Datasets:
ArXiv:
DOI:
License:
Merge branch 'main' of hf.co:datasets/AI4EPS/quakeflow_nc
Browse files- README.md +34 -60
- example.py +41 -0
- quakeflow_nc.py +28 -21
README.md
CHANGED
|
@@ -66,7 +66,7 @@ Waveform data, metadata, or data products for this study were accessed through t
|
|
| 66 |
- datasets
|
| 67 |
- h5py
|
| 68 |
- fsspec
|
| 69 |
-
-
|
| 70 |
|
| 71 |
### Usage
|
| 72 |
Import the necessary packages:
|
|
@@ -74,7 +74,6 @@ Import the necessary packages:
|
|
| 74 |
import h5py
|
| 75 |
import numpy as np
|
| 76 |
import torch
|
| 77 |
-
from torch.utils.data import Dataset, IterableDataset, DataLoader
|
| 78 |
from datasets import load_dataset
|
| 79 |
```
|
| 80 |
We have 6 configurations for the dataset:
|
|
@@ -89,16 +88,28 @@ We have 6 configurations for the dataset:
|
|
| 89 |
|
| 90 |
The sample of `station` is a dictionary with the following keys:
|
| 91 |
- `data`: the waveform with shape `(3, nt)`, the default time length is 8192
|
| 92 |
-
- `
|
| 93 |
-
- `
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
- `station_location`: the station location with shape `(3,)`, including latitude, longitude and depth
|
| 95 |
|
| 96 |
The sample of `event` is a dictionary with the following keys:
|
| 97 |
- `data`: the waveform with shape `(n_station, 3, nt)`, the default time length is 8192
|
| 98 |
-
- `
|
| 99 |
-
- `
|
| 100 |
-
- `
|
| 101 |
-
- `
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
- `station_location`: the space coordinates of the station with shape `(n_station, 3)`, including latitude, longitude and depth
|
| 103 |
|
| 104 |
The default configuration is `station_test`. You can specify the configuration by argument `name`. For example:
|
|
@@ -117,70 +128,33 @@ quakeflow_nc = load_dataset("AI4EPS/quakeflow_nc", name="station_test", split="t
|
|
| 117 |
quakeflow_nc = load_dataset("AI4EPS/quakeflow_nc", name="event", split="train")
|
| 118 |
```
|
| 119 |
|
| 120 |
-
####
|
| 121 |
-
Then you can change the dataset into PyTorch format iterable dataset, and view the first sample:
|
| 122 |
```python
|
| 123 |
quakeflow_nc = load_dataset("AI4EPS/quakeflow_nc", name="station_test", split="test")
|
| 124 |
-
# for PyTorch DataLoader, we need to divide the dataset into several shards
|
| 125 |
-
num_workers=4
|
| 126 |
-
quakeflow_nc = quakeflow_nc.to_iterable_dataset(num_shards=num_workers)
|
| 127 |
-
# because add examples formatting to get tensors when using the "torch" format
|
| 128 |
-
# has not been implemented yet, we need to manually add the formatting when using iterable dataset
|
| 129 |
-
# if you want to use dataset directly, just use
|
| 130 |
-
# quakeflow_nc.with_format("torch")
|
| 131 |
-
quakeflow_nc = quakeflow_nc.map(lambda x: {key: torch.from_numpy(np.array(value, dtype=np.float32)) for key, value in x.items()})
|
| 132 |
-
try:
|
| 133 |
-
isinstance(quakeflow_nc, torch.utils.data.IterableDataset)
|
| 134 |
-
except:
|
| 135 |
-
raise Exception("quakeflow_nc is not an IterableDataset")
|
| 136 |
|
| 137 |
# print the first sample of the iterable dataset
|
| 138 |
for example in quakeflow_nc:
|
| 139 |
print("\nIterable test\n")
|
| 140 |
print(example.keys())
|
| 141 |
for key in example.keys():
|
| 142 |
-
|
|
|
|
|
|
|
|
|
|
| 143 |
break
|
| 144 |
|
| 145 |
-
|
|
|
|
|
|
|
| 146 |
|
| 147 |
for batch in dataloader:
|
| 148 |
print("\nDataloader test\n")
|
| 149 |
-
print(batch
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
Then you can change the dataset into PyTorch format dataset, and view the first sample (Don't forget to reorder the keys):
|
| 158 |
-
```python
|
| 159 |
-
quakeflow_nc = datasets.load_dataset("AI4EPS/quakeflow_nc", split="test", name="event_test")
|
| 160 |
-
|
| 161 |
-
# for PyTorch DataLoader, we need to divide the dataset into several shards
|
| 162 |
-
num_workers=4
|
| 163 |
-
quakeflow_nc = quakeflow_nc.to_iterable_dataset(num_shards=num_workers)
|
| 164 |
-
quakeflow_nc = quakeflow_nc.map(lambda x: {key: torch.from_numpy(np.array(value, dtype=np.float32)) for key, value in x.items()})
|
| 165 |
-
try:
|
| 166 |
-
isinstance(quakeflow_nc, torch.utils.data.IterableDataset)
|
| 167 |
-
except:
|
| 168 |
-
raise Exception("quakeflow_nc is not an IterableDataset")
|
| 169 |
-
|
| 170 |
-
# print the first sample of the iterable dataset
|
| 171 |
-
for example in quakeflow_nc:
|
| 172 |
-
print("\nIterable test\n")
|
| 173 |
-
print(example.keys())
|
| 174 |
-
for key in example.keys():
|
| 175 |
-
print(key, example[key].shape, example[key].dtype)
|
| 176 |
-
break
|
| 177 |
-
|
| 178 |
-
dataloader = DataLoader(quakeflow_nc, batch_size=1, num_workers=num_workers)
|
| 179 |
-
|
| 180 |
-
for batch in dataloader:
|
| 181 |
-
print("\nDataloader test\n")
|
| 182 |
-
print(batch.keys())
|
| 183 |
-
for key in batch.keys():
|
| 184 |
-
print(key, batch[key].shape, batch[key].dtype)
|
| 185 |
break
|
| 186 |
```
|
|
|
|
| 66 |
- datasets
|
| 67 |
- h5py
|
| 68 |
- fsspec
|
| 69 |
+
- pytorch
|
| 70 |
|
| 71 |
### Usage
|
| 72 |
Import the necessary packages:
|
|
|
|
| 74 |
import h5py
|
| 75 |
import numpy as np
|
| 76 |
import torch
|
|
|
|
| 77 |
from datasets import load_dataset
|
| 78 |
```
|
| 79 |
We have 6 configurations for the dataset:
|
|
|
|
| 88 |
|
| 89 |
The sample of `station` is a dictionary with the following keys:
|
| 90 |
- `data`: the waveform with shape `(3, nt)`, the default time length is 8192
|
| 91 |
+
- `begin_time`: the begin time of the waveform data
|
| 92 |
+
- `end_time`: the end time of the waveform data
|
| 93 |
+
- `phase_time`: the phase arrival time
|
| 94 |
+
- `phase_index`: the time point index of the phase arrival time
|
| 95 |
+
- `phase_type`: the phase type
|
| 96 |
+
- `phase_polarity`: the phase polarity in ('U', 'D', 'N')
|
| 97 |
+
- `event_time`: the event time
|
| 98 |
+
- `event_time_index`: the time point index of the event time
|
| 99 |
+
- `event_location`: the event location with shape `(3,)`, including latitude, longitude, depth
|
| 100 |
- `station_location`: the station location with shape `(3,)`, including latitude, longitude and depth
|
| 101 |
|
| 102 |
The sample of `event` is a dictionary with the following keys:
|
| 103 |
- `data`: the waveform with shape `(n_station, 3, nt)`, the default time length is 8192
|
| 104 |
+
