|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
|
Convert document images to markdown using DoTS.ocr with vLLM. |
|
|
|
|
|
DoTS.ocr is a compact 1.7B multilingual document parsing model with SOTA performance |
|
|
on 100+ languages. This script uses vLLM for efficient batch processing. |
|
|
|
|
|
Features: |
|
|
- π Multilingual support (100+ languages) |
|
|
- π Table extraction and formatting |
|
|
- π Formula recognition |
|
|
- π Layout-aware text extraction |
|
|
- π― Compact model (1.7B parameters) |
|
|
|
|
|
Model: rednote-hilab/dots.ocr |
|
|
vLLM: Officially tested with 0.9.1+ (native support via PR #24645) |
|
|
""" |
|
|
|
|
|
import argparse |
|
|
import base64 |
|
|
import io |
|
|
import json |
|
|
import logging |
|
|
import os |
|
|
import sys |
|
|
from typing import Any, Dict, List, Union |
|
|
from datetime import datetime |
|
|
|
|
|
import torch |
|
|
from datasets import load_dataset |
|
|
from huggingface_hub import DatasetCard, login |
|
|
from PIL import Image |
|
|
from toolz import partition_all |
|
|
from tqdm.auto import tqdm |
|
|
from vllm import LLM, SamplingParams |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PROMPT_TEMPLATES = { |
|
|
"ocr": "Extract the text content from this image.", |
|
|
|
|
|
"layout-all": """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox. |
|
|
|
|
|
1. Bbox format: [x1, y1, x2, y2] |
|
|
|
|
|
2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title']. |
|
|
|
|
|
3. Text Extraction & Formatting Rules: |
|
|
- Picture: For the 'Picture' category, the text field should be omitted. |
|
|
- Formula: Format its text as LaTeX. |
|
|
- Table: Format its text as HTML. |
|
|
- All Others (Text, Title, etc.): Format their text as Markdown. |
|
|
|
|
|
4. Constraints: |
|
|
- The output text must be the original text from the image, with no translation. |
|
|
- All layout elements must be sorted according to human reading order. |
|
|
|
|
|
5. Final Output: The entire output must be a single JSON object.""", |
|
|
|
|
|
"layout-only": """Please output the layout information from this PDF image, including each layout's bbox and its category. The bbox should be in the format [x1, y1, x2, y2]. The layout categories for the PDF document include ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title']. Do not output the corresponding text. The layout result should be in JSON format.""", |
|
|
} |
|
|
|
|
|
|
|
|
def check_cuda_availability(): |
|
|
"""Check if CUDA is available and exit if not.""" |
|
|
if not torch.cuda.is_available(): |
|
|
logger.error("CUDA is not available. This script requires a GPU.") |
|
|
logger.error("Please run on a machine with a CUDA-capable GPU.") |
|
|
sys.exit(1) |
|
|
else: |
|
|
logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}") |
|
|
|
|
|
|
|
|
def make_ocr_message( |
|
|
image: Union[Image.Image, Dict[str, Any], str], |
|
|
prompt: str = PROMPT_TEMPLATES["ocr"], |
|
|
) -> List[Dict]: |
|
|
"""Create chat message for OCR processing.""" |
|
|
|
|
|
if isinstance(image, Image.Image): |
|
|
pil_img = image |
|
|
elif isinstance(image, dict) and "bytes" in image: |
|
|
pil_img = Image.open(io.BytesIO(image["bytes"])) |
|
|
elif isinstance(image, str): |
|
|
pil_img = Image.open(image) |
|
|
else: |
|
|
raise ValueError(f"Unsupported image type: {type(image)}") |
|
|
|
|
|
|
|
|
pil_img = pil_img.convert("RGB") |
|
|
|
|
|
|
|
|
buf = io.BytesIO() |
|
|
pil_img.save(buf, format="PNG") |
|
|
data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}" |
|
|
|
|
|
|
|
|
return [ |
