VL's intelligent resize logic. |
|
|
|
|
|
Rescales the image so that: |
|
|
1. Both dimensions are divisible by 'factor' (28) |
|
|
2. Total pixels are within [min_pixels, max_pixels] |
|
|
3. Aspect ratio is maintained as closely as possible |
|
|
|
|
|
Args: |
|
|
height: Original image height |
|
|
width: Original image width |
|
|
factor: Dimension divisibility factor (default: 28) |
|
|
min_pixels: Minimum total pixels (default: 100,880) |
|
|
max_pixels: Maximum total pixels (default: 1,003,520) |
|
|
|
|
|
Returns: |
|
|
Tuple of (new_height, new_width) |
|
|
""" |
|
|
if height < factor: |
|
|
width = round((width * factor) / height) |
|
|
height = factor |
|
|
|
|
|
if width < factor: |
|
|
height = round((height * factor) / width) |
|
|
width = factor |
|
|
|
|
|
if max(height, width) / min(height, width) > 200: |
|
|
logger.warning( |
|
|
f"Extreme aspect ratio detected: {max(height, width) / min(height, width):.1f}" |
|
|
) |
|
|
|
|
|
|
|
|
h_bar = round(height / factor) * factor |
|
|
w_bar = round(width / factor) * factor |
|
|
|
|
|
if h_bar * w_bar > max_pixels: |
|
|
beta = math.sqrt((height * width) / max_pixels) |
|
|
h_bar = math.floor(height / beta / factor) * factor |
|
|
w_bar = math.floor(width / beta / factor) * factor |
|
|
elif h_bar * w_bar < min_pixels: |
|
|
beta = math.sqrt(min_pixels / (height * width)) |
|
|
h_bar = math.ceil(height * beta / factor) * factor |
|
|
w_bar = math.ceil(width * beta / factor) * factor |
|
|
|
|
|
return h_bar, w_bar |
|
|
|
|
|
|
|
|
def make_ocr_message( |
|
|
image: Union[Image.Image, Dict[str, Any], str], |
|
|
task_mode: str = "ocr", |
|
|
apply_smart_resize: bool = True, |
|
|
) -> List[Dict]: |
|
|
""" |
|
|
Create chat message for PaddleOCR-VL processing. |
|
|
|
|
|
PaddleOCR-VL expects a specific format with the task prefix after the image. |
|
|
""" |
|
|
|
|
|
if isinstance(image, Image.Image): |
|
|
pil_img = image |
|
|
elif isinstance(image, dict) and "bytes" in image: |
|
|
pil_img = Image.open(io.BytesIO(image["bytes"])) |
|
|
elif isinstance(image, str): |
|
|
pil_img = Image.open(image) |
|
|
else: |
|
|
raise ValueError(f"Unsupported image type: {type(image)}") |
|
|
|
|
|
|
|
|
pil_img = pil_img.convert("RGB") |
|
|
|
|
|
|
|
|
if apply_smart_resize: |
|
|
original_size = pil_img.size |
|
|
new_width, new_height = smart_resize(pil_img.height, pil_img.width) |
|
|
if (new_width, new_height) != (pil_img.width, pil_img.height): |
|
|
pil_img = pil_img.resize((new_width, new_height), Image.Resampling.LANCZOS) |
|
|
logger.debug(f"Resized image from {original_size} to {pil_img.size}") |
|
|
|
|
|
|
|
|
buf = io.BytesIO() |
|
|
pil_img.save(buf, format="PNG") |
|
|
data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}" |
|
|
|
|
|
|
|
|
return [ |
|
|
{ |
|
|
"role": "user", |
|
|
"content": [ |
|
|
{"type": "image_url", "image_url": {"url": data_uri}}, |
|
|
{"type": "text", "text": TASK_MODES[task_mode]}, |
|
|
], |
|
|
} |
|
|
] |
|
|
|
|
|
|
|
|
def create_dataset_card( |
|
|
source_dataset: str, |
|
|
model: str, |
|
|
task_mode: str, |
|
|
num_samples: int, |
|
|
processing_time: str, |
|
|
batch_size: int, |
|
|
max_model_len: int, |
|
|
max_tokens: int, |
|
|
gpu_memory_utilization: float, |
|
|
temperature: float, |
|
|
apply_smart_resize: bool, |