- `begin_time`: the begin time of the waveform data
|
| 105 |
+
- `end_time`: the end time of the waveform data
|
| 106 |
+
- `phase_time`: the phase arrival time with shape `(n_station,)`
|
| 107 |
+
- `phase_index`: the time point index of the phase arrival time with shape `(n_station,)`
|
| 108 |
+
- `phase_type`: the phase type with shape `(n_station,)`
|
| 109 |
+
- `phase_polarity`: the phase polarity in ('U', 'D', 'N') with shape `(n_station,)`
|
| 110 |
+
- `event_time`: the event time
|
| 111 |
+
- `event_time_index`: the time point index of the event time
|
| 112 |
+
- `event_location`: the space-time coordinates of the event with shape `(n_staion, 3)`
|
| 113 |
- `station_location`: the space coordinates of the station with shape `(n_station, 3)`, including latitude, longitude and depth
|
| 114 |
|
| 115 |
The default configuration is `station_test`. You can specify the configuration by argument `name`. For example:
|
|
|
|
| 128 |
quakeflow_nc = load_dataset("AI4EPS/quakeflow_nc", name="event", split="train")
|
| 129 |
```
|
| 130 |
|
| 131 |
+
#### Example loading the dataset
|
|
|
|
| 132 |
```python
|
| 133 |
quakeflow_nc = load_dataset("AI4EPS/quakeflow_nc", name="station_test", split="test")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
# print the first sample of the iterable dataset
|
| 136 |
for example in quakeflow_nc:
|
| 137 |
print("\nIterable test\n")
|
| 138 |
print(example.keys())
|
| 139 |
for key in example.keys():
|
| 140 |
+
if key == "data":
|
| 141 |
+
print(key, np.array(example[key]).shape)
|
| 142 |
+
else:
|
| 143 |
+
print(key, example[key])
|
| 144 |
break
|
| 145 |
|
| 146 |
+
# %%
|
| 147 |
+
quakeflow_nc = quakeflow_nc.with_format("torch")
|
| 148 |
+
dataloader = DataLoader(quakeflow_nc, batch_size=8, num_workers=0, collate_fn=lambda x: x)
|
| 149 |
|
| 150 |
for batch in dataloader:
|
| 151 |
print("\nDataloader test\n")
|
| 152 |
+
print(f"Batch size: {len(batch)}")
|
| 153 |
+
print(batch[0].keys())
|
| 154 |
+
for key in batch[0].keys():
|
| 155 |
+
if key == "data":
|
| 156 |
+
print(key, np.array(batch[0][key]).shape)
|
| 157 |
+
else:
|
| 158 |
+
print(key, batch[0][key])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
break
|
| 160 |
```
|
example.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# %%
|
| 2 |
+
import numpy as np
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
from torch.utils.data import DataLoader
|
| 5 |
+
|
| 6 |
+
# quakeflow_nc = load_dataset("AI4EPS/quakeflow_nc", name="station_test", split="test")
|
| 7 |
+
quakeflow_nc = load_dataset(
|
| 8 |
+
"./quakeflow_nc.py",
|
| 9 |
+
name="station_test",
|
| 10 |
+
# name="event_test",
|
| 11 |
+
split="test",
|
| 12 |
+
download_mode="force_redownload",
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
# print the first sample of the iterable dataset
|
| 16 |
+
for example in quakeflow_nc:
|
| 17 |
+
print("\nIterable test\n")
|
| 18 |
+
print(example.keys())
|
| 19 |
+
for key in example.keys():
|
| 20 |
+
if key == "data":
|
| 21 |
+
print(key, np.array(example[key]).shape)
|
| 22 |
+
else:
|
| 23 |
+
print(key, example[key])
|
| 24 |
+
break
|
| 25 |
+