|
|
{ |
|
|
"role": "user", |
|
|
"content": [ |
|
|
{"type": "image_url", "image_url": {"url": data_uri}}, |
|
|
{"type": "text", "text": prompt}, |
|
|
], |
|
|
} |
|
|
] |
|
|
|
|
|
|
|
|
def create_dataset_card( |
|
|
source_dataset: str, |
|
|
model: str, |
|
|
num_samples: int, |
|
|
processing_time: str, |
|
|
batch_size: int, |
|
|
max_model_len: int, |
|
|
max_tokens: int, |
|
|
gpu_memory_utilization: float, |
|
|
image_column: str = "image", |
|
|
split: str = "train", |
|
|
prompt_mode: str = "general", |
|
|
) -> str: |
|
|
"""Create a dataset card documenting the OCR process.""" |
|
|
model_name = model.split("/")[-1] |
|
|
|
|
|
return f"""--- |
|
|
tags: |
|
|
- ocr |
|
|
- document-processing |
|
|
- dots-ocr |
|
|
- multilingual |
|
|
- markdown |
|
|
- uv-script |
|
|
- generated |
|
|
--- |
|
|
|
|
|
# Document OCR using {model_name} |
|
|
|
|
|
This dataset contains OCR results from images in [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) using DoTS.ocr, a compact 1.7B multilingual model. |
|
|
|
|
|
## Processing Details |
|
|
|
|
|
- **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) |
|
|
- **Model**: [{model}](https://huggingface.co/{model}) |
|
|
- **Number of Samples**: {num_samples:,} |
|
|
- **Processing Time**: {processing_time} |
|
|
- **Processing Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")} |
|
|
|
|
|
### Configuration |
|
|
|
|
|
- **Image Column**: `{image_column}` |
|
|
- **Output Column**: `markdown` |
|
|
- **Dataset Split**: `{split}` |
|
|
- **Batch Size**: {batch_size} |
|
|
- **Prompt Mode**: {prompt_mode} |
|
|
- **Max Model Length**: {max_model_len:,} tokens |
|
|
- **Max Output Tokens**: {max_tokens:,} |
|
|
- **GPU Memory Utilization**: {gpu_memory_utilization:.1%} |
|
|
|
|
|
## Model Information |
|
|
|
|
|
DoTS.ocr is a compact multilingual document parsing model that excels at: |
|
|
- π **100+ Languages** - Multilingual document support |
|
|
- π **Table extraction** - Structured data recognition |
|
|
- π **Formulas** - Mathematical notation preservation |
|
|
- π **Layout-aware** - Reading order and structure preservation |
|
|
- π― **Compact** - Only 1.7B parameters |
|
|
|
|
|
## Dataset Structure |
|
|
|
|
|
The dataset contains all original columns plus: |
|
|
- `markdown`: The extracted text in markdown format |
|
|
- `inference_info`: JSON list tracking all OCR models applied to this dataset |
|
|
|
|
|
## Usage |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
import json |
|
|
|
|
|
# Load the dataset |
|
|
dataset = load_dataset("{{output_dataset_id}}", split="{split}") |
|
|
|
|
|
# Access the markdown text |
|
|
for example in dataset: |
|
|
print(example["markdown"]) |
|
|
break |
|
|
|
|
|
# View all OCR models applied to this dataset |
|
|
inference_info = json.loads(dataset[0]["inference_info"]) |
|
|
for info in inference_info: |
|
|
print(f"Column: {{info['column_name']}} - Model: {{info['model_id']}}") |
|
|
``` |
|
|
|
|
|
## Reproduction |
|
|
|
|
|
This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) DoTS OCR script: |
|
|
|
|
|
```bash |
|
|
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/dots-ocr.py \\ |
|
|
{source_dataset} \\ |
|
|
<output-dataset> \\ |
|
|
--image-column {image_column} \\ |
|
|
--batch-size {batch_size} \\ |
|
|
--prompt-mode {prompt_mode} \\ |
|
|
--max-model-len {max_model_len} \\ |
|
|
--max-tokens {max_tokens} \\ |
|
|
--gpu-memory-utilization {gpu_memory_utilization} |
|
|
``` |
|
|
|
|
|
Generated with π€ [UV Scripts](https://huggingface.co/uv-scripts) |
