davidmezzetti commited on
Commit
267c8a0
·
1 Parent(s): 89008af

Initial version

Browse files
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: text-ranking
3
+ tags:
4
+ - sentence-transformers
5
+ - cross-encoder
6
+ - reranker
7
+ - sentence-similarity
8
+ - transformers
9
+ base_model: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext
10
+ language: en
11
+ license: apache-2.0
12
+ ---
13
+
14
+ # BiomedBERT Reranker
15
+
16
+ This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
17
+
18
+ The training dataset was generated using a random sample of [PubMed](https://pubmed.ncbi.nlm.nih.gov/) title-abstract pairs along with similar title pairs.
19
+
20
+ ## Usage (txtai)
21
+
22
+ This model can be used to score a list of text pairs. This is useful as a reranking pipeline after an initial semantic search operation.
23
+
24
+ ```python
25
+ from txtai.pipeline import Similarity
26
+
27
+ ranker = Similarity(path="neuml/biomedbert-base-reranker", crossencode=True)
28
+ ranker("query", ["document1", "document2"])
29
+ ```
30
+
31
+ ## Usage (Sentence-Transformers)
32
+
33
+ Alternatively, the model can be loaded with [sentence-transformers](https://www.SBERT.net).
34
+
35
+ ```python
36
+ from sentence_transformers import CrossEncoder
37
+
38
+ model = SentenceTransformer("neuml/biomedbert-base-reranker")
39
+ model.predict([["query", "document1"], ["query", "document2"]])
40
+ ```
41
+
42
+ ## Evaluation Results
43
+
44
+ Performance of this model is compared to previously released models trained on medical literature.
45
+
46
+ The following datasets were used to evaluate model performance.
47
+
48
+ - [PubMed QA](https://huggingface.co/datasets/qiaojin/PubMedQA)
49
+ - Subset: pqa_labeled, Split: train, Pair: (question, long_answer)
50
+ - [PubMed Subset](https://huggingface.co/datasets/awinml/pubmed_abstract_3_1k)
51
+ - Split: test, Pair: (title, text)
52
+ - [PubMed Summary](https://huggingface.co/datasets/armanc/scientific_papers)
53
+ - Subset: pubmed, Split: validation, Pair: (article, abstract)
54
+
55
+ Evaluation results are shown below. The [Pearson correlation coefficient](https://en.wikipedia.org/wiki/Pearson_correlation_coefficient) is used as the evaluation metric.
56
+
57
+ | Model | PubMed QA | PubMed Subset | PubMed Summary | Average |
58
+ | ----------------------------------------------------- | --------- | ------------- | -------------- | --------- |
59
+ | [all-MiniLM-L6-v2](https://hf.co/sentence-transformers/all-MiniLM-L6-v2) | 90.40 | 95.92 | 94.07 | 93.46 |
60
+ | [bioclinical-modernbert-base-embeddings](https://hf.co/neuml/bioclinical-modernbert-base-embeddings) | 92.49 | 97.10 | 97.04 | 95.54 |
61
+ | [biomedbert-base-colbert](https://hf.co/neuml/biomedbert-base-colbert) | 94.59 | 97.18 | 96.21 | 95.99|
62
+ | [**biomedbert-base-reranker**](https://hf.co/neuml/biomedbert-base-reranker) | **97.66** | **99.76** | **98.81** | **98.74** |
63
+ | [pubmedbert-base-embeddings](https://hf.co/neuml/pubmedbert-base-embeddings) | 93.27 | 97.00 | 96.58 | 95.62 |
64
+ | [pubmedbert-base-embeddings-8M](https://hf.co/neuml/pubmedbert-base-embeddings-8M) | 90.05 | 94.29 | 94.15 | 92.83 |
65
+
66
+ As expected, this cross-encoder model scores much higher than bi-encoder models and late interaction models. The tradeoff is that this is expensive to run and there is no way to scale it past small batches of data. But it's a great model for re-ranking medical literature.
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForSequenceClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "dtype": "float32",
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "sentence_transformers": {
27
+ "activation_fn": "torch.nn.modules.activation.Sigmoid",
28
+ "version": "5.1.1"
29
+ },
30
+ "transformers_version": "4.56.2",
31
+ "type_vocab_size": 2,
32
+ "use_cache": true,
33
+ "vocab_size": 30522
34
+ }
eval/CrossEncoderCorrelationEvaluator_results.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ epoch,steps,Pearson_Correlation,Spearman_Correlation
2
+ 0.26666666666666666,1000,0.9972800398511398,0.8660153599776242
3
+ 0.5333333333333333,2000,0.9979565710463103,0.8660227070761196
4
+ 0.8,3000,0.9980340500871159,0.8662180223716152
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4bdb4b2f3d97f229724126c25fe833c47a93d2cb4b5bdb2b6c0fb66ecc4ab5a1
3
+ size 437955572
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff