Training script
Browse files- histology_vit.ipynb +451 -0
histology_vit.ipynb
ADDED
|
@@ -0,0 +1,451 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [
|
| 8 |
+
{
|
| 9 |
+
"name": "stdout",
|
| 10 |
+
"output_type": "stream",
|
| 11 |
+
"text": [
|
| 12 |
+
"Data loaded successfully!\n",
|
| 13 |
+
"Number of classes: 32\n",
|
| 14 |
+
"Class names: ['Adrenocortical_carcinoma', 'Bladder_Urothelial_Carcinoma', 'Brain_Lower_Grade_Glioma', 'Breast_invasive_carcinoma', 'Cervical_squamous_cell_carcinoma_and_endocervical_adenocarcinoma', 'Cholangiocarcinoma', 'Colon_adenocarcinoma', 'Esophageal_carcinoma', 'Glioblastoma_multiforme', 'Head_and_Neck_squamous_cell_carcinoma', 'Kidney_Chromophobe', 'Kidney_renal_clear_cell_carcinoma', 'Kidney_renal_papillary_cell_carcinoma', 'Liver_hepatocellular_carcinoma', 'Lung_adenocarcinoma', 'Lung_squamous_cell_carcinoma', 'Lymphoid_Neoplasm_Diffuse_Large_B-cell_Lymphoma', 'Mesothelioma', 'Ovarian_serous_cystadenocarcinoma', 'Pancreatic_adenocarcinoma', 'Pheochromocytoma_and_Paraganglioma', 'Prostate_adenocarcinoma', 'Rectum_adenocarcinoma', 'Sarcoma', 'Skin_Cutaneous_Melanoma', 'Stomach_adenocarcinoma', 'Testicular_Germ_Cell_Tumors', 'Thymoma', 'Thyroid_carcinoma', 'Uterine_Carcinosarcoma', 'Uterine_Corpus_Endometrial_Carcinoma', 'Uveal_Melanoma']\n",
|
| 15 |
+
"ViTForCancerClassification(\n",
|
| 16 |
+
" (vit): VisionTransformer(\n",
|
| 17 |
+
" (conv_proj): Conv2d(3, 768, kernel_size=(16, 16), stride=(16, 16))\n",
|
| 18 |
+
" (encoder): Encoder(\n",
|
| 19 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
| 20 |
+
" (layers): Sequential(\n",
|
| 21 |
+
" (encoder_layer_0): EncoderBlock(\n",
|
| 22 |
+
" (ln_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
| 23 |
+
" (self_attention): MultiheadAttention(\n",
|
| 24 |
+
" (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)\n",
|
| 25 |
+
" )\n",
|
| 26 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
| 27 |
+
" (ln_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
| 28 |
+
" (mlp): MLPBlock(\n",
|
| 29 |
+
" (0): Linear(in_features=768, out_features=3072, bias=True)\n",
|
| 30 |
+
" (1): GELU(approximate='none')\n",
|
| 31 |
+
" (2): Dropout(p=0.0, inplace=False)\n",
|
| 32 |
+
" (3): Linear(in_features=3072, out_features=768, bias=True)\n",
|
| 33 |
+
" (4): Dropout(p=0.0, inplace=False)\n",
|
| 34 |
+
" )\n",
|
| 35 |
+
" )\n",
|
| 36 |
+
" (encoder_layer_1): EncoderBlock(\n",
|
| 37 |
+
" (ln_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
| 38 |
+
" (self_attention): MultiheadAttention(\n",
|
| 39 |
+
" (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)\n",
|
| 40 |
+
" )\n",
|
| 41 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
| 42 |
+
" (ln_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
| 43 |
+
" (mlp): MLPBlock(\n",
|
| 44 |
+
" (0): Linear(in_features=768, out_features=3072, bias=True)\n",
|
| 45 |
+
" (1): GELU(approximate='none')\n",
|
| 46 |
+