|
|
""" |
|
|
|
|
|
|
|
|
def main( |
|
|
input_dataset: str, |
|
|
output_dataset: str, |
|
|
image_column: str = "image", |
|
|
batch_size: int = 16, |
|
|
model: str = "rednote-hilab/dots.ocr", |
|
|
max_model_len: int = 8192, |
|
|
max_tokens: int = 8192, |
|
|
gpu_memory_utilization: float = 0.8, |
|
|
hf_token: str = None, |
|
|
split: str = "train", |
|
|
max_samples: int = None, |
|
|
private: bool = False, |
|
|
shuffle: bool = False, |
|
|
seed: int = 42, |
|
|
prompt_mode: str = "ocr", |
|
|
custom_prompt: str = None, |
|
|
output_column: str = "markdown", |
|
|
): |
|
|
"""Process images from HF dataset through DoTS.ocr model.""" |
|
|
|
|
|
|
|
|
check_cuda_availability() |
|
|
|
|
|
|
|
|
start_time = datetime.now() |
|
|
|
|
|
|
|
|
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" |
|
|
|
|
|
|
|
|
HF_TOKEN = hf_token or os.environ.get("HF_TOKEN") |
|
|
if HF_TOKEN: |
|
|
login(token=HF_TOKEN) |
|
|
|
|
|
|
|
|
if custom_prompt: |
|
|
prompt = custom_prompt |
|
|
logger.info(f"Using custom prompt: {prompt[:50]}...") |
|
|
else: |
|
|
prompt = PROMPT_TEMPLATES.get(prompt_mode, PROMPT_TEMPLATES["ocr"]) |
|
|
logger.info(f"Using prompt mode: {prompt_mode}") |
|
|
|
|
|
|
|
|
logger.info(f"Loading dataset: {input_dataset}") |
|
|
dataset = load_dataset(input_dataset, split=split) |
|
|
|
|
|
|
|
|
if image_column not in dataset.column_names: |
|
|
raise ValueError( |
|
|
f"Column '{image_column}' not found. Available: {dataset.column_names}" |
|
|
) |
|
|
|
|
|
|
|
|
if shuffle: |
|
|
logger.info(f"Shuffling dataset with seed {seed}") |
|
|
dataset = dataset.shuffle(seed=seed) |
|
|
|
|
|
|
|
|
if max_samples: |
|
|
dataset = dataset.select(range(min(max_samples, len(dataset)))) |
|
|
logger.info(f"Limited to {len(dataset)} samples") |
|
|
|
|
|
|
|
|
logger.info(f"Initializing vLLM with model: {model}") |
|
|
logger.info("This may take a few minutes on first run...") |
|
|
llm = LLM( |
|
|
model=model, |
|
|
trust_remote_code=True, |
|
|
max_model_len=max_model_len, |
|
|
gpu_memory_utilization=gpu_memory_utilization, |
|
|
) |
|
|
|
|
|
sampling_params = SamplingParams( |
|
|
temperature=0.0, |
|
|
max_tokens=max_tokens, |
|
|
) |
|
|
|
|
|
logger.info(f"Processing {len(dataset)} images in batches of {batch_size}") |
|
|
logger.info(f"Output will be written to column: {output_column}") |
|
|
|
|
|
|
|
|
all_outputs = [] |
|
|
|
|
|
for batch_indices in tqdm( |
|
|
partition_all(batch_size, range(len(dataset))), |
|
|
total=(len(dataset) + batch_size - 1) // batch_size, |
|
|
desc="DoTS.ocr processing", |
|
|
): |
|
|
batch_indices = list(batch_indices) |
|
|
batch_images = [dataset[i][image_column] for i in batch_indices] |
|
|
|
|
|
try: |
|
|
|
|
|
batch_messages = [make_ocr_message(img, prompt) for img in batch_images] |
|
|
|
|
|
|
|
|
outputs = llm.chat(batch_messages, sampling_params) |
|
|
|
|
|
|
|
|
for output in outputs: |
|
|
text = output.outputs[0].text.strip() |
|
|
all_outputs.append(text) |
|
|
|
|
|
except Exception as e: |
|
|
logger.error(f"Error processing batch: {e}") |
|
|
|
|
|
all_outputs.extend(["[OCR ERROR]"] * len(batch_images)) |
|
|
|
|
|
|
|
|
processing_duration = datetime.now() - start_time |
|
|
processing_time_str = f"{processing_duration.total_seconds() / 60:.1f} min" |
|
|
|
|
|
|
|
|
logger.info(f"Adding '{output_column}' column to dataset") |
|
|
dataset = dataset.add_column(output_column, all_outputs) |
|
|
|
|
|
|
|
|
inference_entry = { |
|
|
"model_id": model, |
|
|
"column_name": output_column, |
|
|
"timestamp": datetime.now().isoformat(), |