|
|
image_column: str = "image", |
|
|
split: str = "train", |
|
|
) -> str: |
|
|
"""Create a dataset card documenting the OCR process.""" |
|
|
task_description = TASK_DESCRIPTIONS[task_mode] |
|
|
|
|
|
return f"""--- |
|
|
tags: |
|
|
- ocr |
|
|
- document-processing |
|
|
- paddleocr-vl |
|
|
- {task_mode} |
|
|
- uv-script |
|
|
- generated |
|
|
--- |
|
|
|
|
|
# Document Processing using PaddleOCR-VL ({task_mode.upper()} mode) |
|
|
|
|
|
This dataset contains {task_mode.upper()} results from images in [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) using PaddleOCR-VL, an ultra-compact 0.9B OCR model. |
|
|
|
|
|
## Processing Details |
|
|
|
|
|
- **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) |
|
|
- **Model**: [{model}](https://huggingface.co/{model}) |
|
|
- **Task Mode**: `{task_mode}` - {task_description} |
|
|
- **Number of Samples**: {num_samples:,} |
|
|
- **Processing Time**: {processing_time} |
|
|
- **Processing Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")} |
|
|
|
|
|
### Configuration |
|
|
|
|
|
- **Image Column**: `{image_column}` |
|
|
- **Output Column**: `paddleocr_{task_mode}` |
|
|
- **Dataset Split**: `{split}` |
|
|
- **Batch Size**: {batch_size} |
|
|
- **Smart Resize**: {"Enabled" if apply_smart_resize else "Disabled"} |
|
|
- **Max Model Length**: {max_model_len:,} tokens |
|
|
- **Max Output Tokens**: {max_tokens:,} |
|
|
- **Temperature**: {temperature} |
|
|
- **GPU Memory Utilization**: {gpu_memory_utilization:.1%} |
|
|
|
|
|
## Model Information |
|
|
|
|
|
PaddleOCR-VL is a state-of-the-art, resource-efficient model tailored for document parsing: |
|
|
- π― **Ultra-compact** - Only 0.9B parameters (smallest OCR model) |
|
|
- π **OCR mode** - General text extraction |
|
|
- π **Table mode** - HTML table recognition |
|
|
- π **Formula mode** - LaTeX mathematical notation |
|
|
- π **Chart mode** - Structured chart analysis |
|
|
- π **Multilingual** - Support for multiple languages |
|
|
- β‘ **Fast** - Quick initialization and inference |
|
|
- π§ **ERNIE-4.5 based** - Different architecture from Qwen models |
|
|
|
|
|
### Task Modes |
|
|
|
|
|
- **OCR**: Extract text content to markdown format |
|
|
- **Table Recognition**: Extract tables to HTML format |
|
|
- **Formula Recognition**: Extract mathematical formulas to LaTeX |
|
|
- **Chart Recognition**: Analyze and describe charts/diagrams |
|
|
|
|
|
## Dataset Structure |
|
|
|
|
|
The dataset contains all original columns plus: |
|
|
- `paddleocr_{task_mode}`: The extracted content based on task mode |
|
|
- `inference_info`: JSON list tracking all OCR models applied to this dataset |
|
|
|
|
|
## Usage |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
import json |
|
|
|
|
|
# Load the dataset |
|
|
dataset = load_dataset("{{output_dataset_id}}", split="{split}") |
|
|
|
|
|
# Access the extracted content |
|
|
for example in dataset: |
|
|
print(example["paddleocr_{task_mode}"]) |
|
|
break |
|
|
|
|
|
# View all OCR models applied to this dataset |
|
|
inference_info = json.loads(dataset[0]["inference_info"]) |
|
|
for info in inference_info: |
|
|
print(f"Task: {{info['task_mode']}} - Model: {{info['model_id']}}") |
|
|
``` |
|
|
|
|
|
## Reproduction |
|
|
|
|
|