" (2): Dropout(p=0.0, inplace=False)\n",
|
| 47 |
+
" (3): Linear(in_features=3072, out_features=768, bias=True)\n",
|
| 48 |
+
" (4): Dropout(p=0.0, inplace=False)\n",
|
| 49 |
+
" )\n",
|
| 50 |
+
" )\n",
|
| 51 |
+
" (encoder_layer_2): EncoderBlock(\n",
|
| 52 |
+
" (ln_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
| 53 |
+
" (self_attention): MultiheadAttention(\n",
|
| 54 |
+
" (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)\n",
|
| 55 |
+
" )\n",
|
| 56 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
| 57 |
+
" (ln_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
| 58 |
+
" (mlp): MLPBlock(\n",
|
| 59 |
+
" (0): Linear(in_features=768, out_features=3072, bias=True)\n",
|
| 60 |
+
" (1): GELU(approximate='none')\n",
|
| 61 |
+
" (2): Dropout(p=0.0, inplace=False)\n",
|
| 62 |
+
" (3): Linear(in_features=3072, out_features=768, bias=True)\n",
|
| 63 |
+
" (4): Dropout(p=0.0, inplace=False)\n",
|
| 64 |
+
" )\n",
|
| 65 |
+
" )\n",
|
| 66 |
+
" (encoder_layer_3): EncoderBlock(\n",
|
| 67 |
+
" (ln_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
| 68 |
+
" (self_attention): MultiheadAttention(\n",
|
| 69 |
+
" (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)\n",
|
| 70 |
+
" )\n",
|
| 71 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
| 72 |
+
" (ln_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
| 73 |
+
" (mlp): MLPBlock(\n",
|
| 74 |
+
" (0): Linear(in_features=768, out_features=3072, bias=True)\n",
|
| 75 |
+
" (1): GELU(approximate='none')\n",
|
| 76 |
+
" (2): Dropout(p=0.0, inplace=False)\n",
|
| 77 |
+
" (3): Linear(in_features=3072, out_features=768, bias=True)\n",
|
| 78 |
+
" (4): Dropout(p=0.0, inplace=False)\n",
|
| 79 |
+
" )\n",
|
| 80 |
+
" )\n",
|
| 81 |
+
" (encoder_layer_4): EncoderBlock(\n",
|
| 82 |
+
" (ln_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
| 83 |
+
" (self_attention): MultiheadAttention(\n",
|
| 84 |
+
" (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)\n",
|
| 85 |
+
" )\n",
|
| 86 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
| 87 |
+
" (ln_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
| 88 |
+
" (mlp): MLPBlock(\n",
|
| 89 |
+
" (0): Linear(in_features=768, out_features=3072, bias=True)\n",
|
| 90 |
+
" (1): GELU(approximate='none')\n",
|
| 91 |
+
" (2): Dropout(p=0.0, inplace=False)\n",
|
| 92 |
+
" (3): Linear(in_features=3072, out_features=768, bias=True)\n",
|
| 93 |
+
" (4): Dropout(p=0.0, inplace=False)\n",
|
| 94 |
+
" )\n",
|
| 95 |
+
" )\n",
|
| 96 |
+
" (encoder_layer_5): EncoderBlock(\n",
|
| 97 |
+
" (ln_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
| 98 |
+
" (self_attention): MultiheadAttention(\n",
|
| 99 |
+
" (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)\n",
|
| 100 |
+
" )\n",
|
| 101 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
| 102 |
+
" (ln_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
| 103 |
+
" (mlp): MLPBlock(\n",