|
| 26 |
+
# %%
|
| 27 |
+
quakeflow_nc = quakeflow_nc.with_format("torch")
|
| 28 |
+
dataloader = DataLoader(quakeflow_nc, batch_size=8, num_workers=0, collate_fn=lambda x: x)
|
| 29 |
+
|
| 30 |
+
for batch in dataloader:
|
| 31 |
+
print("\nDataloader test\n")
|
| 32 |
+
print(f"Batch size: {len(batch)}")
|
| 33 |
+
print(batch[0].keys())
|
| 34 |
+
for key in batch[0].keys():
|
| 35 |
+
if key == "data":
|
| 36 |
+
print(key, np.array(batch[0][key]).shape)
|
| 37 |
+
else:
|
| 38 |
+
print(key, batch[0][key])
|
| 39 |
+
break
|
| 40 |
+
|
| 41 |
+
# %%
|
quakeflow_nc.py
CHANGED
|
@@ -50,7 +50,7 @@ _LICENSE = ""
|
|
| 50 |
# TODO: Add link to the official dataset URLs here
|
| 51 |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
| 52 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
| 53 |
-
_REPO = "https://huggingface.co/datasets/AI4EPS/quakeflow_nc/resolve/main/
|
| 54 |
_FILES = [
|
| 55 |
"1987.h5",
|
| 56 |
"1988.h5",
|
|
@@ -104,14 +104,10 @@ class BatchBuilderConfig(datasets.BuilderConfig):
|
|
| 104 |
"""
|
| 105 |
yield a batch of event-based sample, so the number of sample stations can vary among batches
|
| 106 |
Batch Config for QuakeFlow_NC
|
| 107 |
-
:param batch_size: number of samples in a batch
|
| 108 |
-
:param num_stations_list: possible number of stations in a batch
|
| 109 |
"""
|
| 110 |
|
| 111 |
-
def __init__(self,
|
| 112 |
super().__init__(**kwargs)
|
| 113 |
-
self.batch_size = batch_size
|
| 114 |
-
self.num_stations_list = num_stations_list
|
| 115 |
|
| 116 |
|
| 117 |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
|
@@ -172,13 +168,14 @@ class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
|
|
| 172 |
features = datasets.Features(
|
| 173 |
{
|
| 174 |
"data": datasets.Array2D(shape=(3, self.nt), dtype="float32"),
|
| 175 |
-
"phase_pick": datasets.Array2D(shape=(3, self.nt), dtype="float32"),
|
| 176 |
"phase_time": datasets.Sequence(datasets.Value("string")),
|
| 177 |
"phase_index": datasets.Sequence(datasets.Value("int32")),
|
| 178 |
"phase_type": datasets.Sequence(datasets.Value("string")),
|
| 179 |
"phase_polarity": datasets.Sequence(datasets.Value("string")),
|
| 180 |
"begin_time": datasets.Value("string"),
|
| 181 |
"end_time": datasets.Value("string"),
|
|
|
|
|
|
|
| 182 |
"event_location": datasets.Sequence(datasets.Value("float32")),
|
| 183 |
"station_location": datasets.Sequence(datasets.Value("float32")),
|
| 184 |
},
|
|
@@ -186,18 +183,21 @@ class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
|
|
| 186 |
elif (self.config.name == "event") or (self.config.name == "event_train") or (self.config.name == "event_test"):
|
| 187 |
features = datasets.Features(
|
| 188 |
{
|
| 189 |
-
"data": datasets.
|
| 190 |
-
"
|
| 191 |
-
"
|
| 192 |
-
"
|
| 193 |
-
"
|
| 194 |
-
"phase_polarity": datasets.Sequence(datasets.Value("string")),
|
| 195 |
"begin_time": datasets.Value("string"),
|
| 196 |
"end_time": datasets.Value("string"),
|
|
|
|
|
|
|
| 197 |
"event_location": datasets.Sequence(datasets.Value("float32")),
|
| 198 |
-
"station_location": datasets.Sequence(datasets.Value("float32")),
|
| 199 |
},
|
| 200 |
)