This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) PaddleOCR-VL script: |
|
|
|
|
|
```bash |
|
|
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/paddleocr-vl.py \\ |
|
|
{source_dataset} \\ |
|
|
<output-dataset> \\ |
|
|
--task-mode {task_mode} \\ |
|
|
--image-column {image_column} \\ |
|
|
--batch-size {batch_size} \\ |
|
|
--max-model-len {max_model_len} \\ |
|
|
--max-tokens {max_tokens} \\ |
|
|
--gpu-memory-utilization {gpu_memory_utilization} |
|
|
``` |
|
|
|
|
|
## Performance |
|
|
|
|
|
- **Model Size**: 0.9B parameters (smallest among OCR models) |
|
|
- **Processing Speed**: ~{num_samples / (float(processing_time.split()[0]) * 60):.2f} images/second |
|
|
- **Architecture**: NaViT visual encoder + ERNIE-4.5-0.3B language model |
|
|
|
|
|
Generated with π€ [UV Scripts](https://huggingface.co/uv-scripts) |
|
|
""" |
|
|
|
|
|
|
|
|
def main( |
|
|
input_dataset: str, |
|
|
output_dataset: str, |
|
|
image_column: str = "image", |
|
|
batch_size: int = 16, |
|
|
task_mode: str = "ocr", |
|
|
max_model_len: int = 8192, |
|
|
max_tokens: int = 4096, |
|
|
temperature: float = 0.0, |
|
|
gpu_memory_utilization: float = 0.8, |
|
|
apply_smart_resize: bool = True, |
|
|
hf_token: str = None, |
|
|
split: str = "train", |
|
|
max_samples: int = None, |
|
|
private: bool = False, |
|
|
shuffle: bool = False, |
|
|
seed: int = 42, |
|
|
output_column: str = None, |
|
|
): |
|
|
"""Process images from HF dataset through PaddleOCR-VL model.""" |
|
|
|
|
|
|
|
|
check_cuda_availability() |
|
|
|
|
|
|
|
|
start_time = datetime.now() |
|
|
|
|
|
|
|
|
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" |
|
|
|
|
|
|
|
|
HF_TOKEN = hf_token or os.environ.get("HF_TOKEN") |
|
|
if HF_TOKEN: |
|
|
login(token=HF_TOKEN) |
|
|
|
|
|
|
|
|
if task_mode not in TASK_MODES: |
|
|
raise ValueError( |
|
|
f"Invalid task_mode '{task_mode}'. Choose from: {list(TASK_MODES.keys())}" |
|
|
) |
|
|
|
|
|
|
|
|
if output_column is None: |
|
|
output_column = f"paddleocr_{task_mode}" |
|
|
|
|
|
logger.info(f"Using task mode: {task_mode} - {TASK_DESCRIPTIONS[task_mode]}") |
|
|
logger.info(f"Output will be written to column: {output_column}") |
|
|
|
|
|
|
|
|
logger.info(f"Loading dataset: {input_dataset}") |
|
|
dataset = load_dataset(input_dataset, split=split) |
|
|
|
|
|
|
|
|
if image_column not in dataset.column_names: |
|
|
raise ValueError( |
|
|
f"Column '{image_column}' not found. Available: {dataset.column_names}" |
|
|
) |
|
|
|
|
|
|
|
|
if shuffle: |
|
|
logger.info(f"Shuffling dataset with seed {seed}") |
|
|
dataset = dataset.shuffle(seed=seed) |
|
|
|
|
|
|
|
|
if max_samples: |
|
|
dataset = dataset.select(range(min(max_samples, len(dataset)))) |
|
|
logger.info(f"Limited to {len(dataset)} samples") |
|
|
|
|
|
|
|
|
model_name = "PaddlePaddle/PaddleOCR-VL" |
|
|
logger.info(f"Initializing vLLM with {model_name}") |
|
|
logger.info("This may take a minute on first run (model is only 0.9B)...") |
|
|
|
|
|
|
|
|
|
|
|
os.environ["VLLM_USE_V1"] = "0" |
|
|
|
|
|
llm = LLM( |
|
|
model=model_name, |
|
|
trust_remote_code=True, |
|
|
max_model_len=max_model_len, |
|
|
gpu_memory_utilization=gpu_memory_utilization, |
|
|
limit_mm_per_prompt={"image": 1}, |
|
|
max_num_batched_tokens=16384, |
|
|
enable_prefix_caching=False, |
|
|