|
| 104 |
+
" (0): Linear(in_features=768, out_features=3072, bias=True)\n",
|
| 105 |
+
" (1): GELU(approximate='none')\n",
|
| 106 |
+
" (2): Dropout(p=0.0, inplace=False)\n",
|
| 107 |
+
" (3): Linear(in_features=3072, out_features=768, bias=True)\n",
|
| 108 |
+
" (4): Dropout(p=0.0, inplace=False)\n",
|
| 109 |
+
" )\n",
|
| 110 |
+
" )\n",
|
| 111 |
+
" (encoder_layer_6): EncoderBlock(\n",
|
| 112 |
+
" (ln_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
| 113 |
+
" (self_attention): MultiheadAttention(\n",
|
| 114 |
+
" (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)\n",
|
| 115 |
+
" )\n",
|
| 116 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
| 117 |
+
" (ln_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
| 118 |
+
" (mlp): MLPBlock(\n",
|
| 119 |
+
" (0): Linear(in_features=768, out_features=3072, bias=True)\n",
|
| 120 |
+
" (1): GELU(approximate='none')\n",
|
| 121 |
+
" (2): Dropout(p=0.0, inplace=False)\n",
|
| 122 |
+
" (3): Linear(in_features=3072, out_features=768, bias=True)\n",
|
| 123 |
+
" (4): Dropout(p=0.0, inplace=False)\n",
|
| 124 |
+
" )\n",
|
| 125 |
+
" )\n",
|
| 126 |
+
" (encoder_layer_7): EncoderBlock(\n",
|
| 127 |
+
" (ln_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
| 128 |
+
" (self_attention): MultiheadAttention(\n",
|
| 129 |
+
" (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)\n",
|
| 130 |
+
" )\n",
|
| 131 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
| 132 |
+
" (ln_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
| 133 |
+
" (mlp): MLPBlock(\n",
|
| 134 |
+
" (0): Linear(in_features=768, out_features=3072, bias=True)\n",
|
| 135 |
+
" (1): GELU(approximate='none')\n",
|
| 136 |
+
" (2): Dropout(p=0.0, inplace=False)\n",
|
| 137 |
+
" (3): Linear(in_features=3072, out_features=768, bias=True)\n",
|
| 138 |
+
" (4): Dropout(p=0.0, inplace=False)\n",
|
| 139 |
+
" )\n",
|
| 140 |
+
" )\n",
|
| 141 |
+
" (encoder_layer_8): EncoderBlock(\n",
|
| 142 |
+
" (ln_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
| 143 |
+
" (self_attention): MultiheadAttention(\n",
|
| 144 |
+
" (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)\n",
|
| 145 |
+
" )\n",
|
| 146 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
| 147 |
+
" (ln_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
| 148 |
+
" (mlp): MLPBlock(\n",
|
| 149 |
+
" (0): Linear(in_features=768, out_features=3072, bias=True)\n",
|
| 150 |
+
" (1): GELU(approximate='none')\n",
|
| 151 |
+
" (2): Dropout(p=0.0, inplace=False)\n",
|
| 152 |
+
" (3): Linear(in_features=3072, out_features=768, bias=True)\n",
|
| 153 |
+
" (4): Dropout(p=0.0, inplace=False)\n",
|
| 154 |
+
" )\n",
|
| 155 |
+
" )\n",
|
| 156 |
+
" (encoder_layer_9): EncoderBlock(\n",
|
| 157 |
+
" (ln_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
| 158 |
+
" (self_attention): MultiheadAttention(\n",
|
| 159 |
+
" (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)\n",
