Update README.md
Browse files
README.md
CHANGED
|
@@ -17,185 +17,82 @@ tags: []
|
|
| 17 |
|
| 18 |
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 19 |
|
| 20 |
-
- **Developed by:**
|
| 21 |
-
- **
|
| 22 |
-
- **
|
| 23 |
-
- **
|
| 24 |
-
- **
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
|
| 28 |
### Model Sources [optional]
|
| 29 |
|
| 30 |
<!-- Provide the basic links for the model. -->
|
| 31 |
|
| 32 |
-
- **Repository:**
|
| 33 |
-
- **Paper [optional]:**
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
-
|
| 36 |
-
## Uses
|
| 37 |
-
|
| 38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
-
|
| 40 |
-
### Direct Use
|
| 41 |
-
|
| 42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
-
|
| 44 |
-
[More Information Needed]
|
| 45 |
-
|
| 46 |
-
### Downstream Use [optional]
|
| 47 |
-
|
| 48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
-
|
| 50 |
-
[More Information Needed]
|
| 51 |
-
|
| 52 |
-
### Out-of-Scope Use
|
| 53 |
-
|
| 54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
-
|
| 56 |
-
[More Information Needed]
|
| 57 |
-
|
| 58 |
-
## Bias, Risks, and Limitations
|
| 59 |
-
|
| 60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
-
|
| 62 |
-
[More Information Needed]
|
| 63 |
-
|
| 64 |
-
### Recommendations
|
| 65 |
-
|
| 66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
-
|
| 68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
|
| 70 |
## How to Get Started with the Model
|
| 71 |
|
| 72 |
Use the code below to get started with the model.
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
## Training Details
|
| 77 |
-
|
| 78 |
-
### Training Data
|
| 79 |
-
|
| 80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
-
|
| 82 |
-
[More Information Needed]
|
| 83 |
-
|
| 84 |
-
### Training Procedure
|
| 85 |
-
|
| 86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
-
|
| 88 |
-
#### Preprocessing [optional]
|
| 89 |
-
|
| 90 |
-
[More Information Needed]
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
#### Training Hyperparameters
|
| 94 |
-
|
| 95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
-
|
| 97 |
-
#### Speeds, Sizes, Times [optional]
|
| 98 |
-
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
-
|
| 103 |
-
## Evaluation
|
| 104 |
-
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
-
|
| 110 |
|
| 111 |
-
|
|
|
|
|
|
|
| 112 |
|
| 113 |
-
|
|
|
|
|
|
|
| 114 |
|
| 115 |
-
|
|
|
|
| 116 |
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
-
[
|
| 120 |
|
| 121 |
-
|
| 122 |
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
|
| 175 |
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
|
| 197 |
## Model Card Contact
|
| 198 |
|
| 199 |
-
|
| 200 |
|
| 201 |
|
|
|
|
| 17 |
|
| 18 |
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 19 |
|
| 20 |
+
- **Developed by:** Haoxiang Wang
|
| 21 |
+
- **Model type:** Sequence Classifier
|
| 22 |
+
- **Language(s) (NLP):** English
|
| 23 |
+
- **License:** Apache-2.0
|
| 24 |
+
- **Finetuned from model [optional]:** https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
|
|
|
|
|
|
|
| 25 |
|
| 26 |
### Model Sources [optional]
|
| 27 |
|
| 28 |
<!-- Provide the basic links for the model. -->
|
| 29 |
|
| 30 |
+
- **Repository:** https://github.com/RLHFlow/directional-preference-alignment
|
| 31 |
+
- **Paper [optional]:** https://arxiv.org/abs/2402.18571
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
## How to Get Started with the Model
|
| 34 |
|
| 35 |
Use the code below to get started with the model.