|
|
"prompt_mode": prompt_mode if not custom_prompt else "custom", |
|
|
} |
|
|
|
|
|
if "inference_info" in dataset.column_names: |
|
|
|
|
|
logger.info("Updating existing inference_info column") |
|
|
|
|
|
def update_inference_info(example): |
|
|
try: |
|
|
existing_info = json.loads(example["inference_info"]) if example["inference_info"] else [] |
|
|
except (json.JSONDecodeError, TypeError): |
|
|
existing_info = [] |
|
|
|
|
|
existing_info.append(inference_entry) |
|
|
return {"inference_info": json.dumps(existing_info)} |
|
|
|
|
|
dataset = dataset.map(update_inference_info) |
|
|
else: |
|
|
|
|
|
logger.info("Creating new inference_info column") |
|
|
inference_list = [json.dumps([inference_entry])] * len(dataset) |
|
|
dataset = dataset.add_column("inference_info", inference_list) |
|
|
|
|
|
|
|
|
logger.info(f"Pushing to {output_dataset}") |
|
|
dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN) |
|
|
|
|
|
|
|
|
logger.info("Creating dataset card") |
|
|
card_content = create_dataset_card( |
|
|
source_dataset=input_dataset, |
|
|
model=model, |
|
|
num_samples=len(dataset), |
|
|
processing_time=processing_time_str, |
|
|
batch_size=batch_size, |
|
|
max_model_len=max_model_len, |
|
|
max_tokens=max_tokens, |
|
|
gpu_memory_utilization=gpu_memory_utilization, |
|
|
image_column=image_column, |
|
|
split=split, |
|
|
prompt_mode=prompt_mode if not custom_prompt else "custom", |
|
|
) |
|
|
|
|
|
card = DatasetCard(card_content) |
|
|
card.push_to_hub(output_dataset, token=HF_TOKEN) |
|
|
|
|
|
logger.info("β
DoTS.ocr processing complete!") |
|
|
logger.info(f"Dataset available at: https://huggingface.co/datasets/{output_dataset}") |
|
|
logger.info(f"Processing time: {processing_time_str}") |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
if len(sys.argv) == 1: |
|
|
print("=" * 80) |
|
|
print("DoTS.ocr Document Processing") |
|
|
print("=" * 80) |
|
|
print("\nCompact 1.7B multilingual OCR model supporting 100+ languages") |
|
|
print("\nFeatures:") |
|
|
print("- π Multilingual support (100+ languages)") |
|
|
print("- β‘ Fast processing with vLLM (2-3x speedup)") |
|
|
print("- π Table extraction and formatting") |
|
|
print("- π Formula recognition") |
|
|
print("- π Layout-aware text extraction") |
|
|
print("\nExample usage:") |
|
|
print("\n1. Basic OCR:") |
|
|
print(" uv run dots-ocr.py input-dataset output-dataset") |
|
|
print("\n2. With custom settings:") |
|
|
print(" uv run dots-ocr.py docs analyzed-docs --batch-size 20 --max-samples 100") |
|
|
print("\n3. Layout analysis with structure:") |
|
|
print(" uv run dots-ocr.py papers analyzed-structure --prompt-mode layout-all") |
|
|
print("\n4. Layout detection only (no text):") |
|
|
print(" uv run dots-ocr.py docs layout-info --prompt-mode layout-only") |
|
|
print("\n5. Running on HF Jobs:") |
|
|
print(" hf jobs uv run --flavor l4x1 \\") |
|
|
print(" -e HF_TOKEN=$(python3 -c \"from huggingface_hub import get_token; print(get_token())\") \\") |
|
|
print(" -e HF_HUB_ENABLE_HF_TRANSFER=1 \\") |
|
|
print(" https://huggingface.co/datasets/uv-scripts/ocr/raw/main/dots-ocr.py \\") |
|
|
print(" input-dataset output-dataset") |
|
|
print("\n" + "=" * 80) |
|
|
print("\nFor full help, run: uv run dots-ocr.py --help") |
|
|
sys.exit(0) |
|
|
|
|
|
parser = argparse.ArgumentParser( |
|
|
description="Document OCR using DoTS.ocr (1.7B multilingual model)", |
|
|
formatter_class=argparse.RawDescriptionHelpFormatter, |
|
|
epilog=""" |
|
|
Prompt Modes (official DoTS.ocr prompts): |
|
|