|
| 160 |
+
" )\n",
|
| 161 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
| 162 |
+
" (ln_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
| 163 |
+
" (mlp): MLPBlock(\n",
|
| 164 |
+
" (0): Linear(in_features=768, out_features=3072, bias=True)\n",
|
| 165 |
+
" (1): GELU(approximate='none')\n",
|
| 166 |
+
" (2): Dropout(p=0.0, inplace=False)\n",
|
| 167 |
+
" (3): Linear(in_features=3072, out_features=768, bias=True)\n",
|
| 168 |
+
" (4): Dropout(p=0.0, inplace=False)\n",
|
| 169 |
+
" )\n",
|
| 170 |
+
" )\n",
|
| 171 |
+
" (encoder_layer_10): EncoderBlock(\n",
|
| 172 |
+
" (ln_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
| 173 |
+
" (self_attention): MultiheadAttention(\n",
|
| 174 |
+
" (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)\n",
|
| 175 |
+
" )\n",
|
| 176 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
| 177 |
+
" (ln_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
| 178 |
+
" (mlp): MLPBlock(\n",
|
| 179 |
+
" (0): Linear(in_features=768, out_features=3072, bias=True)\n",
|
| 180 |
+
" (1): GELU(approximate='none')\n",
|
| 181 |
+
" (2): Dropout(p=0.0, inplace=False)\n",
|
| 182 |
+
" (3): Linear(in_features=3072, out_features=768, bias=True)\n",
|
| 183 |
+
" (4): Dropout(p=0.0, inplace=False)\n",
|
| 184 |
+
" )\n",
|
| 185 |
+
" )\n",
|
| 186 |
+
" (encoder_layer_11): EncoderBlock(\n",
|
| 187 |
+
" (ln_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
| 188 |
+
" (self_attention): MultiheadAttention(\n",
|
| 189 |
+
" (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)\n",
|
| 190 |
+
" )\n",
|
| 191 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
| 192 |
+
" (ln_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
| 193 |
+
" (mlp): MLPBlock(\n",
|
| 194 |
+
" (0): Linear(in_features=768, out_features=3072, bias=True)\n",
|
| 195 |
+
" (1): GELU(approximate='none')\n",
|
| 196 |
+
" (2): Dropout(p=0.0, inplace=False)\n",
|
| 197 |
+
" (3): Linear(in_features=3072, out_features=768, bias=True)\n",
|
| 198 |
+
" (4): Dropout(p=0.0, inplace=False)\n",
|
| 199 |
+
" )\n",
|
| 200 |
+
" )\n",
|
| 201 |
+
" )\n",
|
| 202 |
+
" (ln): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
| 203 |
+
" )\n",
|
| 204 |
+
" (heads): Sequential(\n",
|
| 205 |
+
" (head): Linear(in_features=768, out_features=32, bias=True)\n",
|
| 206 |
+
" )\n",
|
| 207 |
+
" )\n",
|
| 208 |
+
")\n"
|
| 209 |
+
]
|
| 210 |
+
}
|
| 211 |
+
],
|
| 212 |
+
"source": [
|
| 213 |
+
"import torch\n",
|
| 214 |
+
"import torch.nn as nn\n",
|
| 215 |
+
"from torch.utils.data import DataLoader, Dataset, WeightedRandomSampler\n",
|
| 216 |
+
"import torchvision\n",
|
| 217 |
+
"from torchvision import datasets, transforms\n",
|
| 218 |
+
"from torch.utils.data import Subset\n",
|
| 219 |
+
"import numpy as np\n",
|
| 220 |
+
"import os\n",
|
| 221 |
+
"import pickle\n",
|
| 222 |
+
"from tqdm.auto import tqdm\n",
|
| 223 |
+
"from pathlib import Path\n",
