xuanlongORZ commited on
Commit
68d220a
·
1 Parent(s): 2a14168
Files changed (2) hide show
  1. README.md +30 -0
  2. best_deeplabv3plus_resnet101_muad.pth +3 -0
README.md CHANGED
@@ -1,3 +1,33 @@
1
  ---
2
  license: afl-3.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: afl-3.0
3
  ---
4
+
5
+ ## DeepLab v3 plus - ResNet101 model trained on MUAD dataset
6
+ This is a DeepLab v3 plus model with ResNet101 as the backbone trained on MUAD dataset. The training is based on PyTorch.
7
+
8
+ MUAD is the a synthetic dataset with multiple uncertainties for autonomous driving [[Paper]](https://arxiv.org/abs/2203.01437) [[Website]](https://muad-dataset.github.io/) [[Github]](https://github.com/ENSTA-U2IS/MUAD-Dataset).
9
+
10
+ ### ICCV UNCV 2023 | MUAD challenge
11
+ MUAD challenge is now on board on the Codalab platform for uncertainty estimation in semantic segmentation. This challenge is hosted in conjunction with the [ICCV 2023](https://iccv2023.thecvf.com/) workshop, [Uncertainty Quantification for Computer Vision (UNCV)](https://uncv2023.github.io/). Go and have a try! 🚀 🚀 🚀 [[Challenge link]](https://codalab.lisn.upsaclay.fr/competitions/8007)
12
+
13
+ ### Reference
14
+ If you find this work useful for your research, please consider citing our paper:
15
+ ```
16
+ @inproceedings{franchi22bmvc,
17
+ title = {MUAD: Multiple Uncertainties for Autonomous Driving benchmark for multiple uncertainty types and tasks},
18
+ author = {Gianni Franchi and Xuanlong Yu and Andrei Bursuc and Angel Tena and Rémi Kazmierczak and Severine Dubuisson and Emanuel Aldea and David Filliat},
19
+ booktitle = {33rd British Machine Vision Conference, {BMVC}},
20
+ year = {2022}
21
+ }
22
+ ```
23
+ ```
24
+ @inproceedings{deeplabv3plus2018,
25
+ title = {Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation},
26
+ author = {Liang-Chieh Chen and Yukun Zhu and George Papandreou and Florian Schroff and Hartwig Adam},
27
+ booktitle = {ECCV},
28
+ year = {2018}
29
+ }
30
+ ```
31
+
32
+ ### Copyright
33
+ Copyright for MUAD Dataset is owned by Université Paris-Saclay (SATIE Laboratory, Gif-sur-Yvette, FR) and ENSTA Paris (U2IS Laboratory, Palaiseau, FR).
best_deeplabv3plus_resnet101_muad.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1567729c4a48ed4b79cd8a46e6b84f18520bc38a788401517f8ff6e354868c63
3
+ size 470827449