|
| 36 |
|
| 37 |
+
The model has 10-dimensional output, corresponding to the following attributes from HelpSteer and UltraFeedback
|
| 38 |
+
['helpsteer-helpfulness', 'helpsteer-correctness', 'helpsteer-coherence', 'helpsteer-complexity', 'helpsteer-verbosity', 'ultrafeedback-overall_score', "ultrafeedback-instruction_following", "ultrafeedback-truthfulness", "ultrafeedback-honesty", "ultrafeedback-helpfulness"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
Here is a sample code that you can try
|
| 41 |
+
```python
|
| 42 |
+
from transformers import AutoModelForSequenceClassification,AutoTokenizer
|
| 43 |
+
import torch
|
| 44 |
+
device = 'cuda'
|
| 45 |
+
path = "Haoxiang-Wang/RewardModel-Mistral-7B-for-DPA-v1"
|
| 46 |
+
rm = AutoModelForSequenceClassification.from_pretrained(path, trust_remote_code=True).to(device)
|
| 47 |
+
tokenizer = AutoTokenizer.from_pretrained(path)
|
| 48 |
|
| 49 |
+
input_template = "[INST] You must read the following conversation carefully and rate the assistant's response from score 0-100 in these aspects: helpfulness, correctness, coherence, honesty, complexity, verbosity\n\nUser: {prompt}\n\nAssistant: {response} [/INST]"
|
| 50 |
|
| 51 |
+
# Use a sample from HelpSteer validation set
|
| 52 |
+
prompt = 'What are some synonyms for the word "beautiful"?'
|
| 53 |
+
response = "Nicely, Beautifully, Handsome, Stunning, Wonderful, Gorgeous, Pretty, Stunning, Elegant"
|
| 54 |
|
| 55 |
+
model_inputs = tokenizer(input_template.format(prompt=prompt, response=response), return_tensors="pt").to(device)
|
| 56 |
+
with torch.no_grad():
|
| 57 |
+
score = rm(**model_inputs).logits.squeeze().cpu().float().numpy()
|
| 58 |
|
| 59 |
+
print(score)
|
| 60 |
+
# [68.99269 69.62718 76.23071 33.48785 35.853596 63.833366 55.58917 68.7175 59.552124 46.465595]
|
| 61 |
|
| 62 |
+
# Convert from our scale (0-100) to HelpSteer scale (0-4)
|
| 63 |
+
helpsteer_rewards_pred = (score[:5]-10)/20
|
| 64 |
+
print(helpsteer_rewards_pred)
|
| 65 |
+
# [2.9496346 2.981359 3.3115356 1.1743925 1.2926798]
|
| 66 |
+
# The actual rewards from the HelpSteer dataset for this sample are [3,3,4,2,2]
|
| 67 |
+
```
|
| 68 |
+
## Training
|
| 69 |
|
| 70 |
+

|
| 71 |
|
| 72 |
+

|
| 73 |
|
|
|
|
| 74 |
|
| 75 |
+
## Citation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
**BibTeX:**
|
| 78 |
+
If you find this work useful to your research, please consider citing our paper
|
| 79 |
+
```
|
| 80 |
+
@article{wang2024arithmetic,
|
| 81 |
+
title={Arithmetic Control of LLMs for Diverse User Preferences: Directional Preference Alignment with Multi-Objective Rewards},
|
| 82 |
+
author={Haoxiang Wang and Yong Lin and Wei Xiong and Rui Yang and Shizhe Diao and Shuang Qiu and Han Zhao and Tong Zhang},
|
| 83 |
+
year={2024},
|
| 84 |
+
eprint={2402.18571},
|
| 85 |
+
archivePrefix={arXiv},
|
| 86 |
+
primaryClass={cs.LG}
|
| 87 |
+
}
|
| 88 |
+
```
|
| 89 |
+
|
| 90 |
+
## Model Card Authors
|
| 91 |
+
|
| 92 |
+
Haoxiang Wang
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
## Model Card Contact
|
| 95 |
|
| 96 | |
| 97 |
|
| 98 |
|