|
| 224 |
+
"from torchvision.models import vit_b_16, ViT_B_16_Weights\n",
|
| 225 |
+
"\n",
|
| 226 |
+
"os.environ['CUDA_LAUNCH_BLOCKING'] = '1'\n",
|
| 227 |
+
"\n",
|
| 228 |
+
"# Paths to save the dataloaders and class information\n",
|
| 229 |
+
"save_path = \"saved_objects\"\n",
|
| 230 |
+
"class_info_path = os.path.join(save_path, 'class_info.pkl')\n",
|
| 231 |
+
"train_dataloader_path = os.path.join(save_path, 'train_dataloader.pkl')\n",
|
| 232 |
+
"test_dataloader_path = os.path.join(save_path, 'test_dataloader.pkl')\n",
|
| 233 |
+
"\n",
|
| 234 |
+
"# Create directory if not exists\n",
|
| 235 |
+
"os.makedirs(save_path, exist_ok=True)\n",
|
| 236 |
+
"\n",
|
| 237 |
+
"# Function to load saved objects\n",
|
| 238 |
+
"def load_saved_data():\n",
|
| 239 |
+
" if os.path.exists(class_info_path) and os.path.exists(train_dataloader_path) and os.path.exists(test_dataloader_path):\n",
|
| 240 |
+
" with open(class_info_path, 'rb') as f:\n",
|
| 241 |
+
" class_info = pickle.load(f)\n",
|
| 242 |
+
" total_samples = class_info['total_samples']\n",
|
| 243 |
+
" class_weights = class_info['class_weights']\n",
|
| 244 |
+
" sample_weights = class_info['sample_weights']\n",
|
| 245 |
+
"\n",
|
| 246 |
+
" with open(train_dataloader_path, 'rb') as f:\n",
|
| 247 |
+
" train_dataloader = pickle.load(f)\n",
|
| 248 |
+
"\n",
|
| 249 |
+
" with open(test_dataloader_path, 'rb') as f:\n",
|
| 250 |
+
" test_dataloader = pickle.load(f)\n",
|
| 251 |
+
"\n",
|
| 252 |
+
" print(\"Data loaded successfully!\")\n",
|
| 253 |
+
" return total_samples, class_weights, sample_weights, train_dataloader, test_dataloader\n",
|
| 254 |
+
" else:\n",
|
| 255 |
+
" return None, None, None, None, None\n",
|
| 256 |
+
"\n",
|
| 257 |
+
"# Function to save objects\n",
|
| 258 |
+
"def save_data(total_samples, class_weights, sample_weights, train_dataloader, test_dataloader):\n",
|
| 259 |
+
" with open(class_info_path, 'wb') as f:\n",
|
| 260 |
+
" pickle.dump({\n",
|
| 261 |
+
" 'total_samples': total_samples,\n",
|
| 262 |
+
" 'class_weights': class_weights,\n",
|
| 263 |
+
" 'sample_weights': sample_weights\n",
|
| 264 |
+
" }, f)\n",
|
| 265 |
+
"\n",
|
| 266 |
+
" with open(train_dataloader_path, 'wb') as f:\n",
|
| 267 |
+
" pickle.dump(train_dataloader, f)\n",
|
| 268 |
+
"\n",
|
| 269 |
+
" with open(test_dataloader_path, 'wb') as f:\n",
|
| 270 |
+
" pickle.dump(test_dataloader, f)\n",
|
| 271 |
+
"\n",
|
| 272 |
+
" print(\"Data saved successfully!\")\n",
|
| 273 |
+
"\n",
|
| 274 |
+
"# Define the ViT model\n",
|
| 275 |
+
"class ViTForCancerClassification(nn.Module):\n",
|
| 276 |
+
" def __init__(self, num_classes):\n",
|
| 277 |
+
" super(ViTForCancerClassification, self).__init__()\n",
|
| 278 |
+
" self.vit = vit_b_16(weights=ViT_B_16_Weights.DEFAULT)\n",
|
| 279 |
+
" \n",
|
| 280 |
+
" # Get the input features of the classifier\n",
|
| 281 |
+
" in_features = self.vit.heads.head.in_features # Access the head layer specifically\n",