enforce_eager=True, |
|
|
) |
|
|
|
|
|
|
|
|
sampling_params = SamplingParams( |
|
|
temperature=temperature, |
|
|
max_tokens=max_tokens, |
|
|
) |
|
|
|
|
|
logger.info(f"Processing {len(dataset)} images in batches of {batch_size}") |
|
|
if apply_smart_resize: |
|
|
logger.info("Smart resize enabled (PaddleOCR-VL's adaptive resolution)") |
|
|
|
|
|
|
|
|
all_outputs = [] |
|
|
|
|
|
for batch_indices in tqdm( |
|
|
partition_all(batch_size, range(len(dataset))), |
|
|
total=(len(dataset) + batch_size - 1) // batch_size, |
|
|
desc=f"PaddleOCR-VL {task_mode.upper()} processing", |
|
|
): |
|
|
batch_indices = list(batch_indices) |
|
|
batch_images = [dataset[i][image_column] for i in batch_indices] |
|
|
|
|
|
try: |
|
|
|
|
|
batch_messages = [ |
|
|
make_ocr_message( |
|
|
img, task_mode=task_mode, apply_smart_resize=apply_smart_resize |
|
|
) |
|
|
for img in batch_images |
|
|
] |
|
|
|
|
|
|
|
|
outputs = llm.chat(batch_messages, sampling_params) |
|
|
|
|
|
|
|
|
for output in outputs: |
|
|
text = output.outputs[0].text.strip() |
|
|
all_outputs.append(text) |
|
|
|
|
|
except Exception as e: |
|
|
logger.error(f"Error processing batch: {e}") |
|
|
|
|
|
all_outputs.extend([f"[{task_mode.upper()} ERROR]"] * len(batch_images)) |
|
|
|
|
|
|
|
|
processing_duration = datetime.now() - start_time |
|
|
processing_time_str = f"{processing_duration.total_seconds() / 60:.1f} min" |
|
|
|
|
|
|
|
|
logger.info(f"Adding '{output_column}' column to dataset") |
|
|
dataset = dataset.add_column(output_column, all_outputs) |
|
|
|
|
|
|
|
|
inference_entry = { |
|
|
"model_id": model_name, |
|
|
"model_name": "PaddleOCR-VL", |
|
|
"model_size": "0.9B", |
|
|
"task_mode": task_mode, |
|
|
"column_name": output_column, |
|
|
"timestamp": datetime.now().isoformat(), |
|
|
"temperature": temperature, |
|
|
"max_tokens": max_tokens, |
|
|
"smart_resize": apply_smart_resize, |
|
|
} |
|
|
|
|
|
if "inference_info" in dataset.column_names: |
|
|
|
|
|
logger.info("Updating existing inference_info column") |
|
|
|
|
|
def update_inference_info(example): |
|
|
try: |
|
|
existing_info = ( |
|
|
json.loads(example["inference_info"]) |
|
|
if example["inference_info"] |
|
|
else [] |
|
|
) |
|
|
except (json.JSONDecodeError, TypeError): |
|
|
existing_info = [] |
|
|
|
|
|
existing_info.append(inference_entry) |
|
|
return {"inference_info": json.dumps(existing_info)} |
|
|
|
|
|
dataset = dataset.map(update_inference_info) |
|
|
else: |
|
|
|
|
|
logger.info("Creating new inference_info column") |
|
|
inference_list = [json.dumps([inference_entry])] * len(dataset) |
|
|
dataset = dataset.add_column("inference_info", inference_list) |
|
|
|
|
|
|
|
|
logger.info(f"Pushing to {output_dataset}") |
|
|
dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN) |
|
|
|
|
|
|
|
|
logger.info("Creating dataset card") |
|
|
card_content = create_dataset_card( |
|
|
source_dataset=input_dataset, |
|
|
model=model_name, |
|
|
task_mode=task_mode, |
|
|
num_samples=len(dataset), |
|
|
processing_time=processing_time_str, |
|
|
batch_size=batch_size, |
|
|
max_model_len=max_model_len, |
|
|
max_tokens=max_tokens, |
|
|
gpu_memory_utilization=gpu_memory_utilization, |
|
|
temperature=temperature, |
|
|
apply_smart_resize=apply_smart_resize, |
|
|
