Update README.md
Browse filesadded code for inference
README.md
CHANGED
|
@@ -9,6 +9,9 @@ tags:
|
|
| 9 |
- transformers
|
| 10 |
- trl
|
| 11 |
- unsloth
|
|
|
|
|
|
|
|
|
|
| 12 |
---
|
| 13 |
|
| 14 |
# Model Card for Model ID
|
|
@@ -16,6 +19,88 @@ tags:
|
|
| 16 |
<!-- Provide a quick summary of what the model is/does. -->
|
| 17 |
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
## Model Details
|
| 21 |
|
|
|
|
| 9 |
- transformers
|
| 10 |
- trl
|
| 11 |
- unsloth
|
| 12 |
+
license: apache-2.0
|
| 13 |
+
datasets:
|
| 14 |
+
- open-r1/codeforces-cots
|
| 15 |
---
|
| 16 |
|
| 17 |
# Model Card for Model ID
|
|
|
|
| 19 |
<!-- Provide a quick summary of what the model is/does. -->
|
| 20 |
|
| 21 |
|
| 22 |
+
this is qlora adapter trained on the CPP coding tasks and its trained for reasoning based generation.
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
```python
|
| 27 |
+
|
| 28 |
+
example_problem = """
|
| 29 |
+
A robot is situated at the top-left corner of an m x n grid. The robot can only move either down or right at any point in time. It wants to reach the bottom-right corner of the grid. Some cells in the grid are blocked by obstacles. How many unique paths can the robot take to reach the destination?
|
| 30 |
+
Constraints:
|
| 31 |
+
Time limit per test: 2.0 seconds
|
| 32 |
+
Memory limit per test: 256.0 megabytes
|
| 33 |
+
1 ≤ m, n ≤ 100
|
| 34 |
+
Grid cells are either 0 (empty) or 1 (obstacle).
|
| 35 |
+
Input Format:
|
| 36 |
+
The first line contains two integers m and n — the dimensions of the grid.
|
| 37 |
+
The next m lines each contain n integers (0 or 1) representing the grid.
|
| 38 |
+
Output Format:
|
| 39 |
+
Print a single integer — the number of unique paths.
|
| 40 |
+
Example:
|
| 41 |
+
```input
|
| 42 |
+
3 3
|
| 43 |
+
0 0 0
|
| 44 |
+
0 1 0
|
| 45 |
+
0 0 0
|
| 46 |
+
```
|
| 47 |
+
"""
|
| 48 |
+
from unsloth import FastLanguageModel
|
| 49 |
+
from transformers import TextStreamer
|
| 50 |
+
|
| 51 |
+
model_path = "SaffalPoosh/reasoning_cpp_llm"
|
| 52 |
+
|
| 53 |
+
max_seq_length = 16000
|
| 54 |
+
dtype = None
|
| 55 |
+
load_in_4bit = True
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 61 |
+
model_name=model_path,
|
| 62 |
+
max_seq_length=max_seq_length,
|
| 63 |
+
dtype=dtype,
|
| 64 |
+
load_in_4bit=load_in_4bit,
|
| 65 |
+
local_files_only=False
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
# this will download the base model and then patch by applying the lora adapters
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
from transformers import TextIteratorStreamer
|
| 72 |
+
FastLanguageModel.for_inference(model)
|
| 73 |
+
from threading import Thread
|
| 74 |
+
# Prepare Input Data
|
| 75 |
+
input_text = example_problem
|
| 76 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
| 77 |
+
inputs = {k:v.to("cuda") for k,v in inputs.items()}
|
| 78 |
+
# Initialize the text streamer
|
| 79 |
+
text_streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=False)
|
| 80 |
+
|
| 81 |
+
# Perform Inference
|
| 82 |
+
# _ = model.generate(**inputs, streamer=text_streamer, max_new_tokens=8000)
|
| 83 |
+
|
| 84 |
+
stream_catcher = Thread(target=model.generate, kwargs={**inputs, "do_sample": True, "streamer": text_streamer,
|
| 85 |
+
# "eos_token_id": tokenizer.eos_token_id,
|
| 86 |
+
|
| 87 |
+
"max_new_tokens": 10000})
|
| 88 |
+
stream_catcher.start()
|
| 89 |
+
|
| 90 |
+
with open("output.txt", "w") as f:
|
| 91 |
+
for token in text_streamer:
|
| 92 |
+
print(token, end="", flush=True)
|
| 93 |
+
f.write(token)
|
| 94 |
+
stream_catcher.join()
|
| 95 |
+
|
| 96 |
+
```
|
| 97 |
+
|
| 98 |
+
the `output.txt` file shows the output of generation.
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
|
| 104 |
|
| 105 |
## Model Details
|
| 106 |
|