|
| 282 |
+
" \n",
|
| 283 |
+
" # Replace the head with a new classification layer\n",
|
| 284 |
+
" self.vit.heads.head = nn.Linear(in_features, num_classes)\n",
|
| 285 |
+
" \n",
|
| 286 |
+
" def forward(self, x):\n",
|
| 287 |
+
" return self.vit(x)\n",
|
| 288 |
+
"\n",
|
| 289 |
+
"# Function to get attention weights\n",
|
| 290 |
+
"def get_attention_weights(model, x):\n",
|
| 291 |
+
" with torch.no_grad():\n",
|
| 292 |
+
" outputs = model.vit._process_input(x)\n",
|
| 293 |
+
" outputs = model.vit.encoder(outputs)\n",
|
| 294 |
+
" return model.vit.encoder.layers[-1].self_attention.attention_weights\n",
|
| 295 |
+
"\n",
|
| 296 |
+
"# Try to load saved data\n",
|
| 297 |
+
"total_samples, class_weights, sample_weights, train_dataloader, test_dataloader = load_saved_data()\n",
|
| 298 |
+
"\n",
|
| 299 |
+
"# If the data is not available, run preprocessing\n",
|
| 300 |
+
"if total_samples is None:\n",
|
| 301 |
+
" print(\"No saved data found. Running data preprocessing...\")\n",
|
| 302 |
+
"\n",
|
| 303 |
+
" # Data loading and preprocessing\n",
|
| 304 |
+
" data_path = Path('TCGA')\n",
|
| 305 |
+
" transform = transforms.Compose([\n",
|
| 306 |
+
" transforms.Resize((224, 224)), # ViT typically expects 224x224 input\n",
|
| 307 |
+
" transforms.ToTensor(),\n",
|
| 308 |
+
" transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n",
|
| 309 |
+
" ])\n",
|
| 310 |
+
"\n",
|
| 311 |
+
" full_dataset = datasets.ImageFolder(root=data_path, transform=transform)\n",
|
| 312 |
+
" valid_indices = [i for i, (_, label) in enumerate(full_dataset.samples)]\n",
|
| 313 |
+
" dataset = Subset(full_dataset, valid_indices)\n",
|
| 314 |
+
"\n",
|
| 315 |
+
" class_names = [name for name, idx in full_dataset.class_to_idx.items()]\n",
|
| 316 |
+
" class_to_idx = {name: idx for name, idx in full_dataset.class_to_idx.items()}\n",
|
| 317 |
+
" print(class_names, class_to_idx)\n",
|
| 318 |
+
"\n",
|
| 319 |
+
" # Calculate class weights\n",
|
| 320 |
+
" class_counts = [0] * len(class_names)\n",
|
| 321 |
+
" for _, label in dataset:\n",
|
| 322 |
+
" class_counts[label] += 1\n",
|
| 323 |
+
" total_samples = sum(class_counts)\n",
|
| 324 |
+
" class_weights = [total_samples / (len(class_names) * count) for count in class_counts]\n",
|
| 325 |
+
" sample_weights = [class_weights[label] for _, label in dataset]\n",
|
| 326 |
+
"\n",
|
| 327 |
+
" # Create WeightedRandomSampler\n",
|
| 328 |
+
" sampler = WeightedRandomSampler(weights=sample_weights, num_samples=len(sample_weights), replacement=True)\n",
|
| 329 |
+
"\n",
|
| 330 |
+
" # Create data loaders\n",
|
| 331 |
+
" BATCH_SIZE = 128\n",
|
| 332 |
+
" train_dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, sampler=sampler)\n",
|
| 333 |
+
" test_dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=False)\n",
|
| 334 |
+
"\n",
|
| 335 |
+
" # Save the processed data for future use\n",
|