image_column=image_column, |
|
|
split=split, |
|
|
) |
|
|
|
|
|
card = DatasetCard(card_content) |
|
|
card.push_to_hub(output_dataset, token=HF_TOKEN) |
|
|
|
|
|
logger.info("β
PaddleOCR-VL processing complete!") |
|
|
logger.info( |
|
|
f"Dataset available at: https://huggingface.co/datasets/{output_dataset}" |
|
|
) |
|
|
logger.info(f"Processing time: {processing_time_str}") |
|
|
logger.info(f"Task mode: {task_mode} - {TASK_DESCRIPTIONS[task_mode]}") |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
if len(sys.argv) == 1: |
|
|
print("=" * 80) |
|
|
print("PaddleOCR-VL Document Processing") |
|
|
print("=" * 80) |
|
|
print("\nUltra-compact 0.9B OCR model with task-specific capabilities") |
|
|
print("\nFeatures:") |
|
|
print("- π― Smallest OCR model - Only 0.9B parameters") |
|
|
print("- π OCR mode - General text extraction") |
|
|
print("- π Table mode - HTML table recognition") |
|
|
print("- π Formula mode - LaTeX mathematical notation") |
|
|
print("- π Chart mode - Structured chart analysis") |
|
|
print("- π Multilingual support") |
|
|
print("- β‘ Fast initialization and inference") |
|
|
print("- π§ Based on ERNIE-4.5 (unique architecture)") |
|
|
print("\nTask Modes:") |
|
|
for mode, description in TASK_DESCRIPTIONS.items(): |
|
|
print(f" {mode:8} - {description}") |
|
|
print("\nExample usage:") |
|
|
print("\n1. Basic OCR (default mode):") |
|
|
print(" uv run paddleocr-vl.py input-dataset output-dataset") |
|
|
print("\n2. Table extraction:") |
|
|
print(" uv run paddleocr-vl.py docs tables-extracted --task-mode table") |
|
|
print("\n3. Formula recognition:") |
|
|
print( |
|
|
" uv run paddleocr-vl.py papers formulas --task-mode formula --batch-size 32" |
|
|
) |
|
|
print("\n4. Chart analysis:") |
|
|
print(" uv run paddleocr-vl.py diagrams charts-analyzed --task-mode chart") |
|
|
print("\n5. Test with small sample:") |
|
|
print(" uv run paddleocr-vl.py dataset test --max-samples 10 --shuffle") |
|
|
print("\n6. Running on HF Jobs:") |
|
|
print(" hf jobs uv run --flavor l4x1 \\") |
|
|
print( |
|
|
' -e HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \\' |
|
|
) |
|
|
print(" -e HF_HUB_ENABLE_HF_TRANSFER=1 \\") |
|
|
print( |
|
|
" https://huggingface.co/datasets/uv-scripts/ocr/raw/main/paddleocr-vl.py \\" |
|
|
) |
|
|
print(" input-dataset output-dataset --task-mode ocr") |
|
|
print("\n" + "=" * 80) |
|
|
print("\nFor full help, run: uv run paddleocr-vl.py --help") |
|
|
sys.exit(0) |
|
|
|
|
|
parser = argparse.ArgumentParser( |
|
|
description="Document processing using PaddleOCR-VL (0.9B task-specific model)", |
|
|
formatter_class=argparse.RawDescriptionHelpFormatter, |
|
|
epilog=""" |
|
|
Task Modes: |
|
|
ocr General text extraction to markdown (default) |
|
|
table Table extraction to HTML format |
|
|
formula Mathematical formula recognition to LaTeX |
|
|
chart Chart and diagram analysis |
|
|
|
|
|
Examples: |
|
|
# Basic text OCR |
|
|
uv run paddleocr-vl.py my-docs analyzed-docs |
|
|
|
|
|
# Extract tables from documents |
|
|
uv run paddleocr-vl.py papers tables --task-mode table |
|
|
|
|
|
# Recognize mathematical formulas |
|
|
uv run paddleocr-vl.py textbooks formulas --task-mode formula |
|
|
|
|
|
# Analyze charts and diagrams |
|
|
uv run paddleocr-vl.py reports charts --task-mode chart |