|
|
|
|
|
|
|
| 201 |
|
| 202 |
return datasets.DatasetInfo(
|
| 203 |
# This is the description that will appear on the datasets page.
|
|
@@ -224,7 +224,8 @@ class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
|
|
| 224 |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
| 225 |
urls = _URLS[self.config.name]
|
| 226 |
# files = dl_manager.download(urls)
|
| 227 |
-
files = dl_manager.download_and_extract(urls)
|
|
|
|
| 228 |
print(files)
|
| 229 |
|
| 230 |
if self.config.name == "station" or self.config.name == "event":
|
|
@@ -280,9 +281,12 @@ class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
|
|
| 280 |
event_attrs["longitude"],
|
| 281 |
event_attrs["latitude"],
|
| 282 |
event_attrs["depth_km"],
|
| 283 |
-
event_attrs["event_time_index"],
|
| 284 |
]
|
|
|
|
|
|
|
| 285 |
station_ids = list(event.keys())
|
|
|
|
|
|
|
| 286 |
if (
|
| 287 |
(self.config.name == "station")
|
| 288 |
or (self.config.name == "station_train")
|
|
@@ -307,6 +311,8 @@ class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
|
|
| 307 |
"phase_polarity": phase_polarity,
|
| 308 |
"begin_time": begin_time,
|
| 309 |
"end_time": end_time,
|
|
|
|
|
|
|
| 310 |
"event_location": event_location,
|
| 311 |
"station_location": station_location,
|
| 312 |
}
|
|
@@ -327,14 +333,13 @@ class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
|
|
| 327 |
for i, sta_id in enumerate(station_ids):
|
| 328 |
waveforms[i, :, : self.nt] = event[sta_id][:, : self.nt]
|
| 329 |
attrs = event[sta_id].attrs
|
| 330 |
-
phase_type.append(attrs["phase_type"])
|
| 331 |
-
phase_time.append(attrs["phase_time"])
|
| 332 |
-
phase_index.append(attrs["phase_index"])
|
| 333 |
-
phase_polarity.append(attrs["phase_polarity"])
|
| 334 |
station_location.append(
|
| 335 |
[attrs["longitude"], attrs["latitude"], -attrs["elevation_m"] / 1e3]
|
| 336 |
)
|
| 337 |
-
|
| 338 |
yield event_id, {
|
| 339 |
"data": waveforms,
|
| 340 |
"phase_time": phase_time,
|
|
@@ -343,6 +348,8 @@ class QuakeFlow_NC(datasets.GeneratorBasedBuilder):
|
|
| 343 |
"phase_polarity": phase_polarity,
|
| 344 |
"begin_time": begin_time,
|
| 345 |
"end_time": end_time,
|
|
|
|
|
|
|
| 346 |
"event_location": event_location,
|
| 347 |
"station_location": station_location,
|
| 348 |
}
|
|
|
|
| 50 |
# TODO: Add link to the official dataset URLs here
|
| 51 |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
| 52 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
| 53 |
+
_REPO = "https://huggingface.co/datasets/AI4EPS/quakeflow_nc/resolve/main/waveform_h5"
|
| 54 |
_FILES = [
|
| 55 |
"1987.h5",
|
| 56 |
"1988.h5",
|
|
|
|
| 104 |
"""
|
| 105 |
yield a batch of event-based sample, so the number of sample stations can vary among batches
|
| 106 |
Batch Config for QuakeFlow_NC
|
|
|
|
|
|
|
| 107 |
"""
|
| 108 |
|
| 109 |
+
def __init__(self, **kwargs):
|
| 110 |
super().__init__(**kwargs)
|
|
|
|
|
|
|
| 111 |
|
| 112 |
|
| 113 |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
|
|
|
| 168 |
features = datasets.Features(
|
| 169 |
{
|
| 170 |
"data": datasets.Array2D(shape=(3, self.nt), dtype="float32"),
|
|
|
|
| 171 |
"phase_time": datasets.Sequence(datasets.Value("string")),
|
| 172 |
"phase_index": datasets.Sequence(datasets.Value("int32")),
|
| 173 |
"phase_type": datasets.Sequence(datasets.Value("string")),
|
| 174 |
"phase_polarity": datasets.Sequence(datasets.Value("string")),
|
| 175 |
"begin_time": datasets.Value("string"),
|
| 176 |
"end_time": datasets.Value("string"),
|
| 177 |
+
"event_time": datasets.Value("string"),