| 336 |
+
" save_data(total_samples, class_weights, sample_weights, train_dataloader, test_dataloader)\n",
|
| 337 |
+
"\n",
|
| 338 |
+
"class_names = ['Adrenocortical_carcinoma', 'Bladder_Urothelial_Carcinoma', 'Brain_Lower_Grade_Glioma', 'Breast_invasive_carcinoma', 'Cervical_squamous_cell_carcinoma_and_endocervical_adenocarcinoma', 'Cholangiocarcinoma', 'Colon_adenocarcinoma', 'Esophageal_carcinoma', 'Glioblastoma_multiforme', 'Head_and_Neck_squamous_cell_carcinoma', 'Kidney_Chromophobe', 'Kidney_renal_clear_cell_carcinoma', 'Kidney_renal_papillary_cell_carcinoma', 'Liver_hepatocellular_carcinoma', 'Lung_adenocarcinoma', 'Lung_squamous_cell_carcinoma', 'Lymphoid_Neoplasm_Diffuse_Large_B-cell_Lymphoma', 'Mesothelioma', 'Ovarian_serous_cystadenocarcinoma', 'Pancreatic_adenocarcinoma', 'Pheochromocytoma_and_Paraganglioma', 'Prostate_adenocarcinoma', 'Rectum_adenocarcinoma', 'Sarcoma', 'Skin_Cutaneous_Melanoma', 'Stomach_adenocarcinoma', 'Testicular_Germ_Cell_Tumors', 'Thymoma', 'Thyroid_carcinoma', 'Uterine_Carcinosarcoma', 'Uterine_Corpus_Endometrial_Carcinoma', 'Uveal_Melanoma']\n",
|
| 339 |
+
"print(f\"Number of classes: {len(class_names)}\")\n",
|
| 340 |
+
"print(f\"Class names: {class_names}\")\n",
|
| 341 |
+
"\n",
|
| 342 |
+
"# Model setup\n",
|
| 343 |
+
"num_classes = len(class_names)\n",
|
| 344 |
+
"device = 'cuda' if torch.cuda.is_available() else 'cpu'\n",
|
| 345 |
+
"model = ViTForCancerClassification(num_classes).to(device)\n",
|
| 346 |
+
"print(model)\n",
|
| 347 |
+
"\n",
|
| 348 |
+
"# Training setup\n",
|
| 349 |
+
"torch.manual_seed(42)\n",
|
| 350 |
+
"EPOCHS = 20\n",
|
| 351 |
+
"class_weights_tensor = torch.FloatTensor(class_weights).to(device)\n",
|
| 352 |
+
"loss_fn = nn.CrossEntropyLoss(weight=class_weights_tensor)\n",
|
| 353 |
+
"optimizer = torch.optim.Adam(model.parameters(), lr=0.001)\n",
|
| 354 |
+
"\n",
|
| 355 |
+
"results = {\n",
|
| 356 |
+
" 'train_loss': [], \n",
|
| 357 |
+
" 'train_acc': [],\n",
|
| 358 |
+
" 'test_loss': [],\n",
|
| 359 |
+
" 'test_acc': []\n",
|
| 360 |
+
"}"
|
| 361 |
+
]
|
| 362 |
+
},
|
| 363 |
+
{
|
| 364 |
+
"cell_type": "code",
|
| 365 |
+
"execution_count": null,
|
| 366 |
+
"metadata": {},
|
| 367 |
+
"outputs": [],
|
| 368 |
+
"source": [
|
| 369 |
+
"import torch\n",
|
| 370 |
+
"\n",
|
| 371 |
+
"# Define the checkpoint file (change to the correct path if necessary)\n",
|
| 372 |
+
"checkpoint_path = 'vit_cancer_model_state_dict_X.pth' # Replace 'X' with the last saved epoch number\n",
|
| 373 |
+
"\n",
|
| 374 |
+
"# Load the saved model if it exists\n",
|
| 375 |
+
"if os.path.exists(checkpoint_path):\n",
|
| 376 |
+
" print(f\"Loading model from {checkpoint_path}\")\n",
|
| 377 |
+
" model.load_state_dict(torch.load(checkpoint_path))\n",
|
| 378 |
+
" start_epoch = int(checkpoint_path.split('_')[-1].split('.')[0]) + 1\n",
|
| 379 |
+
"else:\n",
|
| 380 |
+
" print(\"No checkpoint found, starting training from scratch.\")\n",