ocr - Simple text extraction (default) |
|
|
layout-all - Layout analysis with bboxes, categories, and text (JSON output) |
|
|
layout-only - Layout detection with bboxes and categories only (JSON output) |
|
|
|
|
|
Examples: |
|
|
# Basic text OCR (default) |
|
|
uv run dots-ocr.py my-docs analyzed-docs |
|
|
|
|
|
# Full layout analysis with structure |
|
|
uv run dots-ocr.py papers structured --prompt-mode layout-all |
|
|
|
|
|
# Random sampling for testing |
|
|
uv run dots-ocr.py large-dataset test --max-samples 50 --shuffle |
|
|
""", |
|
|
) |
|
|
|
|
|
parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub") |
|
|
parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub") |
|
|
parser.add_argument( |
|
|
"--image-column", |
|
|
default="image", |
|
|
help="Column containing images (default: image)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--batch-size", |
|
|
type=int, |
|
|
default=16, |
|
|
help="Batch size for processing (default: 16, DoTS handles 16-30 well)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--model", |
|
|
default="rednote-hilab/dots.ocr", |
|
|
help="Model to use (default: rednote-hilab/dots.ocr)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--max-model-len", |
|
|
type=int, |
|
|
default=8192, |
|
|
help="Maximum model context length (default: 8192)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--max-tokens", |
|
|
type=int, |
|
|
default=8192, |
|
|
help="Maximum tokens to generate (default: 8192)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--gpu-memory-utilization", |
|
|
type=float, |
|
|
default=0.8, |
|
|
help="GPU memory utilization (default: 0.8)", |
|
|
) |
|
|
parser.add_argument("--hf-token", help="Hugging Face API token") |
|
|
parser.add_argument( |
|
|
"--split", default="train", help="Dataset split to use (default: train)" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--max-samples", |
|
|
type=int, |
|
|
help="Maximum number of samples to process (for testing)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--private", action="store_true", help="Make output dataset private" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--shuffle", action="store_true", help="Shuffle dataset before processing" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--seed", |
|
|
type=int, |
|
|
default=42, |
|
|
help="Random seed for shuffling (default: 42)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--prompt-mode", |
|
|
choices=list(PROMPT_TEMPLATES.keys()), |
|
|
default="ocr", |
|
|
help=f"Prompt template to use: {', '.join(PROMPT_TEMPLATES.keys())} (default: ocr)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--custom-prompt", |
|
|
help="Custom prompt text (overrides --prompt-mode)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--output-column", |
|
|
default="markdown", |
|
|
help="Column name for output text (default: markdown)", |
|
|
) |
|
|
|
|
|
args = parser.parse_args() |
|
|
|
|
|
main( |
|
|
input_dataset=args.input_dataset, |
|
|
output_dataset=args.output_dataset, |
|
|
image_column=args.image_column, |
|
|
batch_size=args.batch_size, |
|
|
model=args.model, |
|
|
max_model_len=args.max_model_len, |
|
|
max_tokens=args.max_tokens, |
|
|
gpu_memory_utilization=args.gpu_memory_utilization, |
|
|
hf_token=args.hf_token, |
|
|
split=args.split, |
|
|
max_samples=args.max_samples, |
|
|
private=args.private, |
|
|
shuffle=args.shuffle, |
|
|
seed=args.seed, |
|
|
prompt_mode=args.prompt_mode, |
|
|
custom_prompt=args.custom_prompt, |
|
|
output_column=args.output_column, |
|
|
) |
|
|
|