|
|
|
|
|
# Test with random sampling |
|
|
uv run paddleocr-vl.py large-dataset test --max-samples 50 --shuffle --task-mode ocr |
|
|
|
|
|
# Disable smart resize for original resolution |
|
|
uv run paddleocr-vl.py images output --no-smart-resize |
|
|
""", |
|
|
) |
|
|
|
|
|
parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub") |
|
|
parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub") |
|
|
parser.add_argument( |
|
|
"--image-column", |
|
|
default="image", |
|
|
help="Column containing images (default: image)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--batch-size", |
|
|
type=int, |
|
|
default=16, |
|
|
help="Batch size for processing (default: 16)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--task-mode", |
|
|
choices=list(TASK_MODES.keys()), |
|
|
default="ocr", |
|
|
help="Task type: ocr (default), table, formula, or chart", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--max-model-len", |
|
|
type=int, |
|
|
default=8192, |
|
|
help="Maximum model context length (default: 8192)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--max-tokens", |
|
|
type=int, |
|
|
default=4096, |
|
|
help="Maximum tokens to generate (default: 4096)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--temperature", |
|
|
type=float, |
|
|
default=0.0, |
|
|
help="Sampling temperature (default: 0.0 for deterministic)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--gpu-memory-utilization", |
|
|
type=float, |
|
|
default=0.8, |
|
|
help="GPU memory utilization (default: 0.8)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--no-smart-resize", |
|
|
action="store_true", |
|
|
help="Disable PaddleOCR-VL's smart resize, use original image size", |
|
|
) |
|
|
parser.add_argument("--hf-token", help="Hugging Face API token") |
|
|
parser.add_argument( |
|
|
"--split", default="train", help="Dataset split to use (default: train)" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--max-samples", |
|
|
type=int, |
|
|
help="Maximum number of samples to process (for testing)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--private", action="store_true", help="Make output dataset private" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--shuffle", action="store_true", help="Shuffle dataset before processing" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--seed", |
|
|
type=int, |
|
|
default=42, |
|
|
help="Random seed for shuffling (default: 42)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--output-column", |
|
|
help="Column name for output (default: paddleocr_[task_mode])", |
|
|
) |
|
|
|
|
|
args = parser.parse_args() |
|
|
|
|
|
main( |
|
|
input_dataset=args.input_dataset, |
|
|
output_dataset=args.output_dataset, |
|
|
image_column=args.image_column, |
|
|
batch_size=args.batch_size, |
|
|
task_mode=args.task_mode, |
|
|
max_model_len=args.max_model_len, |
|
|
max_tokens=args.max_tokens, |
|
|
temperature=args.temperature, |
|
|
gpu_memory_utilization=args.gpu_memory_utilization, |
|
|
apply_smart_resize=not args.no_smart_resize, |
|
|
hf_token=args.hf_token, |
|
|
split=args.split, |
|
|
max_samples=args.max_samples, |
|
|
private=args.private, |
|
|
shuffle=args.shuffle, |
|
|
seed=args.seed, |
|
|
output_column=args.output_column, |
|
|
) |
|
|
|