|
| 381 |
+
" start_epoch = 0\n",
|
| 382 |
+
"\n",
|
| 383 |
+
"# Resume training\n",
|
| 384 |
+
"for epoch in range(start_epoch, EPOCHS):\n",
|
| 385 |
+
" print(f\"Epoch {epoch+1}/{EPOCHS}\")\n",
|
| 386 |
+
" train_loss, train_acc = 0, 0\n",
|
| 387 |
+
" model.train()\n",
|
| 388 |
+
" for batch, (X, y) in tqdm(enumerate(train_dataloader), total=len(train_dataloader)):\n",
|
| 389 |
+
" X, y = X.to(device), y.to(device)\n",
|
| 390 |
+
" y_logits = model(X)\n",
|
| 391 |
+
" y_pred_class = torch.argmax(torch.softmax(y_logits, dim=1), dim=1)\n",
|
| 392 |
+
" loss = loss_fn(y_logits, y)\n",
|
| 393 |
+
" train_acc += (y_pred_class == y).sum().item() / len(y)\n",
|
| 394 |
+
" train_loss += loss.item()\n",
|
| 395 |
+
" \n",
|
| 396 |
+
" optimizer.zero_grad()\n",
|
| 397 |
+
" loss.backward()\n",
|
| 398 |
+
" optimizer.step()\n",
|
| 399 |
+
" \n",
|
| 400 |
+
" train_loss /= len(train_dataloader)\n",
|
| 401 |
+
" train_acc /= len(train_dataloader)\n",
|
| 402 |
+
" \n",
|
| 403 |
+
" results['train_loss'].append(train_loss)\n",
|
| 404 |
+
" results['train_acc'].append(train_acc)\n",
|
| 405 |
+
" \n",
|
| 406 |
+
" model.eval()\n",
|
| 407 |
+
" test_loss, test_acc = 0, 0\n",
|
| 408 |
+
" with torch.inference_mode():\n",
|
| 409 |
+
" for batch, (X, y) in tqdm(enumerate(test_dataloader), total=len(test_dataloader)):\n",
|
| 410 |
+
" X, y = X.to(device), y.to(device)\n",
|
| 411 |
+
" \n",
|
| 412 |
+
" test_logits = model(X)\n",
|
| 413 |
+
" test_pred_labels = test_logits.argmax(dim=1)\n",
|
| 414 |
+
" loss = loss_fn(test_logits, y)\n",
|
| 415 |
+
" test_acc += (test_pred_labels == y).sum().item() / len(y)\n",
|
| 416 |
+
" test_loss += loss.item()\n",
|
| 417 |
+
" \n",
|
| 418 |
+
" test_loss /= len(test_dataloader)\n",
|
| 419 |
+
" test_acc /= len(test_dataloader)\n",
|
| 420 |
+
" print(f'Training loss: {train_loss:.5f} acc: {train_acc:.5f} | Testing loss: {test_loss:.5f} acc: {test_acc:.5f}')\n",
|
| 421 |
+
" \n",
|
| 422 |
+
" results['test_loss'].append(test_loss)\n",
|
| 423 |
+
" results['test_acc'].append(test_acc)\n",
|
| 424 |
+
" \n",
|
| 425 |
+
" # Save the model checkpoint after every epoch\n",
|
| 426 |
+
" torch.save(model.state_dict(), f'vit_cancer_model_state_dict_{epoch}.pth')"
|
| 427 |
+
]
|
| 428 |
+
}
|
| 429 |
+
],
|
| 430 |
+
"metadata": {
|
| 431 |
+
"kernelspec": {
|
| 432 |
+
"display_name": "Python 3",
|
| 433 |
+
"language": "python",
|
| 434 |
+
"name": "python3"
|
| 435 |
+
},
|
| 436 |
+
"language_info": {
|
| 437 |
+
"codemirror_mode": {
|
| 438 |
+
"name": "ipython",
|
| 439 |
+
"version": 3
|
| 440 |
+
},
|
| 441 |
+
"file_extension": ".py",
|
| 442 |
+
"mimetype": "text/x-python",
|
| 443 |
+
"name": "python",
|
| 444 |
+
"nbconvert_exporter": "python",
|
| 445 |
+
"pygments_lexer": "ipython3",
|
| 446 |
+
"version": "3.12.3"
|
| 447 |
+
}
|
| 448 |
+
},
|
| 449 |
+
"nbformat": 4,
|
| 450 |
+
"nbformat_minor": 2
|
| 451 |
+
}
|