|
| 178 |
+
"event_time_index": datasets.Value("int32"),
|
| 179 |
"event_location": datasets.Sequence(datasets.Value("float32")),
|
| 180 |
"station_location": datasets.Sequence(datasets.Value("float32")),
|
| 181 |
},
|
|
|
|
| 183 |
elif (self.config.name == "event") or (self.config.name == "event_train") or (self.config.name == "event_test"):
|
| 184 |
features = datasets.Features(
|
| 185 |
{
|
| 186 |
+
"data": datasets.Array3D(shape=(None, 3, self.nt), dtype="float32"),
|
| 187 |
+
"phase_time": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
|
| 188 |
+
"phase_index": datasets.Sequence(datasets.Sequence(datasets.Value("int32"))),
|
| 189 |
+
"phase_type": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
|
| 190 |
+
"phase_polarity": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
|
|
|
|
| 191 |
"begin_time": datasets.Value("string"),
|
| 192 |
"end_time": datasets.Value("string"),
|
| 193 |
+
"event_time": datasets.Value("string"),
|
| 194 |
+
"event_time_index": datasets.Value("int32"),
|
| 195 |
"event_location": datasets.Sequence(datasets.Value("float32")),
|
| 196 |
+
"station_location": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
|
| 197 |
},
|
| 198 |
)
|
| 199 |
+
else:
|
| 200 |
+
raise ValueError(f"config.name = {self.config.name} is not in BUILDER_CONFIGS")
|
| 201 |
|
| 202 |
return datasets.DatasetInfo(
|
| 203 |
# This is the description that will appear on the datasets page.
|
|
|
|
| 224 |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
| 225 |
urls = _URLS[self.config.name]
|
| 226 |
# files = dl_manager.download(urls)
|
| 227 |
+
# files = dl_manager.download_and_extract(urls)
|
| 228 |
+
files = ["waveform_h5/1989.h5", "waveform_h5/1990.h5"]
|
| 229 |
print(files)
|
| 230 |
|
| 231 |
if self.config.name == "station" or self.config.name == "event":
|
|
|
|
| 281 |
event_attrs["longitude"],
|
| 282 |
event_attrs["latitude"],
|
| 283 |
event_attrs["depth_km"],
|
|
|
|
| 284 |
]
|
| 285 |
+
event_time = event_attrs["event_time"]
|
| 286 |
+
event_time_index = event_attrs["event_time_index"]
|
| 287 |
station_ids = list(event.keys())
|
| 288 |
+
if len(station_ids) == 0:
|
| 289 |
+
continue
|
| 290 |
if (
|
| 291 |
(self.config.name == "station")
|
| 292 |
or (self.config.name == "station_train")
|
|
|
|
| 311 |
"phase_polarity": phase_polarity,
|
| 312 |
"begin_time": begin_time,
|
| 313 |
"end_time": end_time,
|
| 314 |
+
"event_time": event_time,
|
| 315 |
+
"event_time_index": event_time_index,
|
| 316 |
"event_location": event_location,
|
| 317 |
"station_location": station_location,
|
| 318 |
}
|
|
|
|
| 333 |
for i, sta_id in enumerate(station_ids):
|
| 334 |
waveforms[i, :, : self.nt] = event[sta_id][:, : self.nt]
|
| 335 |
attrs = event[sta_id].attrs
|
| 336 |
+
phase_type.append(list(attrs["phase_type"]))
|
| 337 |
+
phase_time.append(list(attrs["phase_time"]))
|
| 338 |
+
phase_index.append(list(attrs["phase_index"]))
|
| 339 |
+
phase_polarity.append(list(attrs["phase_polarity"]))
|
| 340 |
station_location.append(
|
| 341 |
[attrs["longitude"], attrs["latitude"], -attrs["elevation_m"] / 1e3]
|
| 342 |
)
|
|
|
|
| 343 |
yield event_id, {
|
| 344 |
"data": waveforms,
|
| 345 |
"phase_time": phase_time,
|
|
|
|
| 348 |
"phase_polarity": phase_polarity,
|
| 349 |
"begin_time": begin_time,
|
| 350 |
"end_time": end_time,
|
| 351 |
+
"event_time": event_time,
|
| 352 |
+
"event_time_index": event_time_index,
|
| 353 |
"event_location": event_location,
|
| 354 |
"station_location": station_location,
|
| 355